HTML AESTRACT * LINKEES

PHYSICS OF FLUIDS VOLUME 16, NUMBER 9 SEPTEMBER 2004

On the nonlinear evolution of wind-driven gravity waves

A. Alexakis
Department of Physics, The University of Chicago, Chicago, lllinois 60637
and Center for Astrophysical Thermonuclear Flashes, The University of Chicago, Chicago, lllinois 60637

A. C. Calder and L. J. Dursi
Center for Astrophysical Thermonuclear Flashes, The University of Chicago, Chicago, lllinois 60637
and Department of Astronomy & Astrophysics, The University of Chicago, Chicago, lllinois 60637

R. Rosner

Department of Physics, The University of Chicago, Chicago, lllinois 60637;

Center for Astrophysical Thermonuclear Flashes, The University of Chicago, Chicago, lllinois 60637;
Department of Astronomy & Astrophysics, The University of Chicago, Chicago, lllinois 60637;

and Enrico Fermi Institute, The University of Chicago, Chicago, lllinois 60637

J. W. Truran

Center for Astrophysical Thermonuclear Flashes, The University of Chicago, Chicago, lllinois 60637;
Department of Astronomy & Astrophysics, The University of Chicago, Chicago, lllinois 60637;

and Enrico Fermi Institute, The University of Chicago, Chicago, lllinois 60637

B. Fryxell
Center for Astrophysical Thermonuclear Flashes, The University of Chicago, Chicago, lllinois 60637
and Enrico Fermi Institute, The University of Chicago, Chicago, lllinois 60637

M. Zingale
Department of Astronomy and Astrophysics, The University of California, Santa Cruz, Santa Cruz,
California 95064

F. X. Timmes
Center for Astrophysical Thermonuclear Flashes, The University of Chicago, Chicago, lllinois 60637
and Department of Astronomy & Astrophysics, The University of Chicago, Chicago, lllinois 60637

K. Olson
Department of Physics, The University of Chicago, Chicago, lllinois 60637
and UMBC/GEST Center, NASA/GSFC, Greenbelt, Maryland 20771

P. Ricker
Center for Astrophysical Thermonuclear Flashes, The University of Chicago, Chicago, lllinois 60637

(Received 17 February 2004; accepted 21 May 2004; published online 15 July 2004

We present a study of wind-driven nonlinear interfacial gravity waves using numerical simulations
in two dimensions. We consider a case relevant to mixing phenomenon in astrophysical events such
as novae in which the density ratio is approximately 1:10. Our physical setup follows the proposed
mechanism of Mile$J. Fluid Mech.3, 185(1957] for the amplification of such waves. Our results
show good agreement with linear predictions for the growth of the waves. We explore how the wind
strength affects the wave dynamics and the resulting mixing in the nonlinear stage. We identify two
regimes of mixing, namely, the overturning and the cusp-breaking regimes. The former occurs when
the wind is strong enough to overcome the gravitational potential barrier and overturn the wave.
This result is in agreement with the common notion of turbulent mixing in which density gradients
are increased to diffusion scales by the stretching of a series of vortices. In the latter case, mixing
is the result of cusp instabilities. Although the wind is not strong enough to overturn the wave in this
case, it can drive the wave up to a maximum amplitude where a singular structure at the cusp of the
wave forms. Such structures are subject to various instabilities near the cusp that result in breaking
the cusp. Mixing then results from these secondary instabilities and the spray-like structures that
appear as a consequence of the breakin@0@4 American Institute of Physics
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I. INTRODUCTION therein for further discussignThe formulation has been ex-

tended to weakly nonlinearand fully nonlinear regimés

The generation of surface waves by winds has been stugsee also Ref. 6 for more recent developmgritswas no-

ied for well over a century. Helmholtzand Lord Kelvirf  ticed early on that the Kelvin—Helmholtz theoffrom now
investigated the stability of fluid interfaces using a simpleon KH) predicted that instability occurred only for wind ve-
step function wind shear profilesee Ref. 3 and references locities greater than a minimum velocity; this limit was in-
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a b) either from the accretion process itself or by thermally driven
g convection can amplify and break gravity waves on the sur-
face of the white dwarf, thereby enriching the accreted ma-
terial with material from the surface. In this astrophysical
case, although the two fluid layers involvéatcreted H/He
envelope and white dwarf C/Oare miscible, diffusion
length scales are so small that the waves forrfmibr to
mixing by large scale motiongan be considered as interfa-
cial.
FIG. 1. Panela) shows a sketch of the wind profile used in out simulations. In applying this breaking gravity wave mechanism to the
Panel(p) show; the wind profile assumed by the simplest Kelvin—HeImhoItzste”ar case, one must generalize the earlier results to arbi-
instability studies. trary density ratios. This study has been done for the linear
problem,18 deriving bounds on instability in parameter space
and estimating growth rates of unstable modes. For the
consistent with observations on the océarhis puzzle was weakly nonlinear problem, the asymptotic case of a weak
resolved with the work of Mile§,which showed that waves wind has been studied in Ref. 19. However, linear and
can be amplified by a resonant mechanism. Instead of workeakly nonlinear theories give little direct information about
ing with a step function velocity profile, Miles assumed thatmixing, which is largely governed by nonlinear processes.
the uppe(lighter) fluid was moving with velocity given by For the generation of gravity waves in the oceans there is
U(y)=Uf(y/y), wherey is the distance from the interface 5t jiterature on modeling wave growth and breaking. De-
andU" andy’ are a characteristic velocity and length scale,g. i ion of some of the most recent models and aspects of
re_specnv_ely, of the windsee Fig. 1a)]. f is a funct|_on that present investigations can be found in Refs. 20 and 21 and
Miles estimated from boundary layer theory. Detailed Calcu'references therein. The derived models are based both on
lations from linear theory then show that there is an influx O.ftheoretical arguments and a large pool of observational data.

a height at which the wind velocity equals the phase veIocitﬂz\,\g\égggﬁt?ﬁ;tzgﬂweﬁag:ni]tebggz n(r):\llligizlr e:tilg:é(:}lnva{h
of the gravity wave® At this height, the linear eigenvalue y P y

problem is singular and a “critical layer” is formed. The direct numerical simulations for either the case of the ocean
formation of this critical layer allows the pressure perturba—Or the astrophysical problem. The oceanographic problem is

tion to be in phase with the slope of the wave rather than itéjlfﬁcult to address numerically both because the difference

" o PP
trough, thus driving the wave unstable. Vortices that travef?] densmehs petweenl the twohfluudﬁ a'(rj/p.‘”ater_ 1o )"mal:]es h
with the same velocity as the wayee., a resonant condi- the growth time scale one thousand times smaller than the

tion) therefore amplify it. The resulting minimum velocity to wave period and_ because surface tension plays a key role_ in
excite gravity waves is smaller by a factor rl/Pz than the Fhe splray.formatlon. Nonetheless,.there .have. been numerical
minimum velocity obtained by KH theory and is in much investigations of t.)e%l,rzwgary layer S|mulat|oTs in th,('e presence
better agreement with experiments and observations. of wavy boundaries™™ and the effect of “waves” on the
Our interest in this problem comes from a similar astro—W'nd profile was studied. _Present computatlonal_resources
physical puzzle—the upward mixing of heavier core e|e_m_ake more_deta!led mpdellng pf the oceanogr_aphlc prqblem
ments(carbon and oxygen, henceforth Cy@to a lighter with numerical S|mulat|or_15 difficult. However, it is possﬂ;le
(hydrogen—helium atmosphere in precursors to classicalt© addregs the astrophysical problem for a range of relatively
nova explosions. The nova outburst results from the ignitiorSrong winds. .
and subsequent explosive thermonuclear burning of a In this paper we present results of the fully nonlinear
hydrogen-rich layer that has accreted onto the surface of groblem of wind driven gravity waves for fixed density ratio
C/0 white dwarf from a stellar companidfi:*?Abundances  ©f p1/p»=0.1. The simulations in this study were performed
and explosion energies measured from observations indicaking theFLASH code?*"*°a parallel, adaptive-mesh hydro-
that there must be significant mixing of the heavier materiadynamics code for the compressible flows found in astro-
(C/0) of the white dwarf into the lighter accreted material Physical environments.
(H/He). Accordingly, nova models must incorporate a The paper is structured as follows. In Sec. Il we present
mechanism that will dredge up the heavier white dwarf mathe physical setup used in our simulation studies and the
terial. The exact mechanism of the dredge up process th&guations of motion. In Sec. Il we present a short summary
leads to the required enrichment has been the subject of coff the linear and weakly nonlinear theories as well as the
siderable research over the last two decades. The dredge tiyeory of free traveling waves. In Sec. IV we discuss the
mechanism will determine the frequency and energetics ofumerical code used for the simulations, and in Sec. V we
nova outburstd®™® and so it must be included in any de- present the table of our runs and justify the choice of the
tailed model of novae. parameter space we examine. Section VI presents results
Rosneret al® proposed that breaking gravity waves canabout the wave dynamics we observe. In Sec. VIl we present
give the required mixing in a similar manner to that of waterand discuss our results about mixing and in Sec. VIII we
mixing into the atmosphere above an océsee also Ref. 17 present our convergence studies. We summarize and draw
for recent resulfs In the case of the novae, wind originating our conclusions in Sec. IX.

U(y) g Uy)
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[l INITIAL SETUP AND EVOLUTION EQUATIONS volume element located at at timet, to the total massn
included in the same volume element. In our approach we
introduce the passive scaldrrepresenting the mass fraction
of the lower fluid so thaK takes initially the value 1 below
the interface and O above.

We use periodic boundary conditions in tkalirection
and hydrostatic, stress-free boundary conditions in yhe
direction?” We note that we perform “run down” simulations
in the sense that after the initial conditions are set, no addi-
tional forcing is used to maintain the wind flow.

The nondimensional numbers involved @egs/U?

U(y) = Upa{(1 —€7Y9), (1)  which gives a measure of the strength of the wi@l is
related to the Froude numbEras G=F?), the density ratio
r=p,/p, immediately above and below the interfafer

We consider a two-dimensional square box of dige
=l,, with two layers of compressible fluid in hydrostatic
equilibrium separated by a sharp interface located, /.
The densities of the fluids agg immediately above the in-
terface andp, immediately below, withp;<p,. There is a
uniform gravitational fieldy in the negativey direction. The
upper fluid moves in th& direction with a velocity given by
U(y), wherey=0 corresponds to the location of the unper-
turbed interface. The exact form bk(y) used is

wheredis a characteristic length scale. A sketch of the wind

profile is shown in Fig. 1(a) where it is compared with equivalently the Atwood numbek.=(1-r)/(1+r)], and the

profile used by KH(b). . _ .
The equations we evolve are the compressible EuIeMaCh number given b =Upay/ Cs, whereCs is the sound

. ST speed in the upper fluid given bg,=+/y(P/p;). Two addi-
equations for inviscid flow, . AN
tional numbers appear due to the finite size of our calcula-

ap AV ov=0 2) tion. The first one id =1,g/U? which is a measure of the

at V=0, size of the box we are using. The second onél,isvhich
gives the size of our grid for each spatial direction. Because

9 pv there is no explicit viscosity, the effective Reynolds number

S TV pwE VP=pg, (3 of the flow is an increasing function &, although an exact
relation between the two is hard to obtain.

3 pE We use simple sinusoidal perturbations of small ampli-

—+V - (pE+P)v=pv g, (4)  tude to initialize the gravity waves. For single-mode calcu-

It lations the perturbed interface was written as

wherep is the densityy is the fluid velocity,P is the pres- h(x) = A coskoX), (10)

sure, and is the acceleration due to gravitly. is the total

specific energy, composed of the specific internal energy Whereky=2m/l, is the smallest wave number that fits the

and the kinetic energy per unit mass, computational domain anélis the amplitude of the wave. In
1 the lower fluid the perturbation of the velocity was decreas-

E=e+30% ) ing exponentially according to the results of the linear theory.

The system of equations must be closed by an equation df the upper fluid the velocity perturbations were modeled so
state of the formP=P(p,€), for which we use a simpleg @S to mimic the eigenfunctions of the linear problef,

law, was set to 0.05. For multimode perturbations, a superposition
of different modes was used with random phases. The exact
P=(y=1pe. (6)  form of the interface is
The initial density and pressure profiles were obtained by _
integrating the equation of hydrostatic equilibrium in an iso- hoo =2, A codloct ), (19
tropic atmosphere, where ¢, is a random function and the amplitudle of each
dp i excited mode is given bA=C, ke max C, _is a nor-
d_y == pg9y; (7) malizing coefficient keeping the total amplitude of the per-
turbation equal to 0.0%,,,,,Was set to R, for all runs except
which for the case of a compressibjdaw gas gives those in which the effect of the initial spectrum was studied.
= y For all simulations, we kept fixed at 0.1 and tried to mini-
plico = Pi[l —(y- 1)2?—'3/} and P= P0(£> mize the effects of compressibility by keepiigy=0.2. Our
oY pi

principal aim, therefore, is to investigate how gravity wave
(8)  generation and mixing is affected as we change the param-

. . . eterG in the limits L —o andN— oe.
Here Py is the pressure at the interface ang, , is the den- - -

sity immediately above or below the interface.

A passive scalaK representing the mass fraction of a !ll: GRAVITY WAVES, LINEAR AND WEAKLY
species is advected by NONLINEAR THEORIES

9 pX Linear theory is always to be examined first in the study
T V . pXv=0. (9)  of an instability. Although it is not informative about the
fully nonlinear structures the system develops, it imposes
The mass fractiorX(t,x) of a species represents the ratio constraints on the spectrum of the unstable modes and deter-
of the masam, of the species included in an infinitesimal mines the time scales involved given by the linear growth
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rate. Furthermore, weakly nonlinear theories help in under- 0.04 N A 6o0.01125

standing asymptotic regimes of the instability. Finally, there 5003} B, G=0.02250]

are many known results about finite amplitude free waves 2 C, G=0.04500]

(no driving) that are found to be relevant in our research. In © go2F D 6=0.09000]

the subsections below we give a brief review of the results of % E, 6=0.18000:
=

linear and weakly nonlinear theories and the theory of finite
amplitude free waves.

A. Linear theory s
startlng Wlt,h the_baCkground qescnbed in Sgc. I, Intro_FIG. 2. The linear growth rate as a function of the wave number. Each curve

ducing small sinusoidal perturbations and keeping only th@orresponds to a different value 6= gé/U2,, used in our simulations.

linear terms of the perturbation in Eg®) and(3) leads to

the following eigenvalue problem:

that can be examined in numerical simulations. For large

¢ - <k2+ >¢:o (12)  values ofG the time scale for a wave to grow is much
U-c smaller than the period of the wave and therefore requires
with many wave crossing times before the nonlinear regime is
obtained. Finally we note that the growth rate has shown a
paKE = pi[CP’[o+cU'[o] = d(p2 = p1) = 0 (13)  weak dependence on compressibility.

aty=0. Herek is the wave number of the perturbatianis
the phase velocity of the wave, and the stream function o
the flow is given byl = ¢(y)e*+ ¢" (y)e . Incompressibil- Weakly nonlinear theory examines the asymptotic cases
ity has been assumed to simplify the analysis. The imaginarwhen a system is marginally stable and is based on an ex-
part of c timesk gives the growth rate. One can prove the pansion in terms of a small parameter. For the KH case, such
following from the above equations. All unstable waves havean analysis has been performed by Ref. 4. For the wind pro-
phase velocity smaller than m@X, i.e., the wind cannot file as in Eq.(1), the study of the generation of gravity waves
excite waves traveling faster than its maximum velocity. Furin the weakly nonlinear regime was further examined in
thermore, Howard’'s semicircle theorem holdé&Re{c}? Refs. 28 and 19. This analysis holds for for weak winds
+Im{c}?’<maxU}). For a wind profile given byU(y) (G>1) and/or for small density ratio<1. It demonstrates
=Un(1-€"9) the smallest unstable wave number to thethat nonlinearities first become important inside the critical
resonant instability is given B§ layer. The resulting flow is a vortex traveling with the gravity
wave. The initial exponential growth transitions to an oscil-

FS. Weakly nonlinear theory

_ iy Z 2.1 -2
ke = (1) GA-n)+r-nfc _ N+r”+@-r )_ lating power law growth(t?3) proportional to the viscosity.
6 1-r This  transiton  happens at  amplitudes h/\
(14)  ~(kim{c}6/Upna)?. Using Lagrangian tracers, it was shown

that mixing is most important at the separatrix of the flow
(the location where two corotating vortices meét similar
behavior appears in our simulations for the modes for which

2 g the cusp of the wave breaks.

— =kr=——(1-pi/p>). 15
r R Urznax( pilp2) (15

In the limit of small G investigated in this paper, we have
that

C. Free waves and theory of the highest wave

The above result should be compared with that predicted by Finally we review those properties of fréeo wind) ir-

KH theory given by rotational finite amplitude waves that will be useful in this

20 ps-p2 g work. It has been known for some tifflethat the Stokes
m KH 0102 UT (16) equations for irrotational flows have solutions of traveling
max gravity waves. These have been evaluated and tabulated in
which is roughly (p,/p;) times bigger. The two bounds Ref. 30. There is a highest amplitude, givenAk=0.4432,
above provide us with an estimate of the size of the compufor which gravity wave solutions exist. At this amplitude the
tational domain for use in simulations. waves form a singular crest such that the radius of curvature
The growth rates of the unstable modes have been evalwf the interface at the crest goes to zero, forming a corner
ated for a variety of density ratios and wind profiles in Ref.with opening angle of 120°. The stability properties of these
18. In Fig. 2 we show the growth rates for a wind profile waves have been studied extensively by Longuet-Hiﬁéins
given by Eq.(1) for r=0.1 and for five different values @  and references therein. It has been shown that the crest itself
relevant to those examined numerically. is subject to various instabilities. Subharmonic instabilities
For large values o6, it has been shown by Ref. 18 and appear in front of the crest of the wave when the amplitude
proven in Ref. 19 that the growth rate has an exponentiabf the wave is larger thalk=0.4292. However, when su-
dependence on the parame®r (e.g., kim{c}~e*9AC),  perharmonic instabilities are allowgthore than one wave-
This dependence puts a strong restriction on the range of length in the computational domain is considgrét crests
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of the waves become unstable at much smaller amplitffdes. AXH Adiles
The nonlinear develop_ment of the mstabllltl_es ha_s been L o112 | 0225 10450 1 0900 | 1.800 |3.600 | 7.200
shown to lead to breaking of the crédtin our simulations G

the gravity waves are close to irrotational since the initial SM M M M M
perturbation has no vorticity and vorticity is conserved up to oo Aly [A2N | A3y | Ady | Adx

viscous time scalegin the absence of boundary laygrs 0.0225 < B2 B3Y B4y | B5y Bd: BV
There are similarities, therefore, between our simulations ang 4’9,;;\ l l N
the free wave theory. In particular, most of the instabilities | 0.0450 %%‘\ 3Mcal | ost

described by Ref. 31 are present in our simulations as se 96,@ N N N

ondary instabilities in the fully developed waves, which af- | ¢.0900 1%»,\\ D4S;IM sz D6x D7x
fect the mixing properties of the flow. The presence of wind, 94,‘, M

however, results in differences of the nonlinear developmeny o.1800 5% ‘\ ESSI(IM

of these secondary instabilities even for slowly growing
Waves(weak Wlnd3, espeC|aIIy at structures in the breakmg FIG. 3. The parameter space spanned by our runs. Each block in this dia-

crest. gram corresponds to a set of different runs with different resolutiofihe
X axis gives the size of the computational domain measured in units of
P - _ 2 SR
IV. NUMERICAL METHOD Ur.ad 9 they axis gives the value d=gé/ Uy, The dashed line indicates

the wavelength of the most unstable mode for a given valu@. dthe index

All the numerical simulations described in this paper_s”‘" indicates whether a single-mode or multimode perturbation was
were performed using theLASH code, a parallel, adaptive- imposed.
mesh simulation code for studying multidimensional com-
pressible reactive flows found in many astrophysical envi-
ronments. It uses a customized version of HaMRAMESH  Carrying out runs with varying spectrum of the initial wave
Iibrary34’35 to manage a block-structured adaptive grid, addJerturbation. The superscripté/ S indicate whether a single
ing resolution elements in areas of complex flow. The modelgnode(S) or a random multimodéM) perturbation was used
used for simulations assume that the flow is described by that t=0. The strategy followed in our numerical simulations
Euler equations for compressible, inviscid flawasH regu- ~ Was to start from a computational domain the size of the
larizes and solves these equations by an explicit, directionn0ost unstable wavelength for a given value®find move
ally split method, carrying a separate advection equation fot0 the right in the diagranincreasing.). The details of each
the partial density of each chemical or nuclear speea- run will be presented along with our results.
lars) as required for reactive flows. The code does not explic- At this point we should comment on the computational
itly track interfaces between fluids. As a result, mixing oc-limitations of the system we are investigating. First of all we
curs on grid-spacing scales exclusively due to numerica¢annot perform runs for very larde (too far to the right in
diffusion; the rate of this diffusion is a decreasing function ofour diagram because in order to resolve the most unstable
resolution, but is also a function of flow speeds and structurevavelength, we must increase the size of our grid beyond
Complete details concerning the algorithms used in the codavhat is computationally feasible. For similar reasons, we
the structure of the code, selected verification tests, and pefannot investigate very large values of the param@tétoo

formance may be found in Refs. 24—26. far down in the diagrambecause the growth rate of the
unstable modes becomes very small compared to the wave
V. NUMERICAL SIMULATIONS period and the diffusive time scale. The wavelength of the

most unstable mode becomes larger and, as is shown later,

~ Figure 3 illustrates the parameter space spanned by Oghore resolution is required to capture the physics of the
simulations. Each block in this diagram corresponds to a sefave breaking.

of simulations differing only in resolution and initial pertur-
bation. The horizontal axis indicates the size of the compu-
tational domain in terms of the nondimensional number VvI. WAVE DYNAMICS
which varies by factors of 2 across the figure. The vertical . .
. . . A. Comparison with theory
axis corresponds to the parame®&rwhich also increases by
powers of 2 going down the diagram, ranging from 0.011 25 In the first part of our investigation we focus on the
to 0.18. The dashed line shows the location of the most unformation and nonlinear development of the gravity waves.
stable wave number as predicted by the linear theory. Thén order to verify the simulation results, we compare the
two vertical thick lines show the location of the two maxi- growth rates of the gravity waves from the simulations with
mum wavelengths given by the KH theofyky from Eq. the rates predicted by the linear theory. In Fig. 4 we show the
(16)] and via Miles theoryfAg from Eq. (15)]. Modes with  potential energy of the gravity waves at the early stages as a
wavelength to the right of each line are stable to the correfunction of time for different values of the parame@rThe
sponding instability. For each location in the diagram moreresults are from the rundl?, B2, C3%, D4Z,, and
than one simulation has been performed with a different gricESE12 for a single-mode perturbation. Density plots of these
size. The indeX corresponds to the number of grid points in runs can be seen in Fig. 6, which will be discussed later. The
each direction, ranging from 64 to 2048. Furthermore, wepotential energy of the gravity wave was evaluated based on
test for sensitivity of our results to the initial conditions by the integral
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1000
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10

Ep(t)/Ep(0)

1.0 1.2 &.4 1.6

1 x /(U%/9)

0 20 40 60 80 100120140

€ U/6 FIG. 5. A gualitative comparison of structure between weakly nonlinear

theory and the numerical simulations. Pa@lshows a contour plot of the

vorticity as predicted by weakly nonlinear theory. Pa@glshows a contour
FIG. 4. Comparison of the observed growth rate with the linear theory. Theplot of%jensﬁty from ou)r/ nume%cal simulationsry i

solid black lines show the evolution with time of the potential enezgft)

of gravity waves calculated from the numerical simulatio¥is;,, B2z,

C33,, D43, andE5S,,. The dashed lines give the linear theory predictions.

The first three lines have been shifted up for clarity. forms from which material begins to mix. As time
progresses, the wave becomes very oblique, with amplitude
larger than that predicted by the theory of the highest wave.

1 Th i i
- 2 e wave then overturns, leading to the generation of small
Ep=5(p2—p1)g | h(x)“dx, (17) A0ing 9
2 scale structure and strong mixing.
As we increase the value &, waves grow more slowly

whetre h(l)'() IS tr?e IocaE%ngof thEe mt:_arfacle, deﬂngd as dtheas predicted by linear theory. In rlm4§12 the wave reaches
contour line wherep(y)=0.98,. Equation(17) was derive a maximum amplitude and forms a cusp. We note that this

by integratingpy over space and assuming that the wave mplitude is smaller than that predicted by Mich&livho

amplitude is much smaller than the pressure scale height. We. . .4 in his analysis that there was no upper fluid. The

note that this method was the least noisy method to CalCu""‘tﬁrofile of the interface strongly resembles those calculated

the grgwty wave potential energy in the I.|near regime. Afor irrotational waves by Ref. 30 for amplitudes close to the
direct integration over the whole computational domain formaximal one. The opening angle is roughly estimated to be

the evaluation of the potential energy was far too noisy. The136° which is close to, but a little wider than, the one pre-
results from the simulations for the evolution of the potentialdicte’OI by Ref. 29 Figu,re 7 shows a density f)lot of a wave

energy of the gravity waves as a function of the rescaled time, , 1 1" hreak and illustrates the opening angle. We note that

tU/6(frpm now on we d_rop J.[he index “max” fronay for due to the presence of the wind there is an asymmetry with
cqnve_zmenc}eare ShOWF‘ n Fig. 4 where they are Co_mpar_edrespect to front and the back of the wage., the wave is
‘fN'trt] linear theory fre?r:c;]ontsh They are found to be in SaliSjjteq forward. The development of cusp instabilities and the
actory agreement wi e theory. further input of energy from the wind leads to the ejection of

Ilttwo;JId bilusefu:.to furttr?er velr_llfy our code usnt\gt.the Imaterial from the cusp at aperiodic time intervals. The
results of weakly noniinear theory. Fowever, computa 'On_aejected material diffuses in an eddy turnover time in the up-
limitations did not allow us to reach close to the asymptotic

) . oo . per fluid. At each ejection, the amplitude of the wave drops.
regime G>1 required to justify the comparison. Nonethe- The wave resumes growing, forming a new cusp that again

!ess,' a qualitative comparlson can be made. The ,tWO Pane,gads to the ejection of new material and so on. Finally, in the
n F_|g. > show a comparison of tWO. advected f'?lds' theIast row of Fig. 6,G=0.18, it appears that almost no cusp
vorticity as pred|f:ted by weakly ”"_”"”ef'” thepry n IOane'formation or mixing is present. As we will show later in the
(a), and the_ dens_lty fror_n Qur_nu_merlcal simulations in IOanelresolution studies, this is an effect of low resolution that
(b). There is obvious similarity in the structures of the tWOs ppresses the cusp instabilities described earlier. In finite-

fields, although more small scale structure appears in PaNGitference-based or finite-volume-based simulations, the ap-

(0). pearance of instabilities—such as cusp formation—can criti-

cally depend on théeffective) grid resolution. This fact is a

strong motivation underlying the resolution studies presented
Next we discuss results from the simulations when thdater on.

system is far away from linearity. We present first the single-  There is an interesting interpretation of the above de-

mode runsA1S, B2, C3%,, D4z, andE5S, In each  scribed results related to the two instabilitigeH and reso-

simulation a single mode was excited with wavelength equahany described in the linear theory. For the rumg’lz,

to the box length. With this choice we are examining theB25,,, andC3S,, (where the overturning mechanism appears

evolution of the mode close to the most unstable one for eacto be more dominait the wavelength of the most unstable

value of G. The panels in Fig. 6 are density plots that showwave is smaller than the maximum wavelengtky pre-

the time evolution of the forming wave. Each row corre-dicted by KH theory. On the other hand, for the rib&s,,,

sponds to a different value @& and each column represents E5z,, where there is only cusp breaking or no mixing at all,

a different time. the most unstable wavelength is larger thag. The mini-
There is a difference in the structures that appear as waum wave number predicted from KH can therefore be in-

increase the parametér. At smaller values ofs we observe terpreted as a criterion for overturning to occur.

that as the wave grows, at some point in time a breaking cusp Important differences appear when we move to multi-

B. Nonlinear evolution
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FIG. 6. Waves forming for single-mode initial perturbations for different valueS.ofhe gray scale represents density. Each row corresponds to a different
value of G (starting from the smallest value in the top no@=0.0112,0.0225,0.0450,0.0900,0.1800; time increases from left to right. The computational
domain is arranged so that the largest wavelength is close to the most unstable mode.

mode perturbations and computational boxes larger than the
most unstable wavelength. There are two main reasons for
this. The first is that larger boxes allow for vortex merging,
which affects the dynamics of the waves. The second reason
is that superharmonic instabilities lead to cusp breaking at
smaller amplitudes than for cases in which only a single
wave period is considered.Figure 8 shows contour plots of
the mass fraction of the lower flui from the evolution of

the runsA5Y,,, B5Y,,, C58,, D5, andESY .. All runs have

the same multimode perturbation as described in Sec. Il, the
same box size, and resolutionN. In the first three rows
mixing is initiated by the overturning of small, most un-
stable, waves, and a thin mixed layer is formed. Vortices
merge, exciting larger wavelengths that themselves overturn
leading to a wider mixed layer. This procedure continues
until wavelengths larger thahgy are excited. Mixing then
continues at a smaller rate in a mechanism that resembles
cusp breaking, although an interface cannot be defined in thf;
case.
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gG. 7. The structure of the wave near cusp breaking. The wave, just before
reaking, forms a cusp of angte136°. The amplitude of the wave at this
point isAk=0.35. The presence of the wind makes the breaking possible at

For largerG, modes with large wavelengths appear to besmaller values of the amplitude than the theory of free waves predicts.
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FIG. 8. Waves forming for differenG and the samé with random multimode perturbations. The gray scale represents the mass fédct@mth row
corresponds to a different value &f (starting from the smallest value in the top no@&=0.0112,0.0225,0.0450,0.0900,0.1800; time increases from left to
right. The computational domain for all figures shown herk3sl.8.

dominant from the beginning. In particular, the mode withstable to small perturbation®oise since it remains at this
I /N=kéL/27=2 (two wave peaks in the boxs dominant at  configuration for some time. Superharmonic instabilities, al-
the beginning of thé)5£'\{'12 run, and the mode with/A=1is  though leading to more cusp breaking, do not destroy the two
dominant for the rurESQ"lz. We note that for incompressible vortex configuration initially. However, eventually the two
flows, the linear theory predicts that the most unstable wavevortices do merge, exciting the mode with wavelength equal
length had,/\ = 2.5 for theD5% , run andl,/A=1.7 for the  to the box size and causing significant mixing. We further
E55M12 run, which is close to our result considering that theinvestigate the rurli)Sg"12 by considering cases with different
ratio I,/\ in our setup can take only integer values. Further-perturbations imposed at0; the same functional form for
more, mixing seems to be suppressed forliﬁg12 run until  the spectrum of perturbations was ugé&dj. (11)], but with
late times, while the rurDSL\{'12 forms breaking cusps that the peak of the spectrum at valukg.=3Kkg,4kg, 5kg com-
eject material in the upper fluid that can be clearly seen in th@ared to &, as in the original run. The first case corresponds
third panel of the fourth row in Fig. 8. We note that there isto the previously described run. Although the same mode
more mixing than the single-mode run with the same valugk=2k,) appears to be dominant at the beginning, the time at
of G because, as we discussed in Sec. lll C, the presence wfich the two vortices merged into one was different for
superharmonic instabilities forces the cusps to break atach run and varied from 200U to 5005/U. We note that
smaller wave amplitudes. At the end of this run, the twothere was no systematic correlation of the merging time with
waves have merged into one. Kmax Figure 9 shows the evolution of the potential energy for
We focus further on the ruB5Y;,, which has interesting these runs, with diamonds indicating where the two vortices
properties regarding the evolution of superharmonic perturmerged.
bations. The configuration of two traveling waves shown in It would be interesting to investigate the energy transfer
the first three panels of the fourth row of Fig. 8 appears to becross the exited modes and measure the resulting spectrum
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1000 ‘ ‘ dent of the diffusivity because of the generation of eddies at
i p smaller and smaller scaléturbulent diffusion. How close
S 100k we are to this limit will be demonstrated in the following
Q section, where we present our convergence studies. Further-
A rob o — ko2 1 more, since our results are from run-down numerical experi-
Ll f — (mar= ments, at late times, where large-scale turbulence has de-
. kmor=8 cayed, only numerical diffusion will give effective mixing.
T4

Therefore, there are two expected stages of mixing: dynamic

mixing at early times that is dominated by small scale gen-

eration(cusp breaking and overturnipgnd a diffusive stage

FIG. 9. The evolution of the gravity wave potential energy for different at late times when turbulence is no longer present.

initial perturbations for the run®5Y,,. The diamond indicates when the two Keeping the above in mind, we quantify the mixing by

waves merged into one. The dashed line gives the linear theory predictiormeasuring the lower fluid mass inside a mixed |ayer and

averaging over the horizontal direction. The mixed layer is

) i . defined as the region in our computational domain where the

and compare with theoretical predlctlogﬁsHowever, the concentration of the passive scakidefined in Eq(9)] is

clorgputatlional domgin infour (:Iuns ::S nch]t big eno_ug_h to in'between two extreme values,,, and X, We define, there-

clude a large number of modes. Furthermore, it is wort : _ . :

noting that at the end the largest wavelength mode is domr::-iorree‘,j'1 fgiﬁgg?gtmtg or @(Ez))az ;h(? )r(n |x)eg>r(n ass per unit

nant, implying that the two-dimensional cascade has influ- y min X0 YD Amee

enced our results. Although one can trust the two- 1

dimensional assumption when mixing starts, three- Mt Xmin Xma = I_f pX dx dy, (18)

dimensional effects may well become important when vortex XD

merging happens. Thus vortex merging can be the result %hereD:{(x,y)|Xmin<X(t,x,y)<XmaX}. We further define

the two-dimensional inverse cascade, and might not takg,e density distribution of the mass as

place in a three-dimensionéD) setup, resulting in a differ-

ent structure of the mixing zone for the 3D case. The behav-  u(t,X) = dM(t, X;,in, X)/dX. (19

ior, therefore, of the 2D runs must be compared with 3D runs o
in order to resolve this issue. The distribution expresses the amount of mass from the

lower fluid that lies between the valugsandX+dX, per unit

area, and is of particular interest when the effect of chemical
VII. MIXING . . .

or nuclear reactions is studied.

Next we focus on mixing. The primary quantities of in- In Fig. 10 we plotu(t,X) for the runsA5§"024, 851M024
terest to us are the amount of mass of the lower fluid that i€5)(,, D5),, and E5},, The distribution was calculated
mixed upwards and the distribution of this mixed mass. Asby averaging over space and time for the time range
discussed in Sec. IV, in these simulations mixing on smalll200<tU/§< 1500. The first three runas}t,, B5Y,, and
scales is due to uncontrolled numerical diffusion. Despitd:S’i"oz‘l(overturning runghave significant mixed mass in the
this, our investigation is based on the assumption that abserdnge 0.02X<0.4, with a small shift of the peak of the
this effect, mass will still be mixed at a finite rate indepen-distribution toward smaller values of as G is increased.
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FIG. 12. The amount of mass in the mixed laj(t,0.02,0.4 for different
FIG. 11. The evolution of the mass in the mixed layer per unit areajnitial perturbations for the russy), (G=0.0225.

M(t,0.02,0.4 with L=1.80 and different values @, as indicated.

The dynamical mixing appears to transition to a slower
Eate, which is possibly related to numerical mixing, after

There is a striking difference between these runs and th . ! .
9 =2X10°5/U. The total amount of mass mixed at this point

results fromD5Y,,,, E5)., (cusp-breaking runsThe peak of
the distribution of the cusp-breaking runs are at smaller val's
ues(X<0.2) with much smaller deviatioimuch narrower

distribution peaks This implies that for the cusp-breaking
mechanism, mixed mass spreads over a larger area than

the overturning mechanism. Mixing by overturning is con-
d g g D5Y,, and E5),), the above results no longer hold. The

fined in the region of the wave, while the ejected material t of ixed for the rumsM dE5M . devi
from the cusp breaking can spread over a wider verticaf 11ount of Mass mixec for the Ul oo, an 1024 G€VI-
range. ates from the previously discussed curivt,0.02,0.4 ap-

In all runs a significant amount of mass appears to be i Earsbt% deprgase fasttvxgﬂ;whene IS Iirger ;[(han ?hO4I5
the highX end of the distribution. This result is more pro- 'S DENavior'1s expected because we know from the finear

nounced for the larg& cases(e.g., E5). This mass is not theory that the growth rate decreases exponentially @ith

related to the cusp formation or overturning but rather toAISO’ from weakly nonlinear theory we know that the wave

numerical diffusion in the bulk of the wave. This phenom-to first order remains lineage.g., no cuspin the limit of

enon is more obvious in the lardgé runs only because the IargIeG. der to d lusi bout the behavior of ch
dynamical time scalés/U) is large and closer to the numeri- n order to draw conclusions about the benhavior of cha-

cal diffusion time scale. This mixed mass strongly dependé)tIC nonlinear systems from numerical simulations, an en-

on the resolution, an effect that is not desirable. We are theres-emble average of different initial conditions is ideally re-

fore only interested in the mixed mass for lohand we will quired. However, the computational cost of high resolution

therefore restrict our attention in estimating the mixed mas§i"S does not allow for a large number Of. runs. qu this
in the range 0.0Z X<0.4. reason, we have had to cqnteMnt ourselv’\(/les W.Ith fqur different
Figure 11 show#(t,0.02,0.4 as a function of the res- §|mulat|ons of the Setups 1855, and D55, \.N'th different :
caled time (tU/ o) from, the ,runsASM BEM  CsM imposed perturbations, and we have obtained only qualita-
D5M  and E5M - The first three éﬂ?f’/e $Glizé 0 45;0?3 tive results about the sensitivity of the runs to small differ-
1024 1024 = V.

. L . . A .. ences in the initial conditions. The results are shown in Figs.
which mixing is due to overturning give similar results with

M .
small differences. The mixing time scale for those runs 52 and 13. For thd5g, runs fluctuations oM are small

determined by(6/U). This implies that the mixed mass as a throughqt_;t the mte_gr_ated time, while for th? rubS;;, there .
, . . . are significant variations of the amount mixed. The chaotic
function of time for the given box size and small values of

the paramete6(G<0.045 is given b behavior of the two vortex configuration, as discussed in the
P e 9 y preceding section, explains the existence of the large fluctua-

M = ayp,U?/g, (22)

wherea; is measured to be,=1X 1072
As we move to higher values of the parame®(runs

2

M(t,0.02,0.4 = pZU—f(tU/5), (20
9 0.008
wheref is a function that can be estimated from Fig. 11. The 0.006 F kme=? MAAA‘“““f
total amount of mass mixed in the dynamic mixing range for & e MW
sufficiently smallé§ is therefore, to first order, independent of § 0.004 + Rk .
the wind length scal@é, and only the time scale depends on g ':.;ft
6. The amount of mixed mass increases linearly at early 0.002 - s 1
times (dynamical rangg with a rate given by 0.000 baaad®® .
3 0 400 800 1200
d_M:a1£’ (21) tu/s
dt gé

FIG. 13. The amount of mass in the mixed laj(t,0.02,0.4 for different

wherea; is measured to be;=1.5X 1075,

initial perturbations for the rub5Y, (G=0.09.
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tions. The sensitivity, therefore, &l to the initial imposed 14(b)]. The results for the cusp breaking runs suggest that at
perturbation increases as we increase the pararfietand  higher resolution, the amount of mass mixed becomes only
one therefore should be careful when interpreting the resultereakly dependent on resolution. Nonmonotonic dependence

of a single run. on resolution of large scale flows has been observed in simu-
lations of Rayleigh—Taylor instability even when atomic
VIll. CONVERGENCE STUDIES mixing rates have converg§8?7AIthough the mechanisms

) o that are involved in numerical dissipation and the effect of

~ One of the key issues of the problem we examine is th@eqq|ytion on numerical simulations are qualitatively under-
mixing of the two species and it is, therefore, important gq64 a quantifying theory for its effect is not available. To
control diffusion. Unfortunately we have to rely on numeri- ¢, rther demonstrate the sensitivity of mixing with resolution
cal diffusion, which is not a well-controlled quantity, for ¢y, {ne largeG runs, we show in Fig. 15 the results of the

mixing on small scales. Itis believed that in the limit of high gjmjationsEsM for different resolutions: the structure of the
resolution (high effective Reynolds numbgrthe effective 55 changes drastically as we increase the resolution.
diffusion of the two species will reach an asymptotic value  another limit of interest id — . It is expected that if

independent of the resolution. This expectation is based of}e chose sufficiently largd, then horizontally averaged

the belief that once fully developed turbulence appears, efy antities should not depend &n To test how close we are

fective diffusion would be determined by eddy diffusion. (5 this |imit, we performed a number of simulations changing

This assumption, and_h_ow close to this limit our simulationsy,a yalue ofl. while keeping the resolution per unit of physi-

are, needs to be explicitly tested. _ cal length,N/I, fixed. It was found that larger values bf
To investigate the dependence Mf(t, Xuin, Xma) With \yere required for convergence as we increaSeth Fig. 16

resolution we repeated the same runs with diffeférand |\ o present the dependence Mft,0.02,0.4 on the size of
looked at the dependenceMfandu on the grid size. In Fig. 4 computational domairL for two values of G (G

14 we show the mix’\(;.-d maM(’\E,O.OZ,_O.A} as a function of - 0112 and3=0.09. Although the runs with smalt con-
time for the runsBSy and DSy for different values ofN  \grged forl as small as 0.9, for the largg@ modes conver-

ranging from 64 to 1028. A similar effect is observed for all yonce seems to be achieved only wheis larger than 7.2.
the overturning runs. As we increase the resolution of eaclg

run, the gmount of mass mixed decreases .|n|t|ally.up to IX. CONCLUSIONS
some point of lowest mixing and then starts increasing again
[see Fig. 14a)]. This is consistent with the idea that at low In this paper we presented the results from an extensive
resolution, numerical diffusion dominates the mixing so thatinvestigation of wind-driven gravity waves using numerical
increasing the resolution decreases total mixing. Eventuallysimulations. Motivated by an astrophysical problem, we in-
however, the mixing becomes dominated by mixing due tovestigated how interfacial waves are amplified by the wind,
small scale motions, and increasing the resolution furthefollowing the resonant mechanism of Mifet® the nonlinear
increases the total mixing as smaller and smaller eddies al®reaking wave stage. Keeping the density ratio fixed rat
resolved. A more complex behavior was observed for the=0.1, we performed a parameter study by changing the non-
cusp-breaking waves as we increased resolufsge Fig. dimensional paramete®=gs/ U2
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FIG. 15. The formation of the cusp with different resolutioNsgives the number of grid points across the computational domain. The figures are taken from
the runseSY for the value 0fG=0.18.
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