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Effect of the Lorentz force on on-off dynamo intermittency
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An investigation of the dynamo instability close to the threshold produced by an ABC forced flow is
presented. We focus on the on-off intermittency behavior of the dynamo and the countereffect of the Lorentz

force in the nonlinear stage of the dynamo. The Lorentz force drastically alters the statistics of the turbulent
fluctuations of the flow and reduces their amplitude. As a result, much longer bursts (on phases) are observed
than is expected based on the amplitude of the fluctuations in the kinematic regime of the dynamo. For large
Reynolds numbers, the duration time of the on phase follows a power law distribution, while for smaller
Reynolds numbers the Lorentz force completely kills the noise and the system transits from a chaotic state into

a laminar time periodic flow. The behavior of the on-off intermittency as the Reynolds number is increased is
also examined. The connections with dynamo experiments and theoretical modeling are discussed.
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I. INTRODUCTION

Dynamo action, the self-amplification of a magnetic field
due to the stretching of magnetic field lines by a flow, is
considered to be the main mechanism for the generation of
magnetic fields in the universe [1]. In that respect many ex-
perimental groups have successfully attempted to reproduce
dynamos in liquid sodium laboratory experiments [2-8]. The
induction experiments [9-18] studying the response of an
applied magnetic field inside a turbulent metal liquid also
represent challenging science. With or without dynamo insta-
bility, the flow of a conducting fluid forms a complex system,
with a large number of degrees of freedom and a wide range
of nonlinear behaviors.

In this work we focus on one special behavior: the on-off
intermittency or blowout bifurcation [19,20]. On-off inter-
mittency is present in chaotic dynamical systems for which
there is an unstable invariant manifold in the phase space
such that the unstable solutions have a growth rate that varies
strongly in time, taking both positive and negative values. If
the averaged growth rate is sufficiently smaller than the fluc-
tuations of the instantaneous growth rate, then the solution
can exhibit on-off intermittency where bursts of the ampli-
tude of the distance from the invariant manifold are observed
(when the growth rate is positive) followed by a decrease of
the amplitude (when the growth rate is negative). (See
[21,22] for a more precise definition.)

On-off intermittency has been observed in different physi-
cal experiments including electronic devices, electrohydro-
dynamic convection in nematics, gas discharge plasmas, and
spin-wave instabilities [23]. In the magnetohydrodynamics
(MHD) context, near the dynamo instability onset, the on-off
intermittency has been investigated by modeling of the Bull-
ard dynamo [24]. Using direct numerical simulation [21,22],
they were able to observe on-off intermittency solving the
full MHD equations for the ABC dynamo (here we present
an extended study of this particular case). on-off intermit-
tency has also been found recently for a Taylor-Green flow
[25]. Finally, recent liquid metal experimental results [26]
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show some intermittent behavior, with features reminiscent
of on-off self-generation that motivated our study.

For the MHD system we are investigating the evolution of
the magnetic energy Eb=% Jb2%dx® which is given by
d,E,=b(b-V)u—75(V Xb)2dx’, where b is the magnetic
field and u is the velocity field. If the velocity field has a
chaotic behavior in time the right-hand side of the equation
above can take positive or negative values and can be mod-
eled as multiplicative noise. A simple way is to model the
behavior of the magnetic field during the on-off intermit-
tency using a stochastic differential equation (SDE)
[19,20,27-35]:

E,=(a+ E,— Yn(Ep), (1)

where E), is the magnetic energy, a is the long-time-averaged
growth rate, and & models the noise term typically assumed
to be white (see, however, [34,35]) and of amplitude D such
that (£(r)&(t'))=2D8&(t—1"). Yy is a nonlinear term that
guarantees the saturation of the magnetic energy to finite
values typically taken to be Yy (X)=X> for investigations of
supercritical bifurcations or Yy (X)=X>-X> for investiga-
tions of subcritical bifurcations. Alternative, an upper no-flux
boundary is imposed at E;,=1. In all these cases (independent
of the nonlinear saturation mechanism) the above SDE leads
to a stationary distribution function that for 0<a <D has a
singular behavior at E,=0: P(E,)~EY"~!  indicating that
the systems spends a lot of time in the neighborhood of
E,=0. This singularity is the signature of on-off intermit-
tency. Among other predictions of the SDE model, here we
note that the distribution of the duration time of the off
phases follows a power law behavior prF(ATOﬁ~)~A7;flf‘5,
all moments of the magnetic energy follow a linear scaling
with a, (E}') ~a, and for a=0 the set of bursts has a fractal
dimension d=1/2 [30-33].

In this dynamical system Eq. (1), however, the noise am-
plitude and the noise properties do not depend on the ampli-
tude of the magnetic energy. However, in the MHD system,
when the nonlinear regime is reached, the Lorentz force has
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FIG. 1. A typical example of a burst. The top panel shows the
evolution of the kinetic energy (top line) and magnetic energy (bot-
tom line). The bottom panel shows the evolution of the magnetic
energy in a log-linear plot. During the on phase of the dynamo the
amplitude of the noise of the kinetic energy fluctuations is signifi-
cantly reduced. The runs were for the parameters Gr=39.06 and
G,=50.40.

clear effects on the flow, such as the decrease of the small-
scale fluctuation, and the decrease of the local Lyapunov
exponent [36,37]. In some cases, the flow is altered so
strongly that the MHD dynamo system jumps into another
attractor, which can no longer sustain the dynamo instability
[38]. Although the exact mechanism of the saturation of the
MHD dynamo is still an open question that might not have a
universal answer, it is clear that both the large scales and the
turbulent fluctuations are altered in the nonlinear regime and
need to be taken into account in a model.

Figure 1 demonstrates this point, by showing the evolu-
tion of the kinetic and magnetic energy as the dynamo goes
through on and off phases. During the on phases, although
the magnetic field energy is an order of magnitude smaller
than the kinetic energy, both the mean value and the ampli-
tude of the observed fluctuations of the kinetic energy are
significantly reduced. As a result the on phases last a lot
longer than the SDE model would predict. With our numeri-
cal simulations, we aim to describe which of the on-off in-
termittency properties are affected through the Lorentz force
feedback.

This paper is structured as follows. In Sec. II we discuss
the numerical method used. In Sec. III A we present a table
of our numerical runs and discuss the dynamo onset. Results
for small Reynolds numbers showing the transition from a
laminar dynamo to on-off intermittency are presented in Sec.
III B, and the results on fully developed on-off intermittency
behavior are given in Sec. III C. Conclusions, and implica-
tions for modeling and for laboratory experiments are given
in the last section.

II. NUMERICAL METHOD

Our investigation is based on the numerical integration of
the classical incompressible magnetohydrodynamic equa-
tions (2) in a full three-dimensional periodic box of size 21,
with a parallel pseudospectral code. The MHD equations are

du+u-Vu=-VP+(VXb)Xb+vVu+f,
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b=V X (uXb)-u+ Vb, (2)

along with the divergence-free constraints V-u=V-b=0,
where u is the velocity, b is the magnetic field (in units of the
Alfvén velocity), v is the molecular viscosity, and 7 is the
magnetic diffusivity. f is an externally applied force that in
the current investigation is chosen to be the ABC forcing
[39] explicitly given by

f={x[A sin(k,z) + C cos(k,y)], J[B sin(kx)
+A cos(kz)], Z[C sin(kyy) + B cos(kx)]},  (3)

with all the free parameters chosen to be 1: A=B=C=k,
=k,=k,=1.

The MHD equations have two independent control pa-
rameters that are generally chosen to be the kinetic and mag-
netic Reynolds numbers defined by: Re=UL/v and
Ry=UL/ 7, respectively, where U is chosen to be the root
mean square of the velocity (defined by U=v2E,/3, where
E, is the total kinetic energy of the velocity) and L is the
typical large scale here taken as L=1.0. Alternatively, we can
use the amplitude of the forcing to parametrize our system,
in which case we obtain the kinetic and magnetic Grashof
numbers Gr=FL?/1? and G,,=FL*/ vy, respectively. Here F
is the amplitude of the force, which is taken to be unity
F=\(A’+B*+(C?)/3=1 following the notation of [53].

We note that in the laminar limit the two different sets of
control parameters are identical, Gr=Re and G,,=R,;, but in
the turbulent regime (where the forcing is balanced by the
nonlinear term F~U?/L) the scaling Gr~Re® and
Gy ~ReR), is expected. In the examined parameter range
the velocity field fluctuates in time, generating uncertainties
in the estimation of the root mean square of the velocity, and
thus the Reynolds numbers as well. For this reason, in this
work we are going to use the Grashof numbers as the control
parameters of our system. Even though this forcing param-
eter is not necessarily linear with the Reynolds number, to
simplify the discussion, we will used in the following text
the term “Reynolds numbers” instead of “Grashof numbers,”
keeping the Grashof number symbols.

Starting with a statistically saturated velocity, we investi-
gate the behavior of the kinetic and magnetic energy in time
by introducing a small magnetic seed at t=0 and letting the
system evolve. When the magnetic Reynolds (Reynolds)
number is sufficiently large, the magnetic energy grows ex-
ponentially in time, reaching the dynamo instability. We have
computed the dynamo onset for different kinematic Reynolds
numbers (Sec. IIT A) starting from small Gr=11.11, for
which the flow exhibits laminar ABC behavior, to larger val-
ues of Gr (up to Gr=625.0) that the flow is relatively turbu-
lent.

Typical durations of the runs were 10° turnover times al-
though in some cases even much longer integration time was
used. For each run during the kinematic stage of the dynamo
the finite-time growth rate a(f)=7" In[E,(t+7)/E,(1)] was
measured. The long-time-averaged growth rate was then de-
termined as a=lim,_,., a,(0) and the amplitude of the noise
D was measured based on D=7{(a—a,)?)/2 (see [21,22]). A
typical value of 7 was 100 while for long-time averages the
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TABLE I. Parameters used in the simulations. Gy,.. is the critical
magnetic Reynolds number where the dynamo instability begins
and Gy, is the critical magnetic Reynolds number where the dy-
namo instability stops having on-off behavior. Thus, on-off inter-
mittency is observed in the range G, <Gy <Gyp-

Run v Gr Re Guye Gy,
I 0.30 11.11 11.11 8.80-17.8,24.0 8.89
I 0.28 12.75 12.75/11.22 8.50 8.50
I 0.25 16.00 14.82 9.35 9.35
v 022 20.66 16.92 11.3 11.8
VI 020  25.00 18.45 294 56.8
Vil 0.18  30.86 19.47 37.0 50.5
Vil 0.16  39.06 20.60 48.0 59.5
VII 0.08 156.25 34.08 123.7 137.
VII 0.04  625.00 67.20 327.2 362.

typical averaging time ranged from 10* to 10° depending on
the run. The need for long computational time in order to
obtain good statistics restricted our simulations to low reso-
lutions that varied from 323 (for Gr=40.0) to 64° (for
Gr>40).

III. NUMERICAL RESULTS
A. Dynamo onset

The ABC flow is a strongly helical Beltrami flow with
chaotic Lagrangian trajectories [40]. The kinematic dynamo
instability of the ABC flow, even with one of the amplitude
coefficients set to zero (22D flow) [41,42] has been studied
intensively [43-47], especially for fast dynamo investigation
[48-52]. In the laminar regime and for the examined case
where all the parameters of the ABC flow are equal to
unity [Egs. (4)], the flow is a dynamo in the range
8.9<G,;=17.8 and for 24.8 <G, [43,44]. In this range the
magnetic field is growing near the stagnation point of the
flow, producing cigar-shaped structures aligned along the un-
stable manifold.

As the kinematic Reynolds number is increased, a critical
value is reached (Gr=Re~ 13) where the hydrodynamic sys-
tem becomes unstable. After the first bifurcation, further in-
crease of the kinematic Reynolds number leads the system to
jump to different attractors [53-56], until finally the fully
turbulent regime is reached.

The on-off intermittency dynamo has been studied with
the ABC forcing by [21,22]. These studies were focused on a
single value of the Reynolds number while the magnetic
Reynolds number was varied. We expand this work by vary-
ing both parameters. For each kinematic Reynolds number, a
set of numerical runs were performed varying the magnetic
Reynolds number. The different Reynolds numbers examined
are shown in Table I. The case examined in [21,22] is closest
to the set of runs with Gr=39.06 although here examined at
higher resolution.

First, we discuss the dynamo onset. For each kinetic Rey-
nolds number the critical magnetic Reynolds number Gy, is
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FIG. 2. Critical magnetic Reynolds number G,,. above which
the dynamo instability is observed (solid line) and the critical mag-
netic Reynolds number G, where the on-off intermittency disap-
pears (dashed line).

found and recorded in Table I. For our lowest kinematic Rey-
nolds number Gr=11.11, which corresponds to a slightly
smaller value than the critical value for the presence of hy-
drodynamic instabilities, the flow is laminar and the two
windows of dynamo instability [43,44] are rediscovered, as
shown in Fig. 2. At higher Reynolds number, the hydrody-
namic system is no longer stable, and the two windows of
dynamo modes disappear, collapsing to only one (see Fig. 2).
There is certainly some symmetry breaking effect in this
merging [56]. The critical magnetic Reynolds number is in-
creasing with the Reynolds number Fig. 2, and saturates at
very large values of Gr [57] that are far beyond the range
examined in this work.

B. Route to on-off intermittency

The first examined Reynolds number beyond the laminar
regime is Gr=12.75 (run II). In this case two stable solutions
of the Navier-Stokes equations coexist. Depending on the
initial condition, this hydrodynamic system converges into
one of the two attractors. The two velocity fields have dif-
ferent critical magnetic Reynolds numbers. The first solution
is the laminar flow, which shares the same dynamo properties
as the smaller Reynolds number flows. For the second flow,
however, the previous stable window between G,,=17.8 and
24.0 disappears and the critical magnetic Reynolds number
now becomes G,;.=8.50, resulting in only one instability
window. Figure 3 demonstrates the different dynamo proper-
ties of the two solutions. The evolution of the kinetic and
magnetic energy of two runs is shown with the same param-
eters Gr, Gy, but with different initial conditions for the ve-
locity field. Gy, is chosen in the range of the no-dynamo
window of the laminar ABC flow.

This choice of Gr, although it exhibits interesting behav-
ior, does not give on-off intermittency since both hydrody-
namic solutions are stable in time. The next examined Rey-
nolds number (IIT) gives a chaotic behavior of the
hydrodynamic flow and accordingly a “noisy” exponential
growth rate for the magnetic field.
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FIG. 3. Kinetic (inset) and magnetic energy for the run with
Gr=12.75 and G,;=22.32 for two runs starting with different initial
conditions for the velocity field. The first flow (solid line) is at-
tracted to the laminar ABC flow and gives no dynamo. The second
flow (dashed line) is attracted to a new solution that gives a
dynamo.

The evolution of the kinetic and magnetic energy in the
kinematic regime is shown in Fig. 4 for a relatively short
time interval. The kinetic energy “jumps” between the values
of the kinetic energy of the two states that were observed to
be stable at smaller Reynolds numbers in a chaotic manner.
Accordingly, the magnetic energy grows or decays depend-
ing on the state of the hydrodynamic flow, in a way that very
much resembles a biased random walk in the log-linear
plane. Thus, this flow is expected to be a good candidate for
on-off intermittency that could be modeled by the SDE
model equations given in Eq. (1). However, this flow did not
result in on-off intermittency for all examined magnetic Rey-
nolds numbers, even for the runs where the measured growth
rate and amplitude of the noise were found to satisfy the
criterion a/D <1 for the existence of on-off intermittency.
What is found instead is that at the linear stage the magnetic
field grows in a random way but in the nonlinear stage the
solution is trapped in a stable periodic solution and remains
there throughout the integration time. This behavior is dem-
onstrated in Fig. 5, where the evolution of the magnetic en-
ergy is shown both in the linear and in the nonlinear regime.

Another interesting feature of this case is subcriticality
[25]. The periodic solution that the dynamo simulations con-
verged to in the nonlinear stage appears to be stable even for
the range of G); where no dynamo exists. Figure 6 shows the
time evolution of two runs with the same parameters Gr, G,
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FIG. 4. Evolution of the kinetic (top panel) and magnetic (bot-
tom panel) energy for the run with Gr=16.0 and G,,;=9.39.
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FIG. 5. Evolution of the magnetic energy for the run with
Gr=16.0 and G;=9.39. At the linear stage the logarithm of the
magnetic energy grows as a random walk. At the nonlinear stage,
however, the solution is trapped in a stable time-periodic solution.
The inset shows the evolution of the magnetic energy in the non-
linear stage in a much shorter time interval. The examined run has
a/D=0.022<1.

one starting with very small amplitude of the magnetic field
and one starting using the output from one of the successful
dynamo runs in the nonlinear stage. Although the magnetic
energy of the first run decays with time, the nonlinear solu-
tion appears to be stable.

The next examined Reynolds number G=20.66 (IV) ap-
pears to be a transitory state between the previous example
and the on-off intermittency that is examined in the next
section. Figure 7 shows the evolution of the magnetic energy
for three different values of G;,=20.66,12.0,11.6 for all of
which the ratio a/D was measured and was found to be
smaller than unity, and therefore they are expected to give
on-off intermittency based on the SDE model. Only the bot-
tom panel, however (which corresponds to the value of
G;=11.6 closest to the onset value G,,=11.3), shows on-off
intermittency. A singular power law behavior of the probabil-
ity distribution function (PDF) of the magnetic energy during
the off phases (small E,) for the last run was observed to be
in good agreement with the predictions of the SDE. This is
expected, since for small E), the Lorentz force that is respon-
sible for trapping the solution in the nonlinear stage does not
play any role.
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FIG. 6. Subcritical behavior of the ABC dynamo. The evolution
of the magnetic energy for two runs with Gr=16.0 and G,,=9.30,
starting with a small-amplitude magnetic field (bottom line) and
starting with an amplitude of the magnetic field at the nonlinear
stage (top, almost horizontal, line).
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FIG. 7. Evolution of the magnetic energy for Gr=20.66 and
Gy=20.66 (top panel), 12.0 (middle panel), and 11.6 (bottom
panel).

C. On-off intermittency

All the larger Reynolds numbers examined display on-off
intermittency and there is no trapping of the solutions in the
on phase. Figure 8 shows an example of the on-off behavior
for Gr=25.0 and three different values of G, [Gy;=41.6 (top
panel), 35.7 (middle panel), and 31.2 (bottom panel)].

As the critical value of Gy, is approached, the on phases
of the dynamo (bursts) become more and more rare, as the
SDE model predicts. Note, however, that the on phases of the
dynamo last considerably longer. In fact, the distribution of
the durations of the on phase AT, is fitted best to a power
law distribution rather than the exponential that a random
walk model with an upper no-flux boundary would predict,
as can be seen in Fig. 9.

The effect of the long duration of the on times can also be
seen in the PDFs of the magnetic energy. The PDFs for
Gr=25 for the examined G, are shown in Fig. 10. For val-
ues of Gj; much larger than the critical value G, the PDF
of the amplitude of the magnetic field is concentrated at large
values E, =1, producing a peak in the PDF curves. As G, is
decreased, approaching G, from above, a singular behavior
of the PDF appears with the PDF having a power law behav-
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FIG. 8. Evolution of the magnetic energy for Gr=25 and
Gj;=41.6 (top panel), 35.7 (middle panel), and 31.2 (bottom panel).
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FIG. 9. Distribution of the on times for the Gr=39.06 case and
three different values of Gy,. The fit (dashed line) corresponds to
the power law behavior AT32. Here, the on time is considered to
be the time that the dynamo has magnetic energy E,>0.2.

ior ~E,” for small E,. The closer the G, is to the critical
value, the stronger the singularity. The dashed lines show the
prediction of the SDE model y=1-a/D. The fit is very good
for small E,; however, the SDE for a supercritical bifurcation
fails to reproduce the peak of the PDF at large E, due to the
long duration of the on phases.

Another prediction of the SDE model is that all the mo-
ments of the magnetic energy (E}")=[fppr(E,)E}dE, have a
linear scaling with the deviation of G,, from the critical
value G, provided that the difference Gy,—Gy. is suffi-
ciently small. This result is based on the assumption that the
singular behavior close to E,=0 gives the dominant contri-
bution to the PDF, which is always true provided that the
ratio a/D 1is sufficiently small. However, if the system
spends long times in the on phase, the range of validity
of the linear scaling of (E,) with a~ Gy;— G, is restricted to
very small values of the difference Gj—Gy.. Figure 11
shows the time-averaged magnetic energy (E,) as a function
of the relative difference (G —Gy,.)/ Gy in a log-log scale.
The dependence of (E,) on the deviation of G, from
the critical value appears to approach the linear scaling,
albeit very slowly. The best fit from the six smallest values
of G, shown in Fig. 11 gave an exponent of 0.8 [e.g.,

10*
10t

[oN
107
107°F
1078
107" 107 1077 107" 10° 10

E,

FIG. 10. Probability distribution functions of E,,, for Gr=25 and
seven different values of G, (starting from the top line, G};=31.2,
33.3, 35.7,38.4, 41.6, 50.0, and 83.3. The last case G;;=83.3 shows
no on-off intermittency. The dashed lines show the prediction of the
SDE model. The PDFs have not been normalized for reasons of
clarity.
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FIG. 11. Averaged magnetic energy as a function of the relative
deviation from the critical magnetic Reynolds number. The dash-
dotted vertical line indicates the location of (G,—Gyye)/ Gy, be-
yond which on-off intermittency is no longer present.

(Ep) ~ (Gpy—Gpye)*?]. The small difference from the linear
scaling [(E,) ~ (Gy—Gy.)'] is probably because not suffi-
ciently small deviations (G,—G,,.) were examined. We
note, however, that there is a strong deviation from the linear
scaling for values of G, close to G,.

Of particular interest to the experiments is how the range
of intermittency changes as Gr is increased. Typical Gr num-
bers for the experiments are of the order of Gr~ Re?~ 10'?
which it is not currently possible to obtain in numerical
simulations. In Fig. 2 we showed the critical magnetic Rey-
nolds number G, for which dynamo instability is observed
and the critical magnetic Reynolds number G,,, where the
on-off intermittency is present. G, was estimated by inter-
polation between the run with the smallest positive growth
rate and and the run with the smallest (in absolute value)
negative growth rate. The on-off intermittency range was
based on the PDFs of the magnetic energy. Runs for which
the PDF had singular behavior at E, =0 are considered on-
off while runs with smooth behavior at E,=0 are not con-
sidered to show on-off intermittency. The slopes of the PDF
s (in log-log scale) for small E, were calculated and the
transition point G, was determined by interpolation of the
two slopes (see, for example, the bottom two curves in Fig.
10). In Fig. 12 we show the ratio (G,—Guye)/Gye as a
function of G,, which expresses the relative range where on-
off intermittency is observed. The error bars correspond to
the smallest examined values of G,, where no on-off inter-
mittency was observed (upper error bar) and the largest ex-

1.5F ‘ f

1.0 b

0.5 b

(GMo‘GMc)/GMc

0.0 ]

10 100 1000
Gr

FIG. 12. The ratio (Gy,—Guye)/ Gye as a function of G, that
expresses the relative range for which on-off intermittency is ob-
served. The upper limits of the error bars (dashed line) correspond
to the smallest examined values of G, for which no on-off inter-
mittency was observed, and the lower limits of the error bars cor-
respond to the largest examined values of G, for which on-off
intermittency was observed.
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amined values of G,; where on-off intermittency was ob-
served (lower error bar). The range of on-off intermittency is
decreasing as Gr is increased, probably reaching an
asymptotic value. However, to clearly determine the
asymptotic behavior of Gy, with Gr would require higher
resolution, which the long duration of these runs does not
allow us to obtain.

IV. DISCUSSION

In this work we have examined how the on-off intermit-
tency behavior of a dynamo near criticality is changed as the
kinematic Reynolds number is varied, and the effect of the
Lorentz force in the nonlinear stage of the dynamo. The pre-
dictions of [30-33], linear scaling of the averaged magnetic
energy with the deviation of the control parameter from its
critical value, fractal dimensions of the bursts, distribution of
the off time intervals, and singular behavior of the PDF of
the magnetic energy, which were tested numerically in
[21,22], were verified for a larger range of kinematic Rey-
nolds numbers when on-off intermittency was present. Note,
however, that all these predictions are based on the statistics
of the flow in the kinematic stage of the dynamo. However, it
was found that the Lorentz force can drastically alter the
on-off behavior of the dynamo in the nonlinear stage by
quenching the noise. For small Reynolds numbers, the Lor-
entz force can trap the original chaotic system in the linear
regime into a time-periodic state, resulting in no on-off in-
termittency. At larger Reynolds numbers Gr>20, on-off in-
termittency was observed but with long durations of the on
phases that have a power law distribution. These long on
phases result in a PDF that peaks at finite values of E,. This
peak can be attributed to the presence of a subcritical insta-
bility or to the quenching of the hydrodynamic noise at the
nonlinear stage, or possibly a combination of the two. In
principle, the SDE model [Eq. (1)] can be modified to in-
clude these two effects: a nonlinear term that allows for a
subcritical bifurcation and an Ej-dependent amplitude of the
noise. There are many possibilities to model the quenching
of the noise; however, the nonlinear behavior might not have
a universal behavior and we do not attempt to suggest a
specific model.

The relative range of the on-off intermittency was found
to decrease as the Reynolds number was increased, possibly
reaching an asymptotic regime. However, the limited number
of Reynolds numbers examined did not allow us to give a
definite prediction for this asymptotic regime. This question
is of particular interest for dynamo experiments [2-8], which
until very recently [26] have not detected on-off intermit-
tency. There are many reasons that could explain the absence
of detectable on-off intermittency in the experimental setups,
like the strong constraints imposed on the flow [4,5], which
do not allow the development of large-scale fluctuations, or
the Earth’s magnetic field, which imposes a lower threshold
for the amplitude of the magnetic energy. Numerical inves-
tigations at higher resolution and a larger variety of flows or
forcing would be useful at this point to obtain a better un-
derstanding.
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