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The effect of multiplicative noise on a system described by two modes close to a bifurcation point is
investigated. The bifurcation is assumed stationary and noise acts as random coupling between these modes.
An analytic formula that predicts the onset of instability is derived, and the domain of existence of on-off
intermittency is calculated based on an eigenvalue problem. This approach, confirmed by numerical simula-
tions of the Langevin equations, allows quantifying the possible effects of the noise. The stability and the
on-off behavior are shown to be very sensitive to deviations of the deterministic system from the case where
both modes grow with equal rate and the system displays a continuous symmetry associated to rotation in
phase space. In general, a noise term that breaks this continuous symmetry will increase the domain of
instability of the system while a noise term that preserves the symmetry reduces the domain of instability.
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I. INTRODUCTION

In many situations patterns are formed as a result of an
instability that breaks a continuous symmetry. Rayleigh-
Bénard convection in an horizontal fluid layer heated from
below �1�, Faraday instability in a vertically shaken fluid
layer �2�, and Rosensweig instability of a ferrofluid plunged
in a vertical magnetic field �3� are examples of instabilities
that develop spatial structures of finite length scale. These
structures are likely to break the originally translational and
rotational invariant basic states. Besides the instability, the
symmetry of these systems can also be broken by the pres-
ence of uncontrolled parameter changes or fluctuations
�noise� that are typically present in any realistic experiment.
Close to onset, we expect that fluctuations modify the insta-
bility process and the resulting spatial structure.

Another system that can exhibit symmetry-breaking insta-
bilities and motivates our work is the dynamo instability that
is responsible for the generation of the magnetic field in as-
trophysical objects. Planets and stars are at first approxima-
tion invariant under rotation around their spin axis. In some
cases this symmetry is preserved by the large scale magnetic
field. The Earth, for example, generates a roughly axial di-
pole. In other planets such as Neptune and Uranus, a trans-
verse dipole appears to be present and the original symmetry
is broken. Laboratory experiments �4–6� of the dynamo in-
stability also display a continuous symmetry that in some
cases is broken. In Riga �4�, a helical flow in a cylinder
generates a magnetic mode that breaks invariance under ro-
tation around the cylinder axis. The Karlsruhe experiment �5�
is composed of an array of pipes in each of which a helical
flow is driven. For a large scale magnetic field, the flow
properties are invariant under rotation around the pipe axis.
The observed magnetic field is a transverse dipole that
breaks this symmetry. In the Von Karman Sodium experi-
ment �6�, a turbulent swirling flow is generated by two
counter-rotating coaxial disks. In this case the large scale
magnetic field is an axial dipole that preserves the invariance
under rotation around the disks axis.

Typically, realistic flows that generate the dynamo insta-
bility are highly turbulent �7�. These turbulent fluctuations

are likely to play an important role, in particular in the vi-
cinity of the onset of dynamo action. Since the equation for
the magnetic field is linear, the fluctuations act multiplica-
tively on the unstable modes and can be modeled as multi-
plicative noise. Instabilities in the presence of multiplicative
noise have been studied when one mode is close to critical-
ity. It has been shown that the onset of instability can be
shifted compared to the deterministic �noise free� case �8�.
Slightly above onset, on-off intermittency takes place where
the noise alternatively drives the system into its large ampli-
tude phase �on phase� and close to zero �off phase� �9–14�.
This behavior is exemplified by the time series shown in Fig.
1. On-off intermittency has been demonstrated in numerical
simulations of the magnetohydrodynamic �MHD� equation
�15–17�. However no on-off regime has been found in ex-
perimental dynamos, probably because the turbulent fluctua-
tions have too small intensity at small frequencies �18�.

Most theoretical investigations of the effect of multiplica-
tive noise have been restricted to single mode bifurcations.
In this article, we study how multiplicative noise affects the
process of instability when the system displays a continuous
symmetry or when this symmetry is broken. This is done by
considering the generic case of two modes close to a station-
ary bifurcation.

We derive the onset of instability and determine the re-
gime of parameters on which on-off intermittency exists.
Section II describes in some detail the system under study. In

FIG. 1. A typical signal of a system that exhibits on-off inter-
mittency, in linear �top panel� and log-linear scale �bottom panel�.
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Sec. III we derive a general criterion for the instability. Our
results for specific examples are shown in Secs. IV and V
and we draw our conclusions in the last section.

II. GENERIC PLANAR INSTABILITY WITH A
CONTINUOUS SYMMETRY

We consider two modes of amplitude x�t� and y�t� for
which x=y=0 is a stationary solution that can be unstable.
Close to the onset of instability the evolution equation for the
amplitude A=x+ iy can be written at linear order as

Ȧ = pA + qĀ . �1�

The parameters p and q are set real so that whatever their
values only stationary instabilities can occur. When q=0, this
equation is phase invariant, i.e., is invariant under the trans-
formation A→Aei�. This is the continuous symmetry that
can be broken by the instability. Going back to the examples
related to pattern forming instabilities and dynamo effect,
this symmetry traces back to the translation or rotation of the
pattern or to the rotation of the transverse dipolar mode.
When q�0, the system does not display any symmetry be-
cause the two modes have different growth rates say �= p
+q and �= p−q. By varying q, we can change the system
from a situation where a continuous symmetry exists to a
situation where it does not.

If this system is subject to multiplicative noise that acts
linearly on x and y, a variety of terms can exist depending on
the structure of the noise. In general we write

Ȧ = pA + qĀ + ��t���A + �Ā� , �2�

where ��t� is the noise term. We refer to a “scalar noise”
when a single random process is involved and the noise term
is written as ��t�=��t�ei	, where � �and from now on� is a
real Gaussian white noise with ���t���t���=2
�t− t��. Equa-
tion �2� is understood in the sense of Stratonovich �19�. We
refer to “vectorial noise” when more than one random pro-
cess is present. In this work we concentrate on vectorial
noise terms of the form ��t�=�1�t�+ i�2�t�, where the two
real processes �1 and �2 are white and Gaussian and are
mutually uncorrelated.

Up to a rescaling of time, we can tune the noise amplitude
� or � to unity. This amounts in rescaling p and q. We focus
on two limiting cases as follows:

�i� ���=1, �=0 for which the noise does not break the
continuous symmetry and p and q are rescaled to p / ���2 and
q / ���2,

�ii� �=0, ���=1 for which the noise breaks the symmetry
and p and q are rescaled to p / ���2 and q / ���2.

III. ANALYTICAL PREDICTION ON THE ONSET OF
INSTABILITY AND ON-OFF INTERMITTENCY

A. Single mode bifurcation

It is instructive to review some of the known results for a
system made of one single mode close to its onset. We con-
sider that the nonlinear term saturates the growth and we
write

ẋ = �x + �x − Cxm, �3�

with C a positive constant and m an integer larger than 2.
The Fokker-Plank �FP� equation for the probability density
function P�t ,x� associated with Eq. �3� is given by

�tP = − �x���x − Cxm�P� + �x„x�x�xP�… . �4�

Assuming stationarity and integrating we obtain the solution

P�x� =
1

N
x�−1e−�Cxm−1/m−1�, �5�

where N is a normalization constant. If � is negative the
probability density function �p.d.f.� has a nonintegrable sin-
gularity at x=0. The only stationary distribution is then
P�x�=
�x�. For positive values of � the p.d.f. is normalizable
and Eq. �5� gives the stationary distribution of x. For ��0,
all initial conditions are ultimately attracted toward zero. For
��0, this is not the case: trajectories will not tend to zero
but will lead to the stationary distribution �5�. Therefore �
=0 defines the onset of instability. We note here that the
behavior of P�x� for small values of x is independent of the
choice of the nonlinear term.

For 0�1 the probability density function has an in-
tegrable singularity at the origin, which implies that the tra-
jectory will come arbitrarily close to the origin. This behav-
ior traces back to the on-off intermittency. Indeed, p.d.f. that
diverges at 0 and very long durations spent by the trajectories
close to x=0 are characteristic properties of on-off intermit-
tency �9–14,18,20�. These two properties are controlled by
the linear part of the equation since they are related to the
evolution when x is very small. In this work we will charac-
terize a regime as on-off intermittent if the resulting p.d.f.
diverges at x=0. This regime thus corresponds to a power
law with exponent between −1 and 0.

Since the criterions for instability and on-off intermittency
depend only on the linear terms, it is tempting to derive it
ignoring the nonlinearities. For sufficiently small x, we can
write the FP equation for the stationary solution as

0 = − �x��xP� + �x„x�x�xP�… . �6�

Since only the linear part of Eq. �3� is considered, Eq. �6� is
invariant under transformations x→hx �for any h�R� and
we can look for solutions of the form P=Cx�−1. As before if
��0 the solution is not integrable for small x. The onset of
instability therefore corresponds to �=0 when the power-law
exponent of the pdf transitions from negative � to positive �.
Substituting this form of solutions in Eq. �6� we obtain an
equation for �

0 = �� − �2 �7�

that has two solutions �=0 and �=�. An additional con-
straint can be obtained from the flux of probability F�x�
��xP−x�xxP= ��−��x� that has to be zero for a stationary
solution. This allows us to distinguish between the two solu-
tions. Only the second one �with �=�� has zero flux, while
the �=0 solution has in general finite flux. This additional
constraint allows calculating the onset of instability defined
by the �=0 solution with zero flux, which leads to �=0, as
obtained from the solution of the full nonlinear problem.
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Finally we can also determine the on-off stability boundary
by setting �=1 that leads to �=1.

We now apply this procedure to two-dimensional bifurca-
tions for which analytical calculations of the full pdf cannot,
in general, be performed. Results have been obtained for
some specific systems. For example, in the case of a Duffing
oscillator subject to multiplicative noise, a study of the FP
equation allows to estimate the distribution of the oscillator
energy. The condition that this distribution is normalizable
also predicts the onset of instability �21�.

B. Two-dimensional bifurcation with scalar noise

We consider a two-dimensional system

ẋ = �x + ��ax + by� + NLx,

ẏ = �y + ��cx + dy� + NLy . �8�

NLi stand for nonlinear terms that we are going to leave
unspecified at this point.

Equation �8� describes the motion of a particle in the x-y
plane that moves due to a deterministic flow given by ux
=�x+NLx and uy =�y+NLy plus random displacements de-
scribed by the noise term. It will be convenient for the fol-
lowing derivations to express the equations in polar coordi-
nates:

ṙ = rfr��� + �rgr��� + NLr,

�̇ = f���� + �g���� + NL�. �9�

fr , f� ,gr ,g� are functions of � that depend on the parameters
a ,b ,c ,d and � ,�, namely,

fr = � cos2��� + � sin2��� ,

gr = a cos2��� + �b + c�cos���sin��� + d sin2��� ,

f� = �� − ��cos���sin��� ,

g� = c cos2��� + �d − a�cos���sin��� − b sin2��� . �10�

The Fokker-Planck equation in these coordinates is then
written as

�tP = − �r�rfrP� − ���f�P� + �r„rgr�r�rgrP�… + �r„rgr���g�P�…

+ ��„g��r�rgrP�… + ��„g����g�P�… , �11�

where P is the probability density function in the polar plane
with 	Pdrd�=1. We have again focused on small values of r
and neglected the nonlinear terms. In this limit, the Eq. �11�
is invariant under dilatation r→hr. We thus search for sta-
tionary solutions of the form

P�r,�� = r�−1����� . �12�

Substituting 12 in Eq. �11� leads to the generalized eigen-
value problem,

0 = − �fr�� − ���f���� + �2gr
2�� + �gr���g����

+ ����g�gr��� + ���g����g����� , �13�

where the power law � is the generalized eigenvalue.

In this work we are interested in finding the marginal
value of the control parameters for which a solution other
than P�r ,��=
�r� exists. As in the one-dimensional �1D�
case this will be given by setting �=0 in Eq. �13� from
which we obtain

0 = − ���f��0� + ���g����g��0�� . �14�

The solution of which is given by

�0��� =
N

g�

exp
�
0

� f�����
g�

2����
d��� , �15�

where the fact that the bifurcation is stationary has been
used. Indeed, for a Hopf bifurcation an additional term in Eq.
�15� would be present that would express the presence of a
current in the � direction. This is not the case for the systems
considered in the following. We now impose that the solution
has no radial flux F�R� defined by

F�R� � �
0

R �
0

2�

�tPdrd�

= R�
0

2�

�− frP + gr�r�rgrP��r=R + gr���g�P��d� .

�16�

At onset, for �=0, this leads to

0 = �
0

2�

�gr���g��0� − fr�0�d� . �17�

Equation �17� gives a relation between the control param-
eters that determines when the system is marginally unstable.
A different derivation is obtained based on an asymptotic
expansion of Eq. �13�. It is presented in the Appendix.

This is our main analytical prediction: the onset of insta-
bility is determined by the set of parameters that verify Eq.
�17�.

In Secs. IV and V we examine specific examples of sta-
tionary bifurcations and determine the marginal stability
curve based on the flux condition, given by Eq. �17�. In
addition we determine the domain on which the system dis-
plays on-off intermittency by solving numerically the eigen-
value problem �Eq. �13�� using a shooting method and look-
ing for parameters that satisfy �=1.

C. Generalization to vectorial noise

The result is easily generalized when Eq. �8� contains
several noise terms �i that are white, Gaussian and indepen-
dent. We consider the general case

ẋ = �x + 
i

�i�aix + biy� + NLx,

ẏ = �y + 
i

�i�cix + diy� + NLy . �18�

Then, Eq. �9� becomes

ṙ = rfr��� + ri
�igir

��� + NLr,
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�̇ = f���� + i
�igi�

��� + NL�, �19�

where gir
and gi�

have the form given in Eq. �10�. In the FP
Eq. �11�, diffusive terms associated to each noise appear. The
equation for the stationary angular distribution at onset is
then

0 = − ���f��0� + 
i

���gi�
���gi�

�0�� , �20�

and the criterion for marginal stability reads

0 = �
0

2� 

i

gr���gi�
�0� − fr�0�d� . �21�

IV. CASE (i): NOISE THAT DOES NOT BREAK
CONTINUOUS SYMMETRY

A. Scalar noise

We begin by investigating a system for which the noise
term does not break rotational symmetry A→ei�A, and write
it

Ȧ = pA + qĀ + ei	A� + NL. �22�

Without loss of generality, we restrict to 0�	�� /2. In
terms of the original variables �x ,y� the system is written as

ẋ = �x + ��cos�	�x − sin�	�y� + NLx,

ẏ = �y + ��sin�	�x + cos�	�y� + NLy . �23�

In the absence of noise a particle initially placed at x
=x0 , y=y0 would move along the trajectory �x /x0�
= �y /y0��/�. We refer to these trajectories as deterministic
flow lines. Similarly, in the absence of the deterministic part
of Eq. �23� ��=�=0� particles are also restricted to move
along specific lines. For 	=� /2 the noise drives motion
along the circles x2+y2=x0

2+y0
2; for 	=0 it acts along the

lines x /x0=y /y0, and for all other values it acts on spiral
trajectories that can be written in polar coordinates as r /r0
=exp�tan�	���−�0��, see Fig. 2. We refer to these lines as
diffusion lines since the probability density is diffused along
these lines. Since the flow lines and the diffusion lines in
general intersect each other, the trajectory of a particle is not
restricted to either the diffusion or flow lines.

The pdf for the marginal case �0 obtained from Eq. �15�
is

�0��� =
1

N
exp
 �� − ��cos�2��

sin�	� � . �24�

Apart from the singular case 	=0 that we discuss separately,
the stability of the system can be determined by the flux
criterion �Eq. �17��. The resulting stability boundaries for the
case 	=� /2 and 	=� /8 are shown in Figs. 3 and 4, respec-
tively, with dark solid line. In addition to the stability bound-
aries, the boundaries of on-off intermittency are calculated
numerically from the eigenvalue problem �Eq. �13��, and are
shown in Figs. 3 and 4 with a dashed line. Qualitatively

similar results are obtained for all 	 such that 0	�� /2.
The Langevin �L-� Eqs. �23� are also solved numerically

using three different models of nonlinearities. For the first
model, the nonlinear terms NLx=−x�x2+y2� and NLy
=−y�x2+y2� were used. They act only on the r direction and
preserve the original symmetry. For the second model, the
more general nonlinear terms NLx=−�x+�y��x2 /a+y2 /b�
and NLy =−�y−�x��x2 /a+y2 /b� were used that also intro-
duce a � dependence of the nonlinearity. Finally, the nonlin-
ear terms were modeled using a no-flux boundary condition
at �x�=1 and �y�=1. For all cases the stability boundaries and
the on-off boundaries were verified. For the 	=� /2 case
with �=1.1 and �=−2, Fig. 5 shows the phase space of the
solution where we have plotted 104 samples of the numerical
solution of the L equation obtained at different times. Simi-

FIG. 2. Deterministic flow lines �solid� and diffusion lines
�dashed� for Eq. �22� in the x-y plane. Panels “a” refer to cases that
� /��0 and panels “b” refer to cases for which � /�0. 	=� /2
for panels 1, 	=� /4 for panels 2, and 	=0 for panels 3.

FIG. 3. Stability �solid line� and on-off boundaries �dashed
lines� for the case of scalar noise �Eq. �22�� that does not break
symmetry with 	=� /2.
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larly, Fig. 6 displays the 	=� /2 case with �=1 and �=0.
For these values of the parameters � and �, the solution
displays on-off intermittency as indicated by the high density
close to x=y=0. Similar figures are obtained for other pa-
rameter values in the range located between the two bound-
aries shown in Figs. 3 and 4.

Equation �15� is singular for the 	=0 case. This singular
behavior occurs because the flow and the diffusion lines are
aligned along the x and the y axes �see Fig. 3, panels a and
b�. Due to this alignment if a particle is initially placed on
one of these axes it will remain on this axis. As 	 tends to
zero, �0 obtained from Eq. �24� becomes more peaked along
the most unstable axis and tends to a delta function. In the
limit 	→0 the stationary p.d.f. is �0���=N1
���+N2
��
+��, �if ���� and �0���=N1
��+� /2�+N2
��−� /2� �if
���, where N1 and N2 are normalization constants. For
random initial conditions the criterion for instability �Eq.
�17�� reads max�� ,���0. In addition, based on the same
assumption, the on-off behavior is derived from that of the
1D system max�� ,��1. The parameter space is shown in
Fig. 7.

In conclusion, in the presence of a scalar noise that does
not break the continuous symmetry, the onset of instability is
postponed or is equal to the deterministic onset. Both onsets
are equal when �=� or in the singular case 	=0. This
means that when the system displays a continuous symmetry,
a scalar noise that does not break this symmetry has no effect

on the onset of instability. Concerning the regime of on-off
intermittency, we point out that for 	=� /2, i.e., a noise that
rotates the phase of A, on-off intermittency occurs in a nar-
row set of parameters. It is even suppressed when the system
displays the continuous symmetry. This is a consequence of
the noise acting along �, leaving the dynamics along r to be
independent of the noise.

B. Vectorial noise

We now investigate the case of a vectorial noise that does
not break the continuous symmetry and consider

Ȧ = pA + qĀ + ��1�t� + i�2�t��A + NL. �25�

This noise is the sum of two scalar noise terms with 	=0
and 	=� /2 so that their diffusion lines intersect perpendicu-
larly at each point. The eigenvalue equation for � in this case
simplifies to

0 = − �fr� − ���f��� + �2� + ��
2� . �26�

The stationary angular distribution at onset is easily ob-
tained:

�0��� = eq cos�2��/2/N , �27�

from which the marginal stability curve is expressed as

FIG. 4. Stability �solid line� and on-off boundaries �dashed line�
for the case of scalar noise �Eq. �22�� that does not break symmetry
with 	=� /8.

FIG. 5. Location in phase space of 104 samples of the numerical
solution of the Langevin equation obtained at different times for a
scalar noise that does not break the continuous symmetry �Eq. �22��
with �=−2, �=1.1 and 	=� /2. No flux boundaries at �x�= �y�=1
were used.

FIG. 6. Location in phase space of 104 samples of the numerical
solution of the Langevin equation obtained at different times for a
scalar noise that does not break the continuous symmetry �Eq. �22��
with �=0, �=1 and 	=� /8. No flux boundaries at �x�= �y�=1
were used.

FIG. 7. Stability �solid line� and on-off intermittency boundaries
�dashed line� for the scalar noise that does not break the continuous
symmetry �Eq. �22�� with 	=0.
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�
�=0

2�

�p + q cos�2���eq cos�2��/2d� = 0. �28�

In this case, the result can be written in a closed analytical
form, namely,

p = �
J1���
J0���

, �29�

with �= i q
2 , and Jn is the Bessel function of the first kind of

order n. The onset of instability, together with the numeri-
cally calculated boundary of on-off intermittency, is pre-
sented in Fig. 8. The location in phase space of 104 samples
of the numerical solution of the Langevin equation is shown
in Fig. 9.

Results are qualitatively similar to those of the scalar
noise with 0	� /2. Namely, the onset in the presence of
noise is larger than the deterministic one. They are equal
only when the system displays the continuous symmetry.

V. CASE (ii): NOISE THAT BREAKS
THE CONTINUOUS SYMMETRY

A. Scalar noise

In this section we investigate a system for which the noise
term breaks the rotational symmetry A→ei�A. More specifi-
cally we consider

Ȧ = pA + qĀ + ei	Ā� + NL. �30�

In this case, the diffusion lines are given by the hyperbolas
sin�	��x2−y2�−2 cos�	�xy=c, whose asymptote axes are
given by y= � tan�	 /2�x. For 	=0 the two axis of the hy-
perbolas coincide with the x and y axis, while for 	=� /2 the
two axis of the hyperbolas coincide with the two diagonals
x= �y �see Fig. 10�.

In terms of the variables �x ,y� the system is written as

ẋ = �x + ��cos�	�x + sin�	�y� + NLx,

ẏ = �y + ��sin�	�x − cos�	�y� + NLy , �31�

and the solution �0 of 15 is

�0��� =
�tan�� − 	/2�����−��/4�cos�	�

N sin�	 − 2��
exp
 �� − ��sin�	�

4 sin�2� − 	� � .

�32�

The axis of the hyperbolas split the phase space into four
“quarters.” Close to the two axes of the hyperbolas ��
=	 /2+
� with 
��1�, �0 behaves like �0����exp���
−��sin�	� /4
�� / �
��. If ��� then for values of � slightly
larger than 	 /2, �0 has a smooth behavior, and for slightly
smaller than 	 /2, �0 has singular behavior. It is the opposite
if ��. For �0 of the form of Eq. �32� to be normalizable,
the following restrictions need to be made: if ��� ����,
�0 is obtained from Eq. �32� within the angles �	 /2,
−	 /2� and ��−	 /2,3� /2−	 /2� ��	 /2,	 /2+� /2� and ��
+	 /2,3� /2+	 /2��, and is zero otherwise. This dependence
on � is easily understood: on the asymptote of the hyperbo-

FIG. 8. Stability �solid line� and on-off intermittency boundaries
�dashed line� for the vectorial noise that does not break symmetry
�Eq. �25��.

FIG. 9. Location in phase space of 104 samples of the numerical
solution of the Langevin equation obtained at different times for a
vectorial noise that does not break the continuous symmetry �Eq.
�25�� with �=0, �=1 and 	=� /4. No flux boundaries at �x�= �y�
=1 were used.

FIG. 10. Deterministic flow lines �solid� and diffusion lines
�dashed� for Eq. �30� in the x-y plane. Panels “a” refer to cases with
���0 and panels “b” refer to cases with ��0. 	=0 for panels
1, 	=� /4 for panels 2, and 	=� /2 for panels 3.
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las, the noise acts only radially and the evolution in the �
direction is controlled only by the deterministic flow. As dis-
played in Fig. 10, there is a sign determined flux of probabil-
ity toward the quarters that contain the most unstable axis.
The stationary distribution thus vanishes in the two other
quarters. With these restrictions on the allowed angles �, the
stability of the system can be determined by the flux criterion
�Eq. �17��.

The resulting stability boundaries for the case 	=� /2 and
	=� /20 are shown in Figs. 11 and 12, respectively, with
dark solid line. The boundaries of on-off intermittency that
were calculated by numerically solving the eigenvalue prob-
lem �Eq. �13��, are shown with dashed lines. Qualitatively
similar results are obtained for all angles 0	�� /2. Figure
13 shows the location in phase space of 104 samples of the
numerical solution of the Langevin equation obtained at dif-
ferent times for the 	=� /2 case with �=1.1 and �=−2.
Similarly Fig. 14 shows the case with 	=� /2, �=1, and
�=0.

The 	=0 case is singular because the modes are not
coupled at linear order. �0 has a singular structure along the
axis x=0 and y=0 on which the deterministic flow lines are
aligned with the diffusion lines. Since there is no flux across
the x=0, y=0 axis with no loss of generality we can consider
only the x�0 and y�0 quarter, and for simplicity let us
assume that the nonlinearities are modeled by zero flux
boundary conditions at �x�= �y�=1. In Fig. 15 we show in
log-log scale the diffusion lines for this specific noise. If �

+��0 the deterministic part of the flow will drive the par-
ticle closer to the point x=y=1. If �+�0 but one of the
growth rates is positive �say �� the particle will be attracted
to the unstable axis and the system will be reduced to a
one-dimensional problem. If both modes have negative
growth rates, the particle will move toward x=y=0. The on-
set of instability is then given by max�� ,��=0. The stability
and on-off intermittency boundaries based on this description
are shown in Fig. 16 and we have verified these results nu-
merically for the no-flux boundary conditions. However, the
on-off intermittency turns out to depend on the choice of
nonlinear terms. This is due to the singular structure of the
	=0 case.

In general, in the presence of noise, the onset of instability
is shifted to smaller values of the control parameters com-
pared to the deterministic case. The onsets are equal when
�=� or in the singular case 	=0. For a given intensity of a
scalar noise that breaks the continuous symmetry, the solu-
tion x=y=0 is more stable when the system displays the
continuous symmetry. The effect is quite strong: even a very
small breaking of the continuous symmetry is enough to gen-
erate a large change in the value of the onset. Expansion of
the equation for the marginal stability curve close to �=�
=0, leads to ��−���e2/�, i.e., ��2 / log���−���. For in-
stance, for a broken symmetry of �−�=10−4, the onset is
shifted to �=−0.22. We also point out that on-off intermit-

FIG. 11. Stability �solid line� and on-off intermittency bound-
aries �dashed line� for the scalar noise that breaks symmetry �Eq.
�30�� with 	=� /2.

FIG. 12. Stability �solid line� and on-off intermittency bound-
aries �dashed line� for the scalar noise that breaks symmetry �Eq.
�30�� with 	=� /20.

FIG. 13. Location in phase space of 104 samples of the numeri-
cal solution of the Langevin equation obtained at different times for
a scalar noise that breaks the continuous symmetry �Eq. �30�� with
�=−2, �=−0.72 and 	=� /2. No flux boundaries at �x�= �y�=1
were used.

FIG. 14. Location in phase space of 104 samples of the numeri-
cal solution of the Langevin equation obtained at different times for
a scalar noise that breaks the continuous symmetry �Eq. �30�� with
�=−2, �=0 and 	=� /20. No flux boundaries at �x�= �y�=1 were
used.
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tency disappears for all values of 	, when the system dis-
plays the continuous symmetry.

B. Vectorial noise

We now investigate the case of a vectorial noise that
breaks the continuous symmetry and consider

Ȧ = pA + qĀ + ��1�t� + i�2�t��Ā + NL. �33�

The eigenvalue equation simplifies to

0 = − �fr� − ���f��� + �2� + 2�� + ��
2� . �34�

The stationary angular distribution is identical to Eq. �27�
obtained in the case of vectorial noise that does not break
symmetry. The marginal stability curve is then given by

�
�=0

2�

�p + 2 + q cos�2���eq cos�2��/2d� = 0. �35�

Here also a closed analytical expression can be obtained

p = − 2 + �
J1���
J0���

, �36�

with �= i q
2 . The onset of instability, together with the nu-

merically calculated boundary of on-off intermittency, is pre-
sented in Fig. 17.

Results are qualitatively different from the case of a scalar
noise. The onset of instability is shifted to smaller values of

the control parameter and on-off intermittency occurs above
onset even when the system displays the continuous symme-
try.

VI. CONCLUSION

We have developed an analytical approach that allows
calculating the onset of instability and the domain of on-off
intermittency for a planar system subject to multiplicative
noise.

These results are obtained from the Fokker-Plank equa-
tion of the system and only depend on the linear terms in the
Langevin equation. At first sight, it may seem surprising.
Indeed, it is well known that when multiplicative noise is
considered, nonlinearities must be taken into account, other-
wise results are likely to be biased by rare events where the
noise drives huge values of the unstable mode. This is for
instance the case when stability is determined based on the
growth of different moments calculated from the linear part
of the Langevin equation. However our results implicitly re-
quire the presence of nonlinear terms when the existence of a
stationary solution is assumed. Our predictions for the onset
of instability are therefore independent of the nonlinear
terms as long as a stationary distribution exists. This is also
the case for the on-off boundaries, apart from the singular
case where diffusion and flow lines are aligned.

We have calculated the effect of several kinds of noise
terms on an instability in a system that displays or has
weakly broken a continuous symmetry. What is observed is
that noise that does not break the continuous symmetry post-
pones the onset when the symmetry is broken �����. It
does not modify the onset in the continuous symmetric case.
A scalar noise that breaks the continuous symmetry antici-
pates the onset if the symmetry is weakly broken. Even a
small symmetry breaking drastically reduces the onset: the
system turns out to be more unstable when one of the modes
is made more stable. Results are different for a vectorial
noise that breaks the continuous symmetry: the onset of in-
stability is anticipated even in the continuous symmetric
case.

In general on-off intermittency takes place above onset. It
disappears in a few cases: when the system displays the con-
tinuous symmetry for a scalar noise that breaks the symmetry

FIG. 15. Diffusion lines in log-log scale for the noise term that
breaks symmetry �Eq. �30�� with 	=0.

FIG. 16. Stability �solid line� and on-off intermittency bound-
aries �dashed line� for the scalar noise that breaks symmetry �Eq.
�30�� with 	=0.

FIG. 17. Stability �solid line� and on-off intermittency bound-
aries �dashed line� for the vectorial noise that breaks symmetry �Eq.
�33��.
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and for a scalar noise that does not break the symmetry but
acts only in the angular direction �case 	=� /2�.

In the dynamo context, we point out that fluctuations that
break the continuous symmetry lower the onset. For the case
of a scalar noise, when one mode is more damped, the sys-
tem turns out to be more unstable. This is a regime both
surprising and of possible experimental interest. The deter-
mination of the amplitude of these effects depending on the
spatial structures of the velocity fluctuations remains to be
done.

In this paper we considered only the case of stationary
bifurcations. Following work could study how these results
are modified for a Hopf bifurcation. Extension of our ana-
lytical approach to bifurcations in higher dimensions could
also be considered.
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APPENDIX: DERIVATION OF THE FLUX CONDITION

In this appendix, we derive the stability �flux� condition
based on an asymptotic expansion. It is presented for the
case of scalar noise but it is easily generalized to the vecto-
rial noise case. Let �0 ,�0 be the value of the control param-
eters for which the system is marginally stable. We write the
stationary p.d.f. as P=r�−1����. At onset ��0 ,�0� the solu-

tion of the FP equation transitions from a non-normalizable
form �0 to a normalizable form ��0. Close to onset we
expand Eq. �13� in powers of � and write �=�0+��1+ . . .,
�=�0+��1, and �=�0+��1. The eigenvalue Eq. �13� for �
can be written as

L�,�� + �M�,�� + �2N�,�� = 0, �A1�

where the operators L�,� ,M�,� ,N�,� are given by

L�,�� = ���g����g���� − ���f��� , �A2�

M�,�� = ���g�gr�� + gr���g��� − fr� , �A3�

N�,�� = gr
2� . �A4�

At zeroth order in power of � we get

L�0,�0
�0 = 0,

whose solution is given by Eq. �15�. At next order we have

L�0,�0
�1 + M�0,�0

�0 + �1���L���=�0
�0 = 0. �A5�

Averaging Eq. �A5� with respect to � we obtain the solvabil-
ity condition

� M�0,�0
�0d� = 0, �A6�

where we have used the property of the L�,� operator
	L�,��d�=0. Substituting the expression for M�,� we obtain
the flux condition �Eq. �17��.
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