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Magnetohydrodynamic (MHD) turbulent flows driven by random, large-scale,
mechanical and electromagnetic external forces of zero helicities are investigated
by means of direct numerical simulations. It is shown that despite the absence
of helicities in the forcing, the system is attracted to helical states of large scale
condensates that exhibit laminar behaviour despite the large value of the Reynolds
numbers examined. We demonstrate that the correlation time of the external forces
controls the time spent on these states, i.e., for short correlation times, the system
remains in the turbulent state while as the correlation time is increased, the system
spends more and more time in the helical states. As a result, time averaged statistics
are significantly affected by the time spent on these states. These results have
important implications for MHD and turbulence theory and they provide insight into
various physical phenomena where condensates transpire. © 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4916971]

. INTRODUCTION

The formation of large scale condensates from homogeneous turbulence has been observed in
various flows such as in 2D turbulent flows,' flows under the effect of rotation,? or the combined
effect of rotation and stratification.>> In magnetohydrodynamic (MHD) theory, relaxation processes
have been recognised to explain the evolution of electrically conducting fluids towards special states
of self-organisation, where large scale condensates emerge as a consequence of multiple conser-
vation laws.® For homogeneous, incompressible, ideal MHD with zero mean magnetic field, there
are three known quadratic conserved quantities: the total energy E = E,, + Ej, = %( lu)® + |b|*), the
magnetic helicity Hj, = (a - b)y, and the cross-helicity H. = (u - b),,. Here, u is the velocity field,
b =V x a is the magnetic field, where a is the solenoidal magnetic potential, and (), stands for
spacial averages over the volume V.

The dissipative relaxation processes in decaying MHD turbulence are the Taylor relaxation’"
and the dynamic alignment.'®!! These states could be derived analytically by minimising an energy
integral subject to some constraints.'? In detail, Taylor relaxation is associated with the decay of
turbulence towards a minimum energy state under the constraint of finite Hj. The solution to this
variational problem is a force-free field, where u = 0 and V X b = \'b with the Lagrange multiplier
N = [ b2, dV/Hy. On the other hand, the slow decay of H, in comparison to E can lead to a mini-
mum energy state while cross-helicity is conserved, where self-organisation occurs due to dynamic
alignment between the velocity and the magnetic field, i.e., # = +b. This relaxed state is called
Alfvénic state. These relaxation processes can be seen as a selective decay'? between the conserved
quantities due to their very different rates of dissipation in turbulent flows, and they have also been
shown to operate locally in space quenching the non-linearities.'*

The relaxation to the force-free state was offered as an explanation in reversed-field pinch
plasma devices™'> and it has also been used to estimate the energy release in coronal structures
in connection to the problem of coronal heating.'®!” Moreover, the Alfvénic states have been
frequently observed in solar wind turbulence.'®!® The growth of correlation between u and b in
solar wind was conjectured to emerge dynamically from MHD turbulence®” and this was verified in
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direct numerical simulations (DNSs) of undriven turbulent flows.?! More recently, such correlation
was observed using in situ measurements of fast, high latitude solar wind data taken by space-
crafts.”>?3 Moreover, Stribling and Matthaeus®* have shown numerically that in a truncated model
of three-dimensional decaying MHD turbulence, the final states depend on the initial values of H),
and H,.. In particular, they showed that the final state for strongly helical initial conditions is the
force-free field, whereas for sufficient large initial alignment between u and b is the Alfvénic state.

In this paper, we show that large scale helical condensates due to force-free, Alfvénic, and
Beltrami (i.e., V X u oc u) states can occur in driven MHD turbulent flows from initial conditions
and external forces of zero helicity. Large scale condensates manifest themselves when a develop-
ing inverse cascade meets the largest scale of the system (box-size). In their presence, long-time
variations of the amplitude of fluctuations are observed with a frequency spectrum of the form 1/ f
(where f is the frequency). Such 1/ f spectra have been observed in decaying and forced MHD?-%’
and in dynamo reversals.”® Our work moves in the opposite direction and investigates the effect
of long time correlation of the forcing on the formation of such condensates. We demonstrate that
these states appear when the correlation time scale of the external forces is sufficiently large. Our
results thus bring up important implications on the way MHD turbulent flows should be forced in
numerical simulations. Moreover, this work may provide insight into self-organisation processes
and the dynamics of helicity in fluid and plasma flows.

The paper is structured as follows. All the necessary details on our DNS of driven MHD turbu-
lent flows are provided in Sec. II. Section III analyses the non-linear dynamics of the helical states.
In particular, we focus on the dependence of the MHD flows on the forcing correlation time scale,
its effect on the growth of helicities, and the fate of the magnetic helical condensates. Individual
statistics of the velocity and the magnetic field are presented in Sec. IV, where different dynamics
are obeyed at different instances. Finally, in Sec. V, we conclude by summarising our findings and
we discuss the implications of our work.

Il. NUMERICAL METHODS
Our study is based on numerical simulations of the MHD equations
O —vAu=uxw)+(jxb)-VP+f,, (1)
(& — uA)b = V % (u X ) + o)
where the vorticity w = V X u, the current density j = V x b, P is the pressure, v is the kinematic
viscosity, u is the magnetic diffusivity, f,, is the mechanical external force, and f,, is the electromag-
netic external force. Using the pseudo-spectral method, we numerically solve Egs. (1) and (2) in a
three-dimensional periodic box of size 2, satisfying V- u = V - b = 0. Aliasing errors are removed
using the 2/3 dealiasing rule, i.e., wavenumbers k,,;, = 1 and k,,x = N/3, where N is the number of
grid points in each Cartesian coordinate. For more details on the numerical code, see Refs. 29 and

30.
In our simulations, the velocity and the magnetic field are forced randomly as follows:

sin(krz + @) + sin(kry + ¢,)

fu=TFo ) | sinlerx +6.) +sinksz + ¢2) |, 3)
kp \sin(kry + ¢,,) + sin(kpx + @)

—sin(ksz + ¢;) + sin(kpy + @)

fo=Ffo ) | —sin(kpx + ¢,) + sin(ksz + ¢.) |, (4)
kp \=sin(kry + ¢,) + sin(kpx + ¢x)

where their amplitudes are normalised such that |f,| = |f,| = fo = 1 for all runs. The phases ¢,,
and ¢,, ¢, are randomly chosen for ky = 1 and 2 every 7., which we call the forcing correlation
time scale. 7. was chosen to take values from 0.577 to 877, where 7y = (kuinfo) /2. Moreover, we
consider runs with 7./7 = oo indicating constant phases in time. In other words, we randomise the
phases only once, at t = 0, in the duration of the runs. Note that the forces have zero helicities,
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TABLE I. Numerical parameters of the DNS. Note that the empty spaces in the table correspond to the runs that were not
able to reach a steady state.

Tty N kg v=pu Rep, Re, L A u’ b’
0.5 64 1-2 1x107! 18.5 13.5 1.81 1.32 1.02 1.24
0.5 64 1-2 5% 1072 37.6 23.9 1.65 1.05 1.14 1.39
0.5 64 1-2 2x 1072 90.6 46.3 1.45 0.74 1.25 1.55
0.5 64 1-2 1x1072 1742 72.1 1.33 0.55 1.31 1.65
8.0 64 1-2 1x 107! 25.1 17.5 1.77 1.23 1.42 1.81
8.0 64 1-2 5% 1072 522 34.0 1.75 1.14 1.49 2.62
8.0 64 1-2 2% 1072 255.1 187.2 2.18 1.60 2.34 6.72
I~ 64 1-2 1x1072 526.7 472.0 231 2.07 2.28 31.74
0.5 128 1-2 5%x1073 340.2 110.7 1.26 0.41 1.35 1.78
1.0 128 1-2 5%1073 3777 122.1 1.33 0.43 1.42 2.05
2.0 128 1-2 5%1073 685.1 307.9 1.98 0.89 1.73 478
4.0 128 1-2 5% 1073 1210.0 731.5 2.20 1.33 275 8.57
8.0 128 1-2 1x1072 830.3 608.9 225 1.65 3.69 9.64
8.0 128 1-2 5% 1073 1680.0 1132.5 2.24 1.51 3.75 11.91
) 128 1-2 5% 1073
0.5 256 1-2 2x1073 798.0 189.0 1.14 0.27 1.40 1.79
S 256 1-2 2x1073

~ 256 2-4 25%x1073

o0 256 4-8 1.5%1073
0.5 512 1-2 1x1073 1591.4 277.4 1.09 0.19 1.46 1.91
) 512 1-2 9x 1074

ie, (fup  VXfup)v =S fp)v =0. The energies of the initial conditions are chosen to be in
equipartition (viz., E, = E;, = 0.5) unlike in studies of relaxation processes,”*3! where the initial
conditions were chosen to have a tendency towards a particular relaxation state (i.e., force-free or
Alfvénic). The magnetic Prandtl number is unity (i.e., v = ) for all the runs. All the necessary
parameters of our DNS are presented in Table I. Only for those runs that reached a steady state, we
also tabulate the rms values of the velocity u’ and the magnetic field »’, the integral length scale
L =3 [k 'E(k)dk/ [ E(k)dk, the Taylor micro-scale . = (5 [ E(k)dk/ [ k*E(k)dk)'/?, and the
Reynolds numbers Re;, = u’L/v and Re), = u’\/v.

ll. FORCE-FREE, ALFVENIC, AND BELTRAMI ASYMPTOTIC STATES

To start with, we consider the temporal evolution of our flows with different forcing correla-
tion time scales. Remarkably, as 7./7; increases, we observe the amplitude of all space averaged
quadratic quantities to increase substantially. This is depicted indicatively by the time-series of the
total energy in Fig. 1 plotted on a logarithmic scale. The inset shows the mean value of total energy
(E), with respect to 7./7s. Here, the angle brackets (-), denote temporal averages. As the forcing
correlation time scale increases from 7../7y = 0.5 to 8, the mean value of total energy (E), increases
by almost two orders of magnitude and strongly fluctuates varying by an order of magnitude. Note
that the time-series is characterised by dynamical time scales much greater than 7., 77, and the
non-linear time scale 7,,, = 1/ (kmm(lu|2)i,/ %), This behaviour is caused by the creation of large scale
condensates in our flows, which will become more obvious later on in our analysis. Due to these
long dynamical time scales and the large variations, we are compelled to integrate very far in time to
obtain converged statistics and consequently deal with moderate resolutions.

In Fig. 2, we present the Probability Density Functions (PDFs) of the time series of the
normalised cross, magnetic, and kinetic helicities,

pe = He/(lul?)/ (b)), (5)
06 = kninHp/{BIP)/, (6)
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0 200 400 600 800 1000

FIG. 1. Time-series of total energy for the 128> runs with different forcing correlation time scales. The inset shows the value
of the time average total energy with respect to 7 /7.

pu = Ha/ () (o)), (7

respectively. For low values of 7./, the PDFs of the normalised helicities are peaked around 0
as it is expected (see Fig. 2). However, for higher values of 7./7s, the PDFs become broader and
shallower. For 7./77 > 4, the PDF of magnetic helicity in Fig. 2(a) peaks at 1 indicating the reach
of a force-free state j oc b and thus, j X b = 0. The PDF of the normalised cross-helicity in Fig.
2(b) also peaks at 1 for 7./7r = 8 indicating full Alfvénisation of the flow (i.e., u = +b). In the
case of the normalised kinetic helicity, the PDFs with low 7./7¢ values are peaked at 0 and they
increase significantly for higher 7./7; values without reaching full Beltramisation (i.e., |p,| =1
or u oc w) even for 7./7r = 8 (see Fig. 2(c)). The preference to these highly helical states, where
non-linearities (and the cascade to small scales) are quenched, is related to the excess of energy that
was observed in Fig. 1.

Now we examine the evolution of our flows in a three-dimensional phase space composed by
the three normalised helicities. Figure 3 demonstrates the time evolution of the solutions of our
flows and their dependence on the forcing correlation time 7./7¢, which varies from 0.5 to co. In
particular, Fig. 3(a) shows the phase sub-space of the normalised magnetic and cross helicities,
where we observe that the flows with 7./7y = 0.5 and 1 mainly oscillate around the 0 origin with
some excursions away from 0. As the forcing correlation time scale increases from 7./7p = 2 to
oo, we notice that these excursions are trapped into two attracting solutions p;, =~ +1, oscillating
between —1 < p. < 1 for long times. In other words, the runs with long forcing correlation times
are trapped into force-free states (i.e., j o< b) without observing noise driven escape from one basin
of attraction to the other. On the other hand, the system undergoes noise driven escape between
the two attracting solutions of the Alfvénic states (i.e., # = +b). It is of interest to mention here
that the choice between the two asymptotic fully magnetically helical states depends sensitively on

0.5 0.5 0.5

717C/1:{=0.5
04 04 04 YR
|_D|_ 0.3 LQL 0.3] LDL 0.3 *Tc/1f=2
@ o2 Loz /1 o2 7%
0.1 0.1 0.1 w8

0 05 1 0 05 1 0 05 1

[Py Ipgl I,
(a) (b) (c)

FIG. 2. Probability Density Functions of the absolute value of the normalised (a) magnetic helicity |pp|, (b) cross-helicity
|pel, and (c) kinetic helicity |p,| for the 128> runs with different 7. /Ty
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1 /1=0.5
—cf

T /t=1

T/h=2

_ t/lt=4
c
T/t=8

T /T =00
c

FIG. 3. Phase sub-space of (a) pp, and p., (b) pp and py, (c) p, and p. for the 1283 runs with different 7. /7.

the initial conditions. A small perturbation in magnetic helicity can lead the system to be trapped
either in the p, = 1 or —1 state, much like a small variation in the initial conditions of a coin-toss
experiment can alter the final results from head to tails.*?

The phase sub-space of the normalised magnetic and kinetic helicity (see Fig. 3(b)) reveals
two states with positive and negative H,, for high enough values of 7./7. Note that kinetic helicity
grows only when |pp| > 0.5 and always has the same sign with magnetic helicity. This implies that
as the magnetic field becomes strong enough, it forces the flow to become Alfvénized (i.e., u oc b)
fluctuating between positive and negative H. but always keeping the same sign for H,, and H}, (see
Fig. 3) because kinetic and magnetic helicities are invariant under # — —u and b — —b transforma-
tions, respectively. For completeness of the three-dimensional phase space of normalised helicities,
the phase sub-space of kinetic and cross-helicity is presented in Fig. 3(c). Here, the two attractors of
positive and negative H,, are also evident, with the flows of high forcing correlation time scales to
oscillate for long times between the u = +b solutions, whereas the flows with low 7../7; to oscillate
around p, = 0.

The visualisations of vorticity contours in Fig. 4 clearly substantiate our results. Although
forcing amplitudes, viscosities, and length scales are of the same order between the two flows (see
also Table I), there is a distinct difference. For low 7./7y, the flow behaves more like fully developed
homogeneous turbulence (see Fig. 4(a)), whereas for high enough time-correlated external forces,
the flow becomes helical, the non-linearities and the cascade to small scales are suppressed, the
energy is pilled up at the largest scales, and large cyclonic condensates are formed (see Fig. 4(b)).

At this point, we attempt to identify the fate of these helical condensates for flows with high
enough time-correlated forces, high enough Reynolds numbers (for the flow to be fully turbulent),

abs(w) J — ¥ abs(w)
30.6 -39 N 436
b 40

1.180-38 e 1.180-38

FIG. 4. Contours of the absolute value of vorticity for the 5123 runs with (a) T¢ /TF=0.5 and (b) 7./7y =00 (see also
Table I).



045105-6 V. Dallas and A. Alexakis Phys. Fluids 27, 045105 (2015)

10° s 30 o
—64 ’
—128° 25¢ . ]

256° “j—o : !
2| L d .
10 5193 x; 20 :
]
w T 15 !
o ]
10"t < 10 YA
o] [ 7
fﬁﬂj L 5/ = ,,-\/ : ll

10° -~ ‘ ‘ ‘ 0/ o ‘

102 10 100t/ 10" 10° 10° 100 101 102
T t/‘l:f

(a) (b)

FIG. 5. (a) Time-series of the total energy for flows with different resolutions and fully time-correlated external forces, i.e.
T¢ /7Ty = 0. (b) Time-series of the magnetic energy (solid lines) and the absolute value of the magnetic helicity (dashed lines)
for different forcing wavenumbers (i.e., blue (dark grey) lines k¢ = 1-2, purple (grey) lines ks = 2-4, orange (light grey) lines
ky=4-8).

and ¢ > 1. To illustrate this, we plot the time series of the total energy E for runs with 7./7f = oo
at different resolutions (Fig. 5(a)). For early times, all the runs seem to asymptote towards a steady
state solution (i.e., /7y ~ 10). However, when we integrate further in time, the solutions deviate
abruptly from this temporary steady state to higher levels of energy and helicities with the flows
eventually to asymptote toward a laminar state at # > 1. Note that the reach of an asymptotic
laminar state becomes prohibitive as resolution increases, because the time-step becomes vanish-
ingly small, based on a Courant-Friedrichs-Lewy (CFL) criterion, in order to capture the required
dynamics. On Fig. 5(b), the evolution of the magnetic energy is shown for flows forced at different
length scales ky. As the forcing wavenumber is increased and there is more scale separation be-
tween the box size and the forcing scale, the condensation is delayed but the general features are
the same. At early times, a quasi-saturation occurs at amplitude Ej, « fo/ks, with magnetic helicity
small but gradually increasing. When the helicity becomes significantly strong (Hpk;uin ~ Ep), the
system transitions to the condensate state with a sharp increase of magnetic energy. The time scale
for this transition increases with the scale separation. Thus, we expect the present results to persist
at larger scale separations provided that the correlation time 7. is long enough.

These laminar asymptotic solutions are clearly depicted in Fig. 6, where the dissipation coef-
ficient C, = eL/u’”® (with € = v{|w|?) + u(|j|?), the total dissipation rate) is plotted for different
Reynolds number flows. The triangles that represent runs with 7./7r = 0.5 seem to follow an
asymptotic trend toward a finite value of dissipation independent of Re;, (i.e., C¢ = const.) and this

0 A
10 ° .0
A
A
oA A A
o’ 1
107"
o (o]
2
10 : :
10’ 10° 10°
ReL

FIG. 6. Dissipation coefficient C as a function of Reynolds number Rey.. The triangles indicate runs with 7. /77 =0.5 and

the circles indicate runs with 7. /7y = 8 (see Table I for details).
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is expected for flows that are considered to be fully turbulent (see Fig. 4(a)). However, the circles
that denote runs with 7./7¢ = 8 seem to be close to the laminar scaling C, « 1/Re; with some small
deviations due to the relatively moderate value of the forcing correlation time scale. The surprise
here is that flows are attracted to the helical states that exhibit laminar behaviour even at such high
Reynolds numbers (i.e., Re;, ~ 2000) where turbulence is usually expected to modify the laminar
scaling.

Of course, the question that now arises is why these helical states manifest? These magnetic
condensates can be shown to be unconditionally stable for any Reynolds number (see Subsection
1 of the Appendix) in contrast to Beltrami states in 3D helical hydrodynamic turbulence, which are
unstable and energy is cascaded forward. So, this manifestation seems to be intimately connected
with the presence of the electromagnetic force f, that induces the condensation of Ej, into a large
scale helical magnetic field (magnetic condensates) and is a consequence of the unconditional
stability of the helical condensates. We observe that condensation is induced in MHD turbulence
as soon as an electromagnetic force f, is involved in the equations, with either |f,| ~ |f,| or
| fp| > | f.|. Otherwise, when f, = 0 (i.e., dynamo) or | f,| < | f,I|, helicities do not grow even for
fully time-correlated forces, reaching a statistically steady state with helicities’ fluctuations around
zero. We further prove in Subsection 2 of the Appendix that in the extreme case when f,, = 0 and the
magnetic forcing is fully helical f;, = AV X f,, the energy dissipation has a laminar scaling. Thus,
no matter how large the Reynolds number is, the flow will not be effective in exciting small scales.
Our simulations indicate that this also happens even when the forcing is not helical provided that
7./7¢ is large enough. In this case, the flow is attracted to one of the laminar stable helical states,
despite the absence of helicity in the forcing, for any Reynolds number as Figs. 5 and 6 indicate. On
the other hand, for small 7./7y, the external forces are modified before the system has time to reach
a condensate state, and hence, a homogeneous turbulent flow is expected.

IV. STATISTICS OF HELICAL STATES

In contrast to the relaxation processes in selective decay, we are able to have statistics of
the asymptotic force-free, Alfvénic, and Beltrami states. Figure 7 presents the magnetic and ki-
netic energy spectra averaged in time for the flows with different 7./77. It is obvious that both
the magnetic and kinetic energies increase significantly at low wavenumbers as 7./7y increases,
suggesting the presence of condensates at large scales. Comparing the magnetic and the kinetic
energy spectra, we observe that the magnetic helical condensates dominate the large scales of
the flow with (Ep), > (E,), at low wavenumbers. As the external forces have longer correlation
times, the ratio (Ep),/(E,), presents also a considerable increase at large scales. The slope of the
energy spectrum appears to be very steep, particularly for high 7./7, values, and much steeper than

4 4
10 10
__1=05
[
_'cc=1
102 N T =2 [ 102 r
- C

A — A
= _ =
U\J/DAIOOi TC_B | L\U/sﬂ)o\
vV 1= v

FIG. 7. Time averaged (a) magnetic and (b) kinetic energy spectra for the 128> runs with different values of 7. /7 £
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800 1000

FIG. 8. Time-series of the ratio of the integral length scale to the Taylor micro-scale of (a) the magnetic field and (b) the
velocity field for the 128> runs with forcing correlation time scales from 7. /75 =0.5 to co. Note that the curves follow the
same labelling with Fig. 7.

typical turbulence theory exponents —5/3 and —3/2. Note that large fluctuations on the spectral
exponent were observed throughout the run, with steep exponents during the condensate phases
and more turbulent-like exponents within intermediate times. Therefore, the presence of the helicity
condensates can clearly affect the time averaged energy spectrum even when their duration is short
(e.g., for 7. /7y = 2 in our flows).

Due to the relatively small resolution of these simulations, the statements about the spectral
exponents are only qualitative. Alternatively, to show the existence of the large fluctuations that
could affect the energy spectrum, we analyse the dynamics of the large and small scales. So, we
compute the corresponding integral and Taylor length scales of the velocity and the magnetic field
individually. In Fig. 8, we illustrate the time-series of the ratio of the integral length scale L,
to Taylor micro-scale A, , of the magnetic field and the velocity field. When energy is concen-
trated on the largest scale of the system k =1, the ratio L, /A, p = 43‘—% =~ 1.05, and thus, the
flow exhibits laminar behaviour. However, when L,, /), » > 1 a turbulent scaling is expected and
dissipation is dominated by small scales. The difference in the dynamics of the velocity and the
magnetic field is striking as the forcing correlation time scale varies. On one hand, the magnetic
field reaches different asymptotic states for different values of 7./7; (see Fig. 8(a)) and it moves
toward the laminar attractor, i.e., Ly/Ay — 1, as 7./77 becomes high enough. The time-series of
L, /) is characterised by very rare and extreme events away from the condensate state laminar
attractor for high values of 7./7¢. On the other hand, even though the amplitude of the fluctuations
of L, /M, increases significantly with respect to the increase of the forcing correlation time scale, the
mean value of L, /A, remains almost at the same level except for the run with 7./7s = oo (see Fig.
8(b)). This diverse behaviour between the velocity and the magnetic field dominates the statistics
and this was also depicted in the time-averaged energy spectra in Fig. 7. The large amplitude and
rare fluctuations in the time-series of L,/\; and L, /A, imply that different spectra are obtained in
different instances with this becoming more pronounced for the high values of the forcing correla-
tion time scale. This behaviour seems to be valid for any Reynolds number flow with high enough
time-correlated external forces.

V. DISCUSSION AND CONCLUSIONS

In this work, we consider MHD turbulent flows driven by kinetic and electromagnetic external
forces. By increasing the time-correlation of the external forces 7., we demonstrate that MHD flows
create large-scale condensates. This manifestation is connected with the presence of the electromag-
netic external force (non-helical in this case), which induces the condensation of magnetic energy
into the large scale helical coherent structures (i.e., condensates). The magnetic energy at the large
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scales of the flow is always greater than the kinetic energy and the ratio of magnetic to kinetic energy
grows as the forcing correlation time scale increases.

From our phase space analysis, we conclude that helicities increase as the forcing correlation
time scale increases and drive the MHD flows toward condensate states at large integration times.
Flows with high enough value of 7./7 reach different asymptotic states of different levels of he-
licities. The evolutions of these flows are governed by the force-free, Alfvénic, and Beltrami states
(i.e.,u o< b o« w  j), which appear to be attracting solutions of the MHD equations when 7./7y — oo
for any Reynolds number. The existence of these attractors is intimately connected to the uncondi-
tional stability of the magnetic helical condensates for any Reynolds number. So, a predictive theory
in electromagnetically driven MHD turbulent flows is plausible based on the fact that asymptotic
laminar attractors govern the dynamics of such flows with long enough forcing correlation time scales.

Moreover, the dynamics of the velocity and the magnetic field present very diverse dynamics,
which dominate the statistics. At different instances in time, rare events provide very disparate energy
spectra during the evolution of the MHD flows with high enough 7. These results raise the issue of
how a DNS of MHD turbulent flows should be forced in order to avoid any misleading results to be
caused by the large scale condensates of the flow. In particular, the current study excludes the use of
time-independent electromagnetic forcing for the study of steady state MHD turbulence in periodic
boxes as in this case, the flow will be attracted to the helical condensate states.

Our study has important implications for MHD and turbulence theory and perhaps provides
insight into various physical phenomena where self-organisation manifests, such as in MHD and
plasma experiments. The fact that helical states can persist for all times (if permitted by boundary
conditions), leading to the suppression of the non-linearities and the system toward the laminar attrac-
tor, seems attractive. The presence of coherent structures inside turbulence greatly affects the plasma
diffusion process. Therefore, further study of the self-organisation processes is vital in order to control
the transport processes in fusion plasmas and hence, to improve the plasma confinement. Moreover,
an increased knowledge of these phenomena in MHD turbulence can shed light on the understanding
of some basic phenomena in solar corona, such as flares and coronal heating, which occur in a region
where observations cannot be performed.
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APPENDIX: STABILITY AND BOUNDS
1. Unconditional stability of maximal helical states

Here, we show that magnetic helical condensates at the largest scale of MHD flows are uncon-
ditionally stable for any Reynolds number. We consider an arbitrary velocity field #’ and a magnetic
field with a large scale fully helical component By and a small scale component b’, i.e.,b = By + b’
The large scale magnetic field is such that

V X By = +koBy = Jo, (A)

where kg is the smallest wavenumber in the domain. The small scale component b’ is composed of
all the Fourier modes such that |k| # kg (i.e., all the Fourier modes except the ones for which belong
to By).

Then, the Eqs. (1) and (2) for the small scale fields become

o' = (Joxb")+ (j XBg)+ (j'xXb') + vAu'
+(u'xw')-VP (A2)
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and
b’ =V x @ xb')+Vx @ xBy)—uV xj'. (A3)

To derive the equations for the averaged kinetic and magnetic energy, we multiply Eq. (A2) by u’
and Eq. (A3) by b’ and we integrate over the volume V to obtain

1
Eaz(lu'|2> = @' (Jox b)) + u'(j x Bo)) + (u'(j’ x b))
+v(|Va'|?) (A4)
and
1
§6t<|b’|2) = (J'(u' x b)) + (j'(u’ x Bo)) — (] j'*), (AS)
where (.) = fv d*x. By summing Eqgs. (A4) and (AS5), we obtain

(') + (B'1%) = (@' (Jo x b)) = v{|Vu'P) = (| j'I*)
= ko(w'(Box b)) = v{|Vu'") — (| j'I°). (A6)

Let a =Ap+a’ (where VxAg= By and Vxa’' =b’), be the vector potential. Multiplying
Eq. (A3) with a’ and integrating over the volume V, we obtain

1
F0ra’ - b") = b'(u" X Bo)) — pu(j’ - b), (AT)

where (a’ - b’) is the magnetic helicity of the perturbation field. Multiplying Eq. (A7) by k¢ and then
subtracting from Eq. (A6) leads to

1 o v
FOM = =v([Va'P) = (| 1) + kop( - B) (A8)

where M = (ju’|?) + (|b’*) — ko(a’ - b). We now show that M is a non-negative functional as
follows:

M= (') +(b'P) = koa’ - b (A9)
> (Ib'1%) - kofa’ - ") (A10)
> (b1 = ko(1b'1?)! " X(|a’?)!? (A11)
>0, (Al12)

where the last inequality comes from noting that
(a'?)y= > k7, (A13)
kl>ko
< D kP (Al4)
[k[> ko
= k(b1 (A15)

The equal sign holds only for u’ = b" = 0. Following the same steps, we can show that
= WIVa'P) = (| P + k(b)) < 0 (A16)

with the equality again holding only when u’ = b’ = 0. Thus, based on Eq. (A8), the quantity M will
always decay until the state #’ = b’ = 0 is reached, which is the only case for which .M = M = 0.
Therefore, all perturbations to the basic state B will decay to zero independently of the value of
v, u> 0.

2. Anti-turbulence theorem for magnetically helical forcing

Here, we show that if a flow is forced only by a fully helical magnetic forcing such that
fp» =AMV X f,andf, = 0, the energy dissipation will decrease to 0 at the ;# — 0 limit. For this forcing,
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the balance of the magnetic helicity Hj, = %(a - b) reads

€y = W(J-b) =(a -f,) =Mb-f},) = ke, (A7)

where € is the energy dissipation rate that for this forcing € = (b - f,,). Taking the absolute value of
€,, and using Schwartz inequality, we have that

leql = ul(j-b)l
< (B X IR

= V(B2 1 1)
< VEBPY P 1|71 + v(lwl?)

= V(b *Ve. (A18)
Using (A17) and (A18), we obtain
M€ = le,| < V(B Ve, (A19)
thus
€ < (b2 (A20)

This result implies that for this forcing, the system cannot dissipate energy faster than if all dissi-
pations took place at the forcing scale A, and thus, a laminar scaling for the energy dissipation is
followed. Note that in this case, we did not have to assume that A is the largest scale of the system.
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