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We present a study of wind-driven nonlinear interfacial gravity waves using numerical simulations
in two dimensions. We consider a case relevant to mixing phenomenon in astrophysical events such
as novae in which the density ratio is approximately 1:10. Our physical setup follows the proposed
mechanism of Miles[J. Fluid Mech.3, 185(1957)] for the amplification of such waves. Our results
show good agreement with linear predictions for the growth of the waves. We explore how the wind
strength affects the wave dynamics and the resulting mixing in the nonlinear stage. We identify two
regimes of mixing, namely, the overturning and the cusp-breaking regimes. The former occurs when
the wind is strong enough to overcome the gravitational potential barrier and overturn the wave.
This result is in agreement with the common notion of turbulent mixing in which density gradients
are increased to diffusion scales by the stretching of a series of vortices. In the latter case, mixing
is the result of cusp instabilities. Although the wind is not strong enough to overturn the wave in this
case, it can drive the wave up to a maximum amplitude where a singular structure at the cusp of the
wave forms. Such structures are subject to various instabilities near the cusp that result in breaking
the cusp. Mixing then results from these secondary instabilities and the spray-like structures that
appear as a consequence of the breaking. ©2004 American Institute of Physics.
[DOI: 10.1063/1.1771695]

I. INTRODUCTION

The generation of surface waves by winds has been stud-
ied for well over a century. Helmholtz1 and Lord Kelvin2

investigated the stability of fluid interfaces using a simple
step function wind shear profile(see Ref. 3 and references

therein for further discussion). The formulation has been ex-
tended to weakly nonlinear4 and fully nonlinear regimes5

(see also Ref. 6 for more recent developments). It was no-
ticed early on that the Kelvin–Helmholtz theory(from now
on KH) predicted that instability occurred only for wind ve-
locities greater than a minimum velocity; this limit was in-
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consistent with observations on the ocean.7 This puzzle was
resolved with the work of Miles,8 which showed that waves
can be amplified by a resonant mechanism. Instead of work-
ing with a step function velocity profile, Miles assumed that
the upper(lighter) fluid was moving with velocity given by
Usyd=U* fsy/y*d, wherey is the distance from the interface
andU* andy* are a characteristic velocity and length scale,
respectively, of the wind[see Fig. 1(a)]. f is a function that
Miles estimated from boundary layer theory. Detailed calcu-
lations from linear theory then show that there is an influx of
energy from the wind to the gravity wave as long as there is
a height at which the wind velocity equals the phase velocity
of the gravity wave.8,9 At this height, the linear eigenvalue
problem is singular and a “critical layer” is formed. The
formation of this critical layer allows the pressure perturba-
tion to be in phase with the slope of the wave rather than its
trough, thus driving the wave unstable. Vortices that travel
with the same velocity as the wave(i.e., a resonant condi-
tion) therefore amplify it. The resulting minimum velocity to
excite gravity waves is smaller by a factor ofÎr1/r2 than the
minimum velocity obtained by KH theory and is in much
better agreement with experiments and observations.

Our interest in this problem comes from a similar astro-
physical puzzle—the upward mixing of heavier core ele-
ments(carbon and oxygen, henceforth C/O) into a lighter
(hydrogen–helium) atmosphere in precursors to classical
nova explosions. The nova outburst results from the ignition
and subsequent explosive thermonuclear burning of a
hydrogen-rich layer that has accreted onto the surface of a
C/O white dwarf from a stellar companion.10–12Abundances
and explosion energies measured from observations indicate
that there must be significant mixing of the heavier material
sC/Od of the white dwarf into the lighter accreted material
sH/Hed. Accordingly, nova models must incorporate a
mechanism that will dredge up the heavier white dwarf ma-
terial. The exact mechanism of the dredge up process that
leads to the required enrichment has been the subject of con-
siderable research over the last two decades. The dredge up
mechanism will determine the frequency and energetics of
nova outbursts,13–15 and so it must be included in any de-
tailed model of novae.

Rosneret al.16 proposed that breaking gravity waves can
give the required mixing in a similar manner to that of water
mixing into the atmosphere above an ocean(see also Ref. 17
for recent results). In the case of the novae, wind originating

either from the accretion process itself or by thermally driven
convection can amplify and break gravity waves on the sur-
face of the white dwarf, thereby enriching the accreted ma-
terial with material from the surface. In this astrophysical
case, although the two fluid layers involved(accreted H/He
envelope and white dwarf C/O) are miscible, diffusion
length scales are so small that the waves formed(prior to
mixing by large scale motions) can be considered as interfa-
cial.

In applying this breaking gravity wave mechanism to the
stellar case, one must generalize the earlier results to arbi-
trary density ratios. This study has been done for the linear
problem,18 deriving bounds on instability in parameter space
and estimating growth rates of unstable modes. For the
weakly nonlinear problem, the asymptotic case of a weak
wind has been studied in Ref. 19. However, linear and
weakly nonlinear theories give little direct information about
mixing, which is largely governed by nonlinear processes.

For the generation of gravity waves in the oceans there is
a vast literature on modeling wave growth and breaking. De-
scription of some of the most recent models and aspects of
present investigations can be found in Refs. 20 and 21 and
references therein. The derived models are based both on
theoretical arguments and a large pool of observational data.
However, to our knowledge, the fully nonlinear evolution of
the resonant instability has not been previously studied with
direct numerical simulations for either the case of the ocean
or the astrophysical problem. The oceanographic problem is
difficult to address numerically both because the difference
in densities between the two fluidssrair/rwater=10−3d makes
the growth time scale one thousand times smaller than the
wave period and because surface tension plays a key role in
the spray formation. Nonetheless, there have been numerical
investigations of boundary layer simulations in the presence
of wavy boundaries22,23 and the effect of “waves” on the
wind profile was studied. Present computational resources
make more detailed modeling of the oceanographic problem
with numerical simulations difficult. However, it is possible
to address the astrophysical problem for a range of relatively
strong winds.

In this paper we present results of the fully nonlinear
problem of wind driven gravity waves for fixed density ratio
of r1/r2=0.1. The simulations in this study were performed
using theFLASH code,24–26 a parallel, adaptive-mesh hydro-
dynamics code for the compressible flows found in astro-
physical environments.

The paper is structured as follows. In Sec. II we present
the physical setup used in our simulation studies and the
equations of motion. In Sec. III we present a short summary
of the linear and weakly nonlinear theories as well as the
theory of free traveling waves. In Sec. IV we discuss the
numerical code used for the simulations, and in Sec. V we
present the table of our runs and justify the choice of the
parameter space we examine. Section VI presents results
about the wave dynamics we observe. In Sec. VII we present
and discuss our results about mixing and in Sec. VIII we
present our convergence studies. We summarize and draw
our conclusions in Sec. IX.

FIG. 1. Panel(a) shows a sketch of the wind profile used in out simulations.
Panel(b) shows the wind profile assumed by the simplest Kelvin–Helmholtz
instability studies.

Phys. Fluids, Vol. 16, No. 9, September 2004 On the nonlinear evolution of wind-driven gravity waves 3257

Downloaded 13 Apr 2005 to 128.117.136.18. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



II. INITIAL SETUP AND EVOLUTION EQUATIONS

We consider a two-dimensional square box of sizely
= lx, with two layers of compressible fluid in hydrostatic
equilibrium separated by a sharp interface located atly/2.
The densities of the fluids arer1 immediately above the in-
terface andr2 immediately below, withr1,r2. There is a
uniform gravitational fieldg in the negativey direction. The
upper fluid moves in thex direction with a velocity given by
Usyd, wherey=0 corresponds to the location of the unper-
turbed interface. The exact form ofUsyd used is

Usyd = Umaxs1 − e−y/dd, s1d

whered is a characteristic length scale. A sketch of the wind
profile is shown in Fig. 1(a) where it is compared with
profile used by KH(b).

The equations we evolve are the compressible Euler
equations for inviscid flow,

] r

] t
+ = · rv = 0, s2d

] rv

] t
+ = · rvv + = P = rg, s3d

] rE

] t
+ = · srE + Pdv = rv ·g, s4d

wherer is the density,v is the fluid velocity,P is the pres-
sure, andg is the acceleration due to gravity.E is the total
specific energy, composed of the specific internal energye
and the kinetic energy per unit mass,

E = e + 1
2v2. s5d

The system of equations must be closed by an equation of
state of the formP=Psr ,ed, for which we use a simpleg
law,

P = sg − 1dre. s6d

The initial density and pressure profiles were obtained by
integrating the equation of hydrostatic equilibrium in an iso-
tropic atmosphere,

dP

dy
= − rgŷ, s7d

which for the case of a compressibleg-law gas gives

urut=0 = riF1 − sg − 1d
griy

P0g
G1/sg−1d

and P = P0S r

ri
Dg

.

s8d

HereP0 is the pressure at the interface andri=1,2 is the den-
sity immediately above or below the interface.

A passive scalarX representing the mass fraction of a
species is advected by

] rX

] t
+ = · rXv = 0. s9d

The mass fractionXist ,xd of a speciesi represents the ratio
of the massmi of the speciesi included in an infinitesimal

volume element located atx at time t, to the total massm
included in the same volume element. In our approach we
introduce the passive scalarX representing the mass fraction
of the lower fluid so thatX takes initially the value 1 below
the interface and 0 above.

We use periodic boundary conditions in thex direction
and hydrostatic, stress-free boundary conditions in they
direction.27 We note that we perform “run down” simulations
in the sense that after the initial conditions are set, no addi-
tional forcing is used to maintain the wind flow.

The nondimensional numbers involved areG=gd /Umax
2 ,

which gives a measure of the strength of the wind(G is
related to the Froude numberF asG=F−2), the density ratio
r =r1/r2 immediately above and below the interface[or
equivalently the Atwood numberAt=s1−rd / s1+rd], and the
Mach number given byM =Umax/Cs, whereCs is the sound
speed in the upper fluid given byCs=ÎgsP/r1d. Two addi-
tional numbers appear due to the finite size of our calcula-
tion. The first one isL= lxg/U2, which is a measure of the
size of the box we are using. The second one isN, which
gives the size of our grid for each spatial direction. Because
there is no explicit viscosity, the effective Reynolds number
of the flow is an increasing function ofN, although an exact
relation between the two is hard to obtain.

We use simple sinusoidal perturbations of small ampli-
tude to initialize the gravity waves. For single-mode calcu-
lations the perturbed interface was written as

hsxd = A cossk0xd, s10d

where k0=2p / lx is the smallest wave number that fits the
computational domain andA is the amplitude of the wave. In
the lower fluid the perturbation of the velocity was decreas-
ing exponentially according to the results of the linear theory.
In the upper fluid the velocity perturbations were modeled so
as to mimic the eigenfunctions of the linear problem.Ak0

was set to 0.05. For multimode perturbations, a superposition
of different modes was used with random phases. The exact
form of the interface is

hsxd = o Ak cosskx+ frd, s11d

wherefr is a random function and the amplitudeAk of each
excited mode is given byAk=Ckmax

ke−k/kmax. Ckmax
is a nor-

malizing coefficient keeping the total amplitude of the per-
turbation equal to 0.05.kmax was set to 2k0 for all runs except
those in which the effect of the initial spectrum was studied.
For all simulations, we keptr fixed at 0.1 and tried to mini-
mize the effects of compressibility by keepingM =0.2. Our
principal aim, therefore, is to investigate how gravity wave
generation and mixing is affected as we change the param-
eterG in the limits L→` andN→`.

III. GRAVITY WAVES, LINEAR AND WEAKLY
NONLINEAR THEORIES

Linear theory is always to be examined first in the study
of an instability. Although it is not informative about the
fully nonlinear structures the system develops, it imposes
constraints on the spectrum of the unstable modes and deter-
mines the time scales involved given by the linear growth
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rate. Furthermore, weakly nonlinear theories help in under-
standing asymptotic regimes of the instability. Finally, there
are many known results about finite amplitude free waves
(no driving) that are found to be relevant in our research. In
the subsections below we give a brief review of the results of
linear and weakly nonlinear theories and the theory of finite
amplitude free waves.

A. Linear theory

Starting with the background described in Sec. II, intro-
ducing small sinusoidal perturbations and keeping only the
linear terms of the perturbation in Eqs.(2) and (3) leads to
the following eigenvalue problem:

f9 − Sk2 +
U9

U − c
Df = 0 s12d

with

r2kc2 − r1fc2f8u0 + cU8u0g − gsr2 − r1d = 0 s13d

at y=0. Herek is the wave number of the perturbation,c is
the phase velocity of the wave, and the stream function of
the flow is given byC=fsydeikx+f*syde−ikx. Incompressibil-
ity has been assumed to simplify the analysis. The imaginary
part of c times k gives the growth rate. One can prove the
following from the above equations. All unstable waves have
phase velocity smaller than maxsUd, i.e., the wind cannot
excite waves traveling faster than its maximum velocity. Fur-
thermore, Howard’s semicircle theorem holds:sRehcj2

+Imhcj2ømaxhUjd. For a wind profile given byUsyd
=Umaxs1−ey/dd the smallest unstable wave number to the
resonant instability is given by18

kR = S1

d
DGs1 − rd + r − rÎfGs1 − rd + rg2 + s1 − r2d

1 − r2 .

s14d

In the limit of small G investigated in this paper, we have
that

2p

lR
; kR .

g

Umax
2 s1 − r1/r2d. s15d

The above result should be compared with that predicted by
KH theory given by

2p

lKH
; kKH =

r2
2 − r1

2

r1r2

g

Umax
2 , s16d

which is roughly sr2/r1d times bigger. The two bounds
above provide us with an estimate of the size of the compu-
tational domain for use in simulations.

The growth rates of the unstable modes have been evalu-
ated for a variety of density ratios and wind profiles in Ref.
18. In Fig. 2 we show the growth rates for a wind profile
given by Eq.(1) for r =0.1 and for five different values ofG
relevant to those examined numerically.

For large values ofG, it has been shown by Ref. 18 and
proven in Ref. 19 that the growth rate has an exponential
dependence on the parameterG (e.g., kImhcj,e−4.9 AtG).
This dependence puts a strong restriction on the range ofG

that can be examined in numerical simulations. For large
values of G the time scale for a wave to grow is much
smaller than the period of the wave and therefore requires
many wave crossing times before the nonlinear regime is
obtained. Finally we note that the growth rate has shown a
weak dependence on compressibility.

B. Weakly nonlinear theory

Weakly nonlinear theory examines the asymptotic cases
when a system is marginally stable and is based on an ex-
pansion in terms of a small parameter. For the KH case, such
an analysis has been performed by Ref. 4. For the wind pro-
file as in Eq.(1), the study of the generation of gravity waves
in the weakly nonlinear regime was further examined in
Refs. 28 and 19. This analysis holds for for weak winds
sG@1d and/or for small density ratior !1. It demonstrates
that nonlinearities first become important inside the critical
layer. The resulting flow is a vortex traveling with the gravity
wave. The initial exponential growth transitions to an oscil-
lating power law growthst2/3d proportional to the viscosity.
This transition happens at amplitudes h/l
,skImhcjd /Umaxd2. Using Lagrangian tracers, it was shown
that mixing is most important at the separatrix of the flow
(the location where two corotating vortices meet). A similar
behavior appears in our simulations for the modes for which
the cusp of the wave breaks.

C. Free waves and theory of the highest wave

Finally we review those properties of free(no wind) ir-
rotational finite amplitude waves that will be useful in this
work. It has been known for some time29 that the Stokes
equations for irrotational flows have solutions of traveling
gravity waves. These have been evaluated and tabulated in
Ref. 30. There is a highest amplitude, given byAk=0.4432,
for which gravity wave solutions exist. At this amplitude the
waves form a singular crest such that the radius of curvature
of the interface at the crest goes to zero, forming a corner
with opening angle of 120°. The stability properties of these
waves have been studied extensively by Longuet-Higgins31

and references therein. It has been shown that the crest itself
is subject to various instabilities. Subharmonic instabilities
appear in front of the crest of the wave when the amplitude
of the wave is larger thanAk=0.4292. However, when su-
perharmonic instabilities are allowed(more than one wave-
length in the computational domain is considered) the crests

FIG. 2. The linear growth rate as a function of the wave number. Each curve
corresponds to a different value ofG;gd /Umax

2 used in our simulations.

Phys. Fluids, Vol. 16, No. 9, September 2004 On the nonlinear evolution of wind-driven gravity waves 3259

Downloaded 13 Apr 2005 to 128.117.136.18. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



of the waves become unstable at much smaller amplitudes.32

The nonlinear development of the instabilities has been
shown to lead to breaking of the crest.33 In our simulations
the gravity waves are close to irrotational since the initial
perturbation has no vorticity and vorticity is conserved up to
viscous time scales(in the absence of boundary layers).
There are similarities, therefore, between our simulations and
the free wave theory. In particular, most of the instabilities
described by Ref. 31 are present in our simulations as sec-
ondary instabilities in the fully developed waves, which af-
fect the mixing properties of the flow. The presence of wind,
however, results in differences of the nonlinear development
of these secondary instabilities even for slowly growing
waves(weak winds), especially at structures in the breaking
crest.

IV. NUMERICAL METHOD

All the numerical simulations described in this paper
were performed using theFLASH code, a parallel, adaptive-
mesh simulation code for studying multidimensional com-
pressible reactive flows found in many astrophysical envi-
ronments. It uses a customized version of thePARAMESH

library34,35 to manage a block-structured adaptive grid, add-
ing resolution elements in areas of complex flow. The models
used for simulations assume that the flow is described by the
Euler equations for compressible, inviscid flow.FLASH regu-
larizes and solves these equations by an explicit, direction-
ally split method, carrying a separate advection equation for
the partial density of each chemical or nuclear species(sca-
lars) as required for reactive flows. The code does not explic-
itly track interfaces between fluids. As a result, mixing oc-
curs on grid-spacing scales exclusively due to numerical
diffusion; the rate of this diffusion is a decreasing function of
resolution, but is also a function of flow speeds and structure.
Complete details concerning the algorithms used in the code,
the structure of the code, selected verification tests, and per-
formance may be found in Refs. 24–26.

V. NUMERICAL SIMULATIONS

Figure 3 illustrates the parameter space spanned by our
simulations. Each block in this diagram corresponds to a set
of simulations differing only in resolution and initial pertur-
bation. The horizontal axis indicates the size of the compu-
tational domain in terms of the nondimensional numberL,
which varies by factors of 2 across the figure. The vertical
axis corresponds to the parameterG, which also increases by
powers of 2 going down the diagram, ranging from 0.011 25
to 0.18. The dashed line shows the location of the most un-
stable wave number as predicted by the linear theory. The
two vertical thick lines show the location of the two maxi-
mum wavelengths given by the KH theory[lKH from Eq.
(16)] and via Miles theory[lR from Eq. (15)]. Modes with
wavelength to the right of each line are stable to the corre-
sponding instability. For each location in the diagram more
than one simulation has been performed with a different grid
size. The indexN corresponds to the number of grid points in
each direction, ranging from 64 to 2048. Furthermore, we
test for sensitivity of our results to the initial conditions by

carrying out runs with varying spectrum of the initial wave
perturbation. The superscriptsM /S indicate whether a single
modesSd or a random multimodesMd perturbation was used
at t=0. The strategy followed in our numerical simulations
was to start from a computational domain the size of the
most unstable wavelength for a given value ofG and move
to the right in the diagram(increasingL). The details of each
run will be presented along with our results.

At this point we should comment on the computational
limitations of the system we are investigating. First of all we
cannot perform runs for very largeL (too far to the right in
our diagram) because in order to resolve the most unstable
wavelength, we must increase the size of our grid beyond
what is computationally feasible. For similar reasons, we
cannot investigate very large values of the parameterG (too
far down in the diagram) because the growth rate of the
unstable modes becomes very small compared to the wave
period and the diffusive time scale. The wavelength of the
most unstable mode becomes larger and, as is shown later,
more resolution is required to capture the physics of the
wave breaking.

VI. WAVE DYNAMICS

A. Comparison with theory

In the first part of our investigation we focus on the
formation and nonlinear development of the gravity waves.
In order to verify the simulation results, we compare the
growth rates of the gravity waves from the simulations with
the rates predicted by the linear theory. In Fig. 4 we show the
potential energy of the gravity waves at the early stages as a
function of time for different values of the parameterG. The
results are from the runsA1512

S , B2512
S , C3512

S , D4512
S , and

E5512
S for a single-mode perturbation. Density plots of these

runs can be seen in Fig. 6, which will be discussed later. The
potential energy of the gravity wave was evaluated based on
the integral

FIG. 3. The parameter space spanned by our runs. Each block in this dia-
gram corresponds to a set of different runs with different resolutionN. The
x axis gives the size of the computational domain measured in units of
Umax

2 /g; they axis gives the value ofG;gd /Umax
2 . The dashed line indicates

the wavelength of the most unstable mode for a given value ofG. The index
S/M indicates whether a single-mode or multimode perturbation was
imposed.
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Ep =
1

2
sr2 − r1dgE hsxd2dx, s17d

where hsxd is the location of the interface, defined as the
contour line wherersyd=0.98r2. Equation(17) was derived
by integratingry over space and assuming that the wave
amplitude is much smaller than the pressure scale height. We
note that this method was the least noisy method to calculate
the gravity wave potential energy in the linear regime. A
direct integration over the whole computational domain for
the evaluation of the potential energy was far too noisy. The
results from the simulations for the evolution of the potential
energy of the gravity waves as a function of the rescaled time
tU /d (from now on we drop the index “max” fromUmax for
convenience) are shown in Fig. 4 where they are compared
with linear theory predictions. They are found to be in satis-
factory agreement with the theory.

It would be useful to further verify our code using the
results of weakly nonlinear theory. However, computational
limitations did not allow us to reach close to the asymptotic
regime G@1 required to justify the comparison. Nonethe-
less, a qualitative comparison can be made. The two panels
in Fig. 5 show a comparison of two advected fields: the
vorticity as predicted by weakly nonlinear theory in panel
(a), and the density from our numerical simulations in panel
(b). There is obvious similarity in the structures of the two
fields, although more small scale structure appears in panel
(b).

B. Nonlinear evolution

Next we discuss results from the simulations when the
system is far away from linearity. We present first the single-
mode runsA1512

S , B2512
S , C3512

S , D4512
S , and E5512

S . In each
simulation a single mode was excited with wavelength equal
to the box length. With this choice we are examining the
evolution of the mode close to the most unstable one for each
value ofG. The panels in Fig. 6 are density plots that show
the time evolution of the forming wave. Each row corre-
sponds to a different value ofG and each column represents
a different time.

There is a difference in the structures that appear as we
increase the parameterG. At smaller values ofG we observe
that as the wave grows, at some point in time a breaking cusp

forms from which material begins to mix. As time
progresses, the wave becomes very oblique, with amplitude
larger than that predicted by the theory of the highest wave.31

The wave then overturns, leading to the generation of small
scale structure and strong mixing.

As we increase the value ofG, waves grow more slowly
as predicted by linear theory. In runD4512

S the wave reaches
a maximum amplitude and forms a cusp. We note that this
amplitude is smaller than that predicted by Michell29 who
assumed in his analysis that there was no upper fluid. The
profile of the interface strongly resembles those calculated
for irrotational waves by Ref. 30 for amplitudes close to the
maximal one. The opening angle is roughly estimated to be
136°, which is close to, but a little wider than, the one pre-
dicted by Ref. 29. Figure 7 shows a density plot of a wave
about to break and illustrates the opening angle. We note that
due to the presence of the wind there is an asymmetry with
respect to front and the back of the wave(i.e., the wave is
tilted forward). The development of cusp instabilities and the
further input of energy from the wind leads to the ejection of
material from the cusp at aperiodic time intervals. The
ejected material diffuses in an eddy turnover time in the up-
per fluid. At each ejection, the amplitude of the wave drops.
The wave resumes growing, forming a new cusp that again
leads to the ejection of new material and so on. Finally, in the
last row of Fig. 6,G=0.18, it appears that almost no cusp
formation or mixing is present. As we will show later in the
resolution studies, this is an effect of low resolution that
suppresses the cusp instabilities described earlier. In finite-
difference-based or finite-volume-based simulations, the ap-
pearance of instabilities—such as cusp formation—can criti-
cally depend on the(effective) grid resolution. This fact is a
strong motivation underlying the resolution studies presented
later on.

There is an interesting interpretation of the above de-
scribed results related to the two instabilities(KH and reso-
nant) described in the linear theory. For the runsA1512

S ,
B2512

S , andC3512
S (where the overturning mechanism appears

to be more dominant), the wavelength of the most unstable
wave is smaller than the maximum wavelengthlKH pre-
dicted by KH theory. On the other hand, for the runsD4512

S ,
E5512

S where there is only cusp breaking or no mixing at all,
the most unstable wavelength is larger thanlKH. The mini-
mum wave number predicted from KH can therefore be in-
terpreted as a criterion for overturning to occur.

Important differences appear when we move to multi-

FIG. 4. Comparison of the observed growth rate with the linear theory. The
solid black lines show the evolution with time of the potential energyEpstd
of gravity waves calculated from the numerical simulationsA1512

S , B2512
S ,

C3512
S , D4512

S , andE5512
S . The dashed lines give the linear theory predictions.

The first three lines have been shifted up for clarity.

FIG. 5. A qualitative comparison of structure between weakly nonlinear
theory and the numerical simulations. Panel(a) shows a contour plot of the
vorticity as predicted by weakly nonlinear theory. Panel(a) shows a contour
plot of density from our numerical simulations.
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mode perturbations and computational boxes larger than the
most unstable wavelength. There are two main reasons for
this. The first is that larger boxes allow for vortex merging,
which affects the dynamics of the waves. The second reason
is that superharmonic instabilities lead to cusp breaking at
smaller amplitudes than for cases in which only a single
wave period is considered.32 Figure 8 shows contour plots of
the mass fraction of the lower fluidX from the evolution of
the runsA5512

M , B5512
M , C5512

M , D5512
M , andE5512

M . All runs have
the same multimode perturbation as described in Sec. II, the
same box sizeL, and resolutionN. In the first three rows
mixing is initiated by the overturning of small, most un-
stable, waves, and a thin mixed layer is formed. Vortices
merge, exciting larger wavelengths that themselves overturn
leading to a wider mixed layer. This procedure continues
until wavelengths larger thanlKH are excited. Mixing then
continues at a smaller rate in a mechanism that resembles
cusp breaking, although an interface cannot be defined in this
case.

For largerG, modes with large wavelengths appear to be

FIG. 6. Waves forming for single-mode initial perturbations for different values ofG. The gray scale represents density. Each row corresponds to a different
value ofG (starting from the smallest value in the top row) G=0.0112,0.0225,0.0450,0.0900,0.1800; time increases from left to right. The computational
domain is arranged so that the largest wavelength is close to the most unstable mode.

FIG. 7. The structure of the wave near cusp breaking. The wave, just before
breaking, forms a cusp of angle,136°. The amplitude of the wave at this
point is Ak=0.35. The presence of the wind makes the breaking possible at
smaller values of the amplitude than the theory of free waves predicts.

3262 Phys. Fluids, Vol. 16, No. 9, September 2004 Alexakis et al.

Downloaded 13 Apr 2005 to 128.117.136.18. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



dominant from the beginning. In particular, the mode with
lx/l=kdL /2p=2 (two wave peaks in the box) is dominant at
the beginning of theD5512

M run, and the mode withlx/l=1 is
dominant for the runE5512

M . We note that for incompressible
flows, the linear theory predicts that the most unstable wave-
length haslx/l.2.5 for theD5512

M run andlx/l.1.7 for the
E5512

M run, which is close to our result considering that the
ratio lx/l in our setup can take only integer values. Further-
more, mixing seems to be suppressed for theE5512

M run until
late times, while the runD5512

M forms breaking cusps that
eject material in the upper fluid that can be clearly seen in the
third panel of the fourth row in Fig. 8. We note that there is
more mixing than the single-mode run with the same value
of G because, as we discussed in Sec. III C, the presence of
superharmonic instabilities forces the cusps to break at
smaller wave amplitudes. At the end of this run, the two
waves have merged into one.

We focus further on the runD5512
M , which has interesting

properties regarding the evolution of superharmonic pertur-
bations. The configuration of two traveling waves shown in
the first three panels of the fourth row of Fig. 8 appears to be

stable to small perturbations(noise) since it remains at this
configuration for some time. Superharmonic instabilities, al-
though leading to more cusp breaking, do not destroy the two
vortex configuration initially. However, eventually the two
vortices do merge, exciting the mode with wavelength equal
to the box size and causing significant mixing. We further
investigate the runD5512

M by considering cases with different
perturbations imposed att=0; the same functional form for
the spectrum of perturbations was used[Eq. (11)], but with
the peak of the spectrum at valueskmax=3k0,4k0,5k0 com-
pared to 2k0 as in the original run. The first case corresponds
to the previously described run. Although the same mode
sk=2k0d appears to be dominant at the beginning, the time at
which the two vortices merged into one was different for
each run and varied from 200d /U to 500d /U. We note that
there was no systematic correlation of the merging time with
kmax. Figure 9 shows the evolution of the potential energy for
these runs, with diamonds indicating where the two vortices
merged.

It would be interesting to investigate the energy transfer
across the exited modes and measure the resulting spectrum

FIG. 8. Waves forming for differentG and the sameL with random multimode perturbations. The gray scale represents the mass fractionX. Each row
corresponds to a different value ofG (starting from the smallest value in the top row) G=0.0112,0.0225,0.0450,0.0900,0.1800; time increases from left to
right. The computational domain for all figures shown here isL=1.8.
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and compare with theoretical predictions.36 However, the
computational domain in our runs is not big enough to in-
clude a large number of modes. Furthermore, it is worth
noting that at the end the largest wavelength mode is domi-
nant, implying that the two-dimensional cascade has influ-
enced our results. Although one can trust the two-
dimensional assumption when mixing starts, three-
dimensional effects may well become important when vortex
merging happens. Thus vortex merging can be the result of
the two-dimensional inverse cascade, and might not take
place in a three-dimensional(3D) setup, resulting in a differ-
ent structure of the mixing zone for the 3D case. The behav-
ior, therefore, of the 2D runs must be compared with 3D runs
in order to resolve this issue.

VII. MIXING

Next we focus on mixing. The primary quantities of in-
terest to us are the amount of mass of the lower fluid that is
mixed upwards and the distribution of this mixed mass. As
discussed in Sec. IV, in these simulations mixing on small
scales is due to uncontrolled numerical diffusion. Despite
this, our investigation is based on the assumption that absent
this effect, mass will still be mixed at a finite rate indepen-

dent of the diffusivity because of the generation of eddies at
smaller and smaller scales(turbulent diffusion). How close
we are to this limit will be demonstrated in the following
section, where we present our convergence studies. Further-
more, since our results are from run-down numerical experi-
ments, at late times, where large-scale turbulence has de-
cayed, only numerical diffusion will give effective mixing.
Therefore, there are two expected stages of mixing: dynamic
mixing at early times that is dominated by small scale gen-
eration(cusp breaking and overturning) and a diffusive stage
at late times when turbulence is no longer present.

Keeping the above in mind, we quantify the mixing by
measuring the lower fluid mass inside a mixed layer and
averaging over the horizontal direction. The mixed layer is
defined as the region in our computational domain where the
concentration of the passive scalarX [defined in Eq.(9)] is
between two extreme valuesXmax andXmin. We define, there-
fore, the quantityMst ,Xmin,Xmaxd as the mixed mass per unit
area located in the layer withXmin,Xst ,x,yd,Xmax,

Mst,Xmin,Xmaxd =
1

lx
E

D
rX dx dy, s18d

where D=hsx,yduXmin,Xst ,x,yd,Xmaxj. We further define
the density distribution of the mass as

mst,Xd ; dMst,Xmin,Xd/dX. s19d

The distribution expresses the amount of mass from the
lower fluid that lies between the valuesX andX+dX, per unit
area, and is of particular interest when the effect of chemical
or nuclear reactions is studied.

In Fig. 10 we plotmst ,Xd for the runsA51024
M , B51024

M ,
C51024

M , D51024
M , and E51024

M . The distribution was calculated
by averaging over space and time for the time range
1200, tU /d,1500. The first three runsA51024

M , B51024
M , and

C51024
M (overturning runs) have significant mixed mass in the

range 0.02,X,0.4, with a small shift of the peak of the
distribution toward smaller values ofX as G is increased.

FIG. 9. The evolution of the gravity wave potential energy for different
initial perturbations for the runsD5512

M . The diamond indicates when the two
waves merged into one. The dashed line gives the linear theory prediction.

FIG. 10. Distribution of massm in the mixed layer for
the 10242 runs withL=1.80 and different values ofG;
the value ofG is increasing as we move from top to
bottom.
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There is a striking difference between these runs and the
results fromD51024

M , E51024
M (cusp-breaking runs). The peak of

the distribution of the cusp-breaking runs are at smaller val-
ues sX,0.2d with much smaller deviation(much narrower
distribution peaks). This implies that for the cusp-breaking
mechanism, mixed mass spreads over a larger area than in
the overturning mechanism. Mixing by overturning is con-
fined in the region of the wave, while the ejected material
from the cusp breaking can spread over a wider vertical
range.

In all runs a significant amount of mass appears to be in
the highX end of the distribution. This result is more pro-
nounced for the largeG cases(e.g., E5). This mass is not
related to the cusp formation or overturning but rather to
numerical diffusion in the bulk of the wave. This phenom-
enon is more obvious in the largeG runs only because the
dynamical time scalesd /Ud is large and closer to the numeri-
cal diffusion time scale. This mixed mass strongly depends
on the resolution, an effect that is not desirable. We are there-
fore only interested in the mixed mass for lowX and we will
therefore restrict our attention in estimating the mixed mass
in the range 0.02øXø0.4.

Figure 11 showsMst ,0.02,0.4d as a function of the res-
caled time stU /dd from the runsA51024

M , B51024
M , C51024

M ,
D51024

M , and E51024
M . The first three curvessGø0.045d in

which mixing is due to overturning give similar results with
small differences. The mixing time scale for those runs is
determined bysd /Ud. This implies that the mixed mass as a
function of time for the given box size and small values of
the parameterGsGø0.045d is given by

Mst,0.02,0.4d = r2
U2

g
fstU/dd, s20d

wheref is a function that can be estimated from Fig. 11. The
total amount of mass mixed in the dynamic mixing range for
sufficiently smalld is therefore, to first order, independent of
the wind length scaled, and only the time scale depends on
d. The amount of mixed mass increases linearly at early
times (dynamical range), with a rate given by

dM

dt
= a1

r2U
3

gd
, s21d

wherea1 is measured to bea1.1.5310−5.

The dynamical mixing appears to transition to a slower
rate, which is possibly related to numerical mixing, aftert
.23103d /U. The total amount of mass mixed at this point
is

M = a2r2U
2/g, s22d

wherea2 is measured to bea2.1310−2.
As we move to higher values of the parameterG (runs

D51024
M and E51024

M ), the above results no longer hold. The
amount of mass mixed for the runsD51024

M andE51024
M devi-

ates from the previously discussed curve:Mst ,0.02,0.4d ap-
pears to decrease fast withG when G is larger than 0.045.
This behavior is expected because we know from the linear
theory that the growth rate decreases exponentially withG.
Also, from weakly nonlinear theory we know that the wave
to first order remains linear(e.g., no cusp) in the limit of
largeG.

In order to draw conclusions about the behavior of cha-
otic nonlinear systems from numerical simulations, an en-
semble average of different initial conditions is ideally re-
quired. However, the computational cost of high resolution
runs does not allow for a large number of runs. For this
reason, we have had to content ourselves with four different
simulations of the setups inB5512

M and D5512
M with different

imposed perturbations, and we have obtained only qualita-
tive results about the sensitivity of the runs to small differ-
ences in the initial conditions. The results are shown in Figs.
12 and 13. For theB5512

M runs fluctuations ofM are small
throughout the integrated time, while for the runsD5512

M there
are significant variations of the amount mixed. The chaotic
behavior of the two vortex configuration, as discussed in the
preceding section, explains the existence of the large fluctua-

FIG. 11. The evolution of the mass in the mixed layer per unit area
Mst ,0.02,0.4d with L=1.80 and different values ofG, as indicated.

FIG. 12. The amount of mass in the mixed layerMst ,0.02,0.4d for different
initial perturbations for the runB5512

M sG=0.0225d.

FIG. 13. The amount of mass in the mixed layerMst ,0.02,0.4d for different
initial perturbations for the runD5512

M sG=0.09d.
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tions. The sensitivity, therefore, ofM to the initial imposed
perturbation increases as we increase the parameterG, and
one therefore should be careful when interpreting the results
of a single run.

VIII. CONVERGENCE STUDIES

One of the key issues of the problem we examine is the
mixing of the two species and it is, therefore, important to
control diffusion. Unfortunately we have to rely on numeri-
cal diffusion, which is not a well-controlled quantity, for
mixing on small scales. It is believed that in the limit of high
resolution (high effective Reynolds number), the effective
diffusion of the two species will reach an asymptotic value
independent of the resolution. This expectation is based on
the belief that once fully developed turbulence appears, ef-
fective diffusion would be determined by eddy diffusion.
This assumption, and how close to this limit our simulations
are, needs to be explicitly tested.

To investigate the dependence ofMst ,Xmin,Xmaxd with
resolution we repeated the same runs with differentN and
looked at the dependence ofM andm on the grid size. In Fig.
14 we show the mixed massMst ,0.02,0.4d as a function of
time for the runsB5N

M and D5N
M for different values ofN

ranging from 64 to 1028. A similar effect is observed for all
the overturning runs. As we increase the resolution of each
run, the amount of mass mixedM decreases initially up to
some point of lowest mixing and then starts increasing again
[see Fig. 14(a)]. This is consistent with the idea that at low
resolution, numerical diffusion dominates the mixing so that
increasing the resolution decreases total mixing. Eventually,
however, the mixing becomes dominated by mixing due to
small scale motions, and increasing the resolution further
increases the total mixing as smaller and smaller eddies are
resolved. A more complex behavior was observed for the
cusp-breaking waves as we increased resolution[see Fig.

14(b)]. The results for the cusp breaking runs suggest that at
higher resolution, the amount of mass mixed becomes only
weakly dependent on resolution. Nonmonotonic dependence
on resolution of large scale flows has been observed in simu-
lations of Rayleigh–Taylor instability even when atomic
mixing rates have converged.26,37 Although the mechanisms
that are involved in numerical dissipation and the effect of
resolution on numerical simulations are qualitatively under-
stood, a quantifying theory for its effect is not available. To
further demonstrate the sensitivity of mixing with resolution
for the largeG runs, we show in Fig. 15 the results of the
simulationsE5N

M for different resolutions: the structure of the
cusp changes drastically as we increase the resolution.

Another limit of interest isL→`. It is expected that if
we chose sufficiently largeL, then horizontally averaged
quantities should not depend onL. To test how close we are
to this limit, we performed a number of simulations changing
the value ofL while keeping the resolution per unit of physi-
cal length,N/ l, fixed. It was found that larger values ofL
were required for convergence as we increasedG. In Fig. 16
we present the dependence ofMst ,0.02,0.4d on the size of
the computational domainL for two values of G (G
=0.0112 andG=0.09). Although the runs with smallG con-
verged forL as small as 0.9, for the largeG modes conver-
gence seems to be achieved only whenL is larger than 7.2.

IX. CONCLUSIONS

In this paper we presented the results from an extensive
investigation of wind-driven gravity waves using numerical
simulations. Motivated by an astrophysical problem, we in-
vestigated how interfacial waves are amplified by the wind,
following the resonant mechanism of Miles8 to the nonlinear
(breaking wave) stage. Keeping the density ratio fixed atr
=0.1, we performed a parameter study by changing the non-
dimensional parameterG=gd /U2.

FIG. 14. The evolution of the mixed
massMst ,0.02,0.4d for the runsB5N

M,
G=0.225 [panel (a)] and D5N

M, G
=0.09 [panel (b)], for five different
resolutions.

FIG. 15. The formation of the cusp with different resolutions.N gives the number of grid points across the computational domain. The figures are taken from
the runsE5N

M for the value ofG=0.18.
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At early times, our results are in quantitative agreement
with the linear theory and qualitative agreement with weakly
nonlinear theory. In the nonlinear stage our results indicate
that the initial exponential growth of gravity waves predicted
by Miles’s theory reaches saturation. For small values ofG,
this saturation occurs via overturning of the gravity waves.
For larger values ofG, the waves saturate without overturn-
ing. At the saturation amplitude secondary instabilities ap-
pear near the cusp of the wave, resulting in cusp breaking.
These instabilities closely resemble the instabilities of irrota-
tional finite amplitude gravity waves seen previously.31 Our
results therefore demonstrate a connection between Miles8

theory for the generation of waves by wind and the theory
for finite amplitude irrotational waves.

The transition between the formation of overturning
waves (smaller values ofG) and the formation of cusp-
breaking waves(larger values ofG) occurs close to the value
of G at which the most unstable wavelength is also margin-
ally KH unstable. We denote this critical value ofG asGT,
and estimating from the linear theory, we findGT.0.07. The
waves for the runs withG,GT (i.e., A,B,C) were found to
overturn, while the waves for the runs withG.GT (i.e., D,
E) showed cusp breaking. Therefore, the transition from
overturning to cusp breaking waves can be estimated from
linear theory. Of course, the validity of such a result for
different density ratios still needs to be examined.

The mixing properties of the two regimes(small G and
large G) are significantly different. The overturning regime
mixes an amount of mass per unit area that scales asr2U

2/g
on a time scaled /U. On the other hand, for largeG mixing
occurs via secondary instabilities, a smaller amount of mass
is mixed, and the distribution of the mixed mass is different.

Mixing was found to depend on the resolution for all
cases, but more strongly in the cusp-breaking runs. It was
found that at high enough resolutions, the amount of mass
mixed increases with resolution. Our mixing results, there-
fore, can be interpreted only as a lower bound on the amount
of mass mixed. We found better convergence in the limitL
→` but a higherL (computational domain) was required to
achieve this as we increased the parameterG.

We believe that the results of this paper can guide future
investigations on wind-wave interactions and mixing in
stratified media by wave breaking. In particular, it would be
interesting to know if cusp breaking occurs for arbitrarily
large values ofG or if there is a cutoff. Also, the effect of
different density ratios, dimensionality, and surface tension
would be of interest. Finally, we emphasize that there is al-

ways a need to verify such results by comparing solutions
obtained by different numerical methods as well as to vali-
date the calculations with experimental data.
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