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ON THE C/O ENRICHMENT OF NOVA EJECTA

R. Rosner,1,2 A. Alexakis,2 Y.-N. Young,3 J. W. Truran,1 and W. Hillebrandt4

Received 2001 September 21; accepted 2001 October 29; published 2001 November 14

ABSTRACT

Using the results of recent work in shear instabilities in stratified fluids, we show that the resonant interaction
between large-scale flows in the accreted H/He envelope of white dwarf stars and interfacial gravity waves can
mix the star’s envelope with the white dwarf’s surface material, leading to the enhancement of the envelope’s
C/O abundance to levels required by extant models for nova outbursts.

Subject heading: novae, cataclysmic variables

The substantial enrichment of CNO nuclei in the ejecta from
novae (see Truran 1985; Gehrz et al. 1998 and references
therein) has been a puzzle for over two decades. Early theo-
retical models of nova outbursts (e.g., Starrfield, Truran, &
Sparks 1978; Fujimoto 1982) clearly showed that nuclear pro-
cessing during hydrogen burning during the nova flash could
not account for the observed CNO abundances, which can reach
30% by mass. These early studies already recognized that the
solution to the puzzle must involve “dredge-up” of C/O from
the white dwarf before or during the nova outburst. This mixing
was required both to meet the constraints on CNO abundances
in the ejecta and to power the nova itself, since the energy
production rate per unit mass depends directly on the metallicity
(e.g., Wallace & Woosley 1981); thus, Starrfield et al. (1978)
and Fujimoto (1982) showed explicitly with one-dimensional
models that runaway in a pure H/He envelope did not release
enough energy in order to eject enough matter with sufficient
velocity to match observations.

Concerns that mixing may occur at the interface between the
accreting matter and the underlying star (and already accreted
material) followed closely upon the recognition that such mixing
was essential in order to understand the elemental composition
of the nova ejecta (Starrfield et al. 1972). At that time, there was
already some interest in understanding mixing at the interface
between a stellar surface and an accreting flow. For example,
Kippenhahn & Thomas (1978) examined shear flow instability
in the stratified boundary layer between a white dwarf and the
infalling accretion flow associated with an accretion disk, and
they established the linear stability properties (based on using
the Richardson number5 as the control parameter).

The shear instability considered by Kippenhahn & Thomas
(1978; also Sung 1974) has been extensively revisited (viz., Mac-
Donald 1983). Kippenhahn & Thomas conjectured that this in-
stability saturates at the marginal state for stability and therefore
weak mixing; MacDonald, upon revisiting this problem, showed
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that the shear instability would lead to rapid dispersal of the
accreted matter over the entire white dwarf surface (as opposed
to the relatively narrow accretion belt that emerged from Kip-
penhahn & Thomas’ analysis) but also suggested that the radial
mixing time was long (set by the thermal timescale of the en-
velope). These arguments lead to rather minimal mixing, and
for these reasons shear mixing has not been regarded as a likely
candidate for the required mixing process.6 Indeed, until the late
1990s, the absence of a plausible mixing mechanism was con-
sidered to be a major stumbling block for understanding novae.
In the mid-1990s, several authors conjectured that the convection
that was known to initiate some∼1000 yr before runaway might
be associated with convective undershoot and convective pen-
etration, processes that might lead to mixing of the stellar C/O
into the envelope (Shankar, Arnett, & Fryxell 1992; Shankar &
Arnett 1994), but quantitative calculations were not done until
the mid- and late-1990s (Glasner & Livne 1995; Glasner, Livne,
& Truran 1997; Kercek, Hillebrandt, & Truran 1998a). These
more recent calculations investigated the possibility that con-
vective undershoot just before, and possibly during, nova run-
away might lead to the required mixing. However, Kercek, Hil-
lebrandt, & Truran (1998b, 1999) have shown convincingly (both
by comparing two and three-dimensional simulations and by
conducting resolution studies in which the extent of mixing was
measured as a function of grid resolution) that convective un-
dershoot was not likely to work as an effective mixing process.
In particular, the resolution studies showedless mixing as grid
resolution was increased. This can be readily understood if the
boundary layer between the stellar surface and the accreted (con-
vecting) envelope is laminar: in that case, since the dominant
viscosity in these simulations is numerical, increased resolution
leads to a thinner boundary (or mixing) layer, and whence to
less mixing as the grid resolution is increased. Thus, it would
appear that we are once again lacking an effective mixing
process.

For this reason, we have recently reexamined the physics of
shear flow instabilities (Alexakis, Young, & Rosner 2001;
Y.-N. Young et al. 2001, in preparation). The question to answer
was whether previous astrophysical studies of this subject had
in fact fully explored this mixing process. As we show below,
the past work in fact missed an important aspect of shear mixing
in stratified media. In the following discussion, we will extract
the critical aspects of our earlier results that apply to the prob-
lem at hand.

6 However, very recently, Bru¨ggen & Hillebrandt (2001a, 2001b) have begun
to reexamine the nonlinear aspects of this problem computationally, in an
attempt to place the earlier analytical calculations on a firmer quantitative
footing.
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One very important aspect of the shear mixing problem is
that the instability that leads to turbulent mixing between fluid
layers depends only on certain essential features of the shear
flow. For present purposes, it suffices to consider prototypical
velocity profiles of the form forU(z) p U � U ln (z/j � 1)0 1

[ below the interface] orz ≥ 0 U(z) p 0 U(z) p U �0

for [ below the interface], whereU tanh (z/j) z ≥ 0 U(z) p 01

is the velocity jump (if any) at the envelope/stellar surfaceU0

interface,z is the vertical coordinate (with marking thez p 0
initial envelope-star interface), andj is the characteristic scale
length of the shear flow in the envelope.7 It is then well known
that if , the Kelvin-Helmholtz instability is entirely ab-U p 00

sent for a velocity profile with either of the two functional
forms given above. Since (in the presence of viscosity) the
relative velocity between the two layers of fluid at the interface
must be zero (i.e., an attached flow boundary condition) and
sincej is proportional to the viscous boundary layer thickness,
Kelvin-Helmholtz instability is unlikely to be important in con-
tributing to the mixing on relevant spatial scales and timescales
for the above wind profile, which appears to be a reasonable
approximation to the actual boundary layer flow (see Alexakis
et al. 2001).

Now, the same argument applies to the generation of ter-
restrial surface water waves by winds; and as originally pointed
out by Miles (1957; see also Phillips 1957), winds are nev-
ertheless able to amplify such surface waves to finite amplitude.
Hence, there must be some other instability present. One such
instability (critical-layer instability) was identified and studied
extensively in the linear regime by Miles (1957), Howard
(1961), Lighthill (1962), and others. This instability originates
from the continuum of unstable modes formed when surface
gravity waves travel at the same velocity as the wind at some
height above the interface. In order to treat this instability, it
is essential to formulate the shear instability problem more
generally; this is in part the motivation for considering velocity
profiles of the forms given above; velocity profiles of this type
in stratified atmospheres have been explored extensively by the
geophysical fluid dynamics community. These previous geo-
physically motivated studies were largely confined to the pa-
rameter regime characteristic of the water/air interface; but re-
cently, Alexakis et al. (2001) have fully explored the control
parameter space governing these instabilities: these nondimen-
sional parameters are the Atwood numberA and the Richardson
number Ri (see Alexakis et al. 2001); in physical terms, the
key parameters are the gravitational accelerationg, the shear
scale lengthj, the density ratio , and the shear am-r /rstar envelope

plitude U. In this Letter, we now apply the results presented
by Alexakis et al. to the astrophysical context by developing
a new model for the interface mixing.

First, consider the underlying physics. This is most readily
done in the context of a particularly simple model for the in-
terface, in which the shear flow has step discontinuity across the
density interface between the C/O white dwarf surface and the
bottom of the H/He envelope. Start with the simplest case, in
which we ignore stratification. The classical Kelvin-Helmholtz
instability is then based on the observation that a spatial interface
perturbation can be destabilized because the flow must speed up
over the “hills” of the perturbation and slow over the “valleys”;
Bernoulli’s law then tells us that a low-pressure region develops

7 The logarithmic velocity profile is commonly observed in the boundary
layer of winds blowing over the surface of extensive bodies of water (see
Miles 1957); the tanh profile has the advantage of bounded shear velocity far
from the shear interface.

over the hills, and a high-pressure region over the valleys, thus
pulling up the hills and pushing down the valleys, leading to a
linear instability whose growth rate , wherek is the wave-g ∼ kU
number of the interface perturbation andU is the shear amplitude.

If the shear flow interface is not a step but has a finite thickness
(viz., given byj, as above), and if stratification is allowed, then
it is well known that the dispersion relation is no longer linear
(Chandrasekhar 1962, § 102) and that both low- and high-
wavenumber cutoffs appear, with only forg 1 0 z ! kj !min

[where the values of and depend on the specificsz z zmax min max

of the velocity profile (see Figs. 119 and 120 in Chandrasekhar
1962) and a maximum growth at, for example, for2(kj) ∼ 0.5
the shear profile]. As a result, instability can onlytanh (z/j)
occur in a finite region of the wavenumber–Richardson number
plane; for the tanh velocity profile, the stability boundary is
defined by the curves and , with2 2J p 0 J p (kj) [1 � (kj) ]
instability only in the domain bounded by these two curves. In
order to apply this to the nova case, we simplify the actual case
by assuming an exponentially stratified background atmosphere
of the form , with a horizontal shear layerr(z) ∼ r exp (�bz)0

of the form located at the white dwarf sur-U p U tanh (z/j)0

face; it is readily seen that in the event that this surface shear
flow is driven by thermal convection in the overlying envelope,
then the unstable modes will lie in a wavelength band defined
by cm ! lunstable! (T/108 K)1/2(U0/105 cm s�1)4 56 # 10 2# 10
cm, where we have assumed a white dwarf of radius∼10�2 R,,
a shear layer thickness cm, gravitational acceleration4j ∼ 10

, and a density scale height8 �2 �1g ∼ 2.7# 10 cm s b ∼ 3 #wd

cm; inclusion of the density jump at the (C, O/8 810 (T/10 K)
H, He) interface would lower the wavelength of unstable modes
yet further. The upper bound on this mixing scale is of the order
of the grid resolution in the currently highest resolution calcu-
lations (viz., Glasner et al. 1997; Kercek et al. 1999), consistent
with the observation by these authors that little shear mixing
occurred in their computations. Since there is an upper bound
on the shear flow length scalej in order for Kelvin-Helmholtz
instability to occur at all,8 and since the mixing scale is at most
of order 10 times the shear scale, this suggests that Kelvin-
Helmholtz instability will not be an effective CNO mixing pro-
cess under any circumstances.

In contrast, consider the interaction of the same wind with the
normal modes supported by the free stellar surface between the
star and the accreted envelope. These normal modes are akin to
“deep water waves” seen at the surface of terrestrial oceans and
are known to grow in amplitude as a result of the resonant
interaction between these waves and the wind. More specifically,
at any given wavenumberk, linear theory provides the wave’s
phase velocity ∼1/2 2 water 1/2v { q/k ∼ (A/k) (g � Sk /r )phase

, where S is the surface tension; in the case of the1/2(Ag/k)
gaseous media characterizing stars, the surface tension term is
of course absent. For any given wind profile, , wherez isU(z)
the vertical coordinate, one can then satisfy a resonance between
the wind and a surface mode such thatU(z) p v ∼phase

; that is, a wave with wavenumber will1/2 2(Ag/k) k ∼ Ag/U(z)
be driven resonantly unstable. (For typical values ofA, g, and
U characteristic of a white dwarf surface, one finds that the
wavelength of unstable modes lies in the range of 0.01–1 km.)
The key issue is then how to determine the mixing-layer width
once these unstable modes cease their growth and finally saturate:
naively, one might expect the saturation process to simply limit

8 This bound is computed from the stability criterion for the tanh1J ! 4

velocity profile; thus, cm in order4 8 1/2 5 �1j ! 1.67# 10 (T/10 K) (U /10 cm s )0

for Kelvin-Helmholtz instability to occur at all.
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the mode amplitude and thereby determine the width of the
mixing layer. In the case of interfacial gravity modes, however,
saturation is well known to occur via wave breaking (see Chen
et al. 1999 and references therein); it is the resulting spray that
then determines (from a statistical point of view) the effective
mean width of the mixing layer—this width can be substantially
larger than the mode amplitude at saturation, as is well known
in the case of wind-driven spray from breaking ocean waves. In
any case, let us assume for the moment that we have determined
this layer width, which we shall denote asl. Finally, we note
that while one would need, in general, to take into account strat-
ification effects (viz., molecular weight gradients) on either side
of the density jump, such effects are to lowest order unimportant
here because the mixing layer defined by wave breaking is likely
to be much narrower than the local gravitational scale height.

We are now ready to describe our simplified model: consider
first the amount of carbon and oxygen in the breaking-wave
mixing layer, which we write in the form mixing layerM ∼C�O

, wherea is the coefficient for the C� O massenvelopear lLy0

fraction in the mixing layer,l is the mixing-layer width (both
a andl are to be determined from simulations; Y.-N. Young
et al. 2001, in preparation), is the density of the envelopeenveloper0

at its base (i.e., in the breaking-wave mixing layer),L is the
characteristic length scale of the large-scale circulation (which
can be identified with the outer scale of convection in the
envelope), andy is a length scale transverse to the wind di-
rection (this dimension will drop out of our formulation). Note
that the remaining parameters appearing in this relation can be
obtained from extant (one-dimensional) nova models. Now,
as mentioned earlier, the amount of C� O needed to be
mixed into the envelope is roughly by mass of the ejecta1

3

mass or . The1 1 2envelope envelope envelope envelopeM M ∼ M ∼ ( Lr Ly)total C�O total 03 3 3

“sweep-out time,” i.e., the timescale on which the boundary
mixing layer is swept out by a penetrating convective roll, is
just , so that the time needed to mix the necessaryt ∼ L/Usweep

amount of carbon and oxygen into the envelope is just
, orenvelope mixing layert ∼ M /(M /t )mixing C�O C�O sweep

2 2 �1 8 2 2 �1t ∼ L /alU ∼ 5a (L/10 cm) (l/10 cm)mixing 9
5 �1 �1# (U/10 cm s ) yr,

with . Thus, it is evident that the evolution timescalea ∼ 0.3–1
for the envelope prior to nova runaway (which is roughly of

the order of the time between onset of envelope convection
and runaway or∼103 yr) is much longer than the mixing time-
scale. This confirms that resonantly driven mixing at the star-
envelope boundary can be an efficient mixing process during
the prenova star evolution; the clear next step is to verify these
results via simulations of weakly compressible fluids subject
to these mixing instabilities. We also note that this mixing
timescale is much longer than the dynamical time characteristic
of the nova runaway itself. For this reason, the amount of
additional C� O material mixed in during the outburst itself
can be regarded as a small perturbation. One remaining sig-
nificant issue relates to the possible effects of magnetic fields
on the C� O mixing process; that is, one might be concerned
that turbulent mixing may be suppressed if local magnetic fields
in the envelope become large as convection sets on∼1000 yr
before runaway. We are not currently in a position to resolve
this possible problem but only note that because the conser-
vative mixing timescale yr, substantial mixingt K 1000mixing

suppression by magnetic fields could be accommodated within
this model without vitiating the main point, namely, that res-
onant instability of the C� O/envelope boundary can lead to
effective mixing across that boundary. This is a critical point
for any nova model because novae have been observed for
white dwarfs with relatively strong magnetic fields (e.g., V1500
Cygni 1975; Stockman, Schmidt, & Lamb 1988). However, in
the absence of a detailed calculation, this point remains to be
addressed by theory.

To conclude, by using the results of linear stability theory
as well as extrapolating from existing numerical simulations
of nova outbursts, we have estimated the mixing-zone param-
eters and have shown that prenova erosion of the wave-breaking
mixing layer by slow convection could mix sufficient C/O into
the accreted H/He envelope to satisfy observations. We have
constructed a simple mixing-length subgrid prescription to de-
scribe this mixing process and have shown that this subgrid
model only needs to be used for the prenova phase. Further
mixing during the outburst is no longer required. Because the
C/O abundance in the envelope builds up gradually during the
prenova slow convective phase, we expect that the nova en-
velope mass attained before outburst may be substantially larger
than in standard models assuming a “preseeded” envelope.
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Brüggen, M., & Hillebrandt, W. 2001a, MNRAS, 320, 73
———. 2001b, MNRAS, 323, 56
Chandrasekhar, S. 1962, Hydrodynamics (New York: Dover)
Chen, G., Kharif, C., Zaleski, S., & Li, J. 1999, Phys. Fluids, 11, 121
Fujimoto, M. Y. 1982, ApJ, 257, 752
Gehrz, R. D., Truran, J. W., Williams, R. E., & Starrfield, S. 1998, PASP, 110,

3
Glasner, S. A., & Livne, E. 1995, ApJ, 445, L149
Glasner, S. A., Livne, E., & Truran, J. W. 1997, ApJ, 475, 754
Howard, L. N. 1961, J. Fluid Mech., 10, 509
Kercek, A., Hillebrandt, W., & Truran, J. W. 1998a, A&A, 337, 379
———. 1998b, in Proc. 16th Int. Conf. on Numerical Methods in Fluid Dy-

namics, ed. C.-S. Bruneau (Lecture Notes in Physics 515; New York:
Springer), 512

Kercek, A., Hillebrandt, W., & Truran, J. W. 1999, A&A, 345, 831
Kippenhahn, R., & Thomas, H.-C. 1978, A&A, 63, 265
Lighthill, M. J. 1962, J. Fluid Mech., 14, 385
MacDonald, J. 1983, ApJ, 273, 289
Miles, J. 1957, J. Fluid Mech., 3, 185
Phillips, O. M. 1957, J. Fluid Mech., 2, 417
Shankar, A., & Arnett, W. D. 1994, ApJ, 433, 216
Shankar, A., Arnett, W. D., & Fryxell, B. A. 1992, ApJ, 394, L13
Starrfield, S., Truran, J., & Sparks, W. M. 1978, ApJ, 226, 186
Starrfield, S., Truran, J., Sparks, W. M., & Kutter, G. G. 1972, ApJ, 176, 169
Stockman, H. S., Schmidt, G. D., & Lamb, D. Q. 1988, ApJ, 332, 282
Sung, C.-H. 1974, A&A, 33, 99
Truran, J. W. 1985, in Nucleosynthesis, ed. W. D. Arnett & J. W. Truran

(Chicago: Univ. Chicago Press), 292
Wallace, R. K., & Woosley, S. E. 1981, ApJS, 45, 389


