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Two-dimensional behavior of three-dimensional magnetohydrodynamic flow
with a strong guiding field
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The magnetohydrodynamic (MHD) equations in the presence of a guiding magnetic field are investigated by
means of direct numerical simulations. The basis of the investigation consists of nine runs forced at the small
scales. The results demonstrate that for a large enough uniform magnetic field the large scale flow behaves as a
two-dimensional (2D) (non-MHD) fluid exhibiting an inverse cascade of energy in the direction perpendicular to
the magnetic field, while the small scales behave like a three-dimensional (3D) MHD fluid cascading the energy
forwards. The amplitude of the inverse cascade is sensitive to the magnetic field amplitude, the domain size, the
forcing mechanism, and the forcing scale. All these dependences are demonstrated by the varying parameters of
the simulations. Furthermore, in the case that the system is forced anisotropically in the small parallel scales an
inverse cascade in the parallel direction is observed that is feeding the 2D modes k‖ = 0.
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I. INTRODUCTION

The existence of magnetic fields is known in many as-
trophysical objects, such as the interstellar medium, galaxies,
accretion disks, star and planet interiors, and the solar wind [1].
In most of these systems, the magnetic fields are strong enough
to play a significant dynamical role. The kinetic and magnetic
Reynolds numbers involved in these astrophysical bodies are
large enough so that the flows exhibit a turbulent behavior with
a large continuous range of excited scales, from the largest
where energy is injected, toward the finest where energy is
dissipated. In many cases, strong large-scale magnetic fields
are present that induce dynamic anisotropy in the small scales.
Direct numerical simulations that examine in detail both large
and small scale turbulent processes in astrophysical plasmas
are very difficult to achieve, and only modest scale separation
can be reached even with today’s supercomputers. One way
around this difficulty is to model the effect of the large scale
field by a uniform magnetic field B0, and thus study the small
scales separately.

In the presence of a strong uniform magnetic field the
evolution of the turbulent fluctuating fields can be treated
within the framework of weak turbulence theory (WTT). In
this approach the nonlinearities are treated perturbatively,
resulting in a slowly varying amplitude of the linear wave
modes that in this case are the Alfven waves supported by
the uniform magnetic field [2,3]. However, the limit B0 → ∞
is nontrivial because different limiting procedures can lead
to different results. Thus in order for the results of weak
turbulence theory [2] to hold the Alfven frequency B0k‖ has
to be larger than the eddy-turnover frequency ukk⊥ [2,4]
(where uk is the amplitude of eddies of typical size k−1

‖ in

the direction of the field and k−1
⊥ in the direction perpendicular

to the field). This condition implies that the nonlinearities
are small and justifies the perturbative expansion. However,
for the k‖ = 0 modes that have zero frequency, this condition
is never satisfied. These modes if sufficiently amplified can
violate the WTT assumptions for all wave numbers since they
are always involved in the triads that satisfy the resonance
conditions for three-wave interactions [2,3]. Nonetheless the

energy cascade in the framework of WTT theory is not based
on exact resonances but rather it requires the existence of
modes sufficiently close in resonance or “quasiresonances.”
For such resonances to exist a domain of size L (in direction
of the field) sufficiently large needs to be considered, so that
modes with small wave numbers in the direction of the field k‖
that satisfy these conditions are present. More precisely WTT
is valid when the following condition is met:

1√
k‖L‖

� ukk⊥
B0k‖

� 1 (1)

(see [5]), where L‖ is the domain size in the direction of the
field. The inequality on the right implies sufficiently weak
nonlinearity while the inequality on the left is needed for the
presence of quasiresonances. In this case WTT predicts that
the energy spectrum is proportional to k−2

⊥ . On the other hand
if

|uk|k⊥
B0k‖

� 1

k⊥L⊥

1√
k‖L‖

(2)

the system becomes “slaved” to the 2D modes k‖ = 0 that
evolve independently [5]. Thus if the limit B0 → ∞ is taken
keeping the domain size L fixed the system becomes two
dimensional [5,6]. The two conditions (1) and (2) also allow
the existence of an intermediate regime. Finally it is noted
that for the same system different scales can have different
behavior. Thus in principle strong, weak, and 2D turbulence
can coexist in a flow at different scales.

Here the large B0 limit is explored further by means of
numerical simulations. Numerically, magnetohydrodynamic
(MHD) turbulence has been investigated by various groups in
the last decade [7–11]. The results of WTT were first demon-
strated in [12,13] while the transition to two-dimensional
dynamics has been investigated more recently in [14]. In all
these investigations the flow was forced at the largest scale of
the system. In this work the case where the system is forced at
the small scales is explored and the possible development of
an inverse cascade is examined.

An inverse energy cascade is known to exist in two-
dimensional hydrodynamic (2D-HD) turbulence [15–17], as
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a consequence of the conservation of vorticity. It results in a
k−5/3 spectrum for the large scales and a k−3 spectrum for
the small scales. Strongly rotating flows [18–22] or flows in
thin boxes [23] have been shown to have a dual cascade of
energy with the large scale flow behaving like 2D with an
inverse cascade while the small scales being three dimensional
with a direct cascade. However, 2D MHD turbulence does
not conserve the vorticity and energy is cascading to small
scales. On the contrary, the square of the vector potential
is cascading to larger scales [24,25]. For the system under
investigation we cannot a priori predict if the flow under the
influence of a strong magnetic field will act as a 2D-HD flow by
suppressing all magnetic fluctuations and thus have an inverse
cascade; or if magnetic fluctuations persist and the system
will act as a 2D-MHD flow and thus not exhibit an inverse
cascade of energy. It is noted that a strong magnetic field
is used very often to make flows of liquid metals behaving
like two-dimensional flows in experiments where an inverse
cascade has been observed [26,27]. These flows however
have very small magnetic Reynolds numbers and magnetic
fluctuations are strongly suppressed.

II. FORMULATION AND NUMERICAL SIMULATIONS

We consider a flow of a conducting fluid inside a triple-
periodic box of size 2πL in the presence of a strong guiding
magnetic field B0 in the ẑ direction. The system is forced
by a mechanical force f and an electromotive force E . The
nondimensional MHD equations then read

∂tu + u · ∇u = V
A
∂zb + b · ∇b − ∇P + G

− 1
2

K
∇2u + F,

∂tb + u · ∇b = V
A
∂zu + b · ∇u + G

− 1
2

M
∇2b + M∇ × E,

where u is the velocity field and b is the magnetic field.
Both fields are assumed to be solenoidal ∇ · u = ∇ · b = 0.
F = f/‖f‖ is the external mechanical force normalized to unit
amplitude (where ‖ · ‖ stands for the L2 norm). E is the
external electromotive force normalized so that its curl has
unit amplitude E = E/‖∇ × E‖L. The equations have been
nondimensionalized using the box size L and the forcing am-
plitude ‖f‖. With this choice four nondimensional parameters
appear. G

K
is the kinetic Grashof number G

K
≡ ‖f‖L3/ν2,

where ν is the viscosity. G
M

is the magnetic Grashof number
G

M
≡ ‖f‖L3/η2, where η is the magnetic diffusivity. In all the

runs performed in this work G
K

= G
M

. The amplitude of the
external magnetic field relative to the forcing is controlled by
the parameter V

A
≡ B0/

√‖f‖L. Finally M ≡ ‖∇ × E‖/‖f‖
expresses the ratio of the electromotive to the mechanical
forcing.

A possible alternative to this nondimensionalization choice
would be to use the kinetic and magnetic Reynolds numbers,
typically defined as Re ≡ ‖u‖L/ν and Rm ≡ ‖u‖L/η, re-
spectively. For our problem at hand; however, where an inverse
cascade is present, it is not an attractive choice because the
amplitude of the velocity is changing with time throughout the
duration of the computation rendering Re a function of time.

Both forcing mechanisms used in the numerical simulations
consisted of a sum of Fourier modes with wave numbers
inside a spherical shell |k| = kf . The phases of the modes
were changed randomly every time interval τ ∼ √

L/‖f‖. The

TABLE I. Table with the parameters of all runs. “I” in the last
column stands for isotropic forcing. The parameters that are varied
with respect to R1 are boldface.

Runs G
1
2

K
/103 V

A
kf L M0 Isotropy

R1 5.0 5.0 8–10 0.0 I
R2 2.5 2.0 8–10 0.0 I
R3 2.5 10.0 8–10 0.0 I
R4 10.0 5.0 4–5 0.0 I
R5 2.5 5.0 16–20 0.0 I
R6 3.3 5.0 8–10 0.4 I
R7 2.5 5.0 8–10 0.6 I
R8 2.5 5.0 8–10 0.0 F(k‖,0) = 0
R9 16.0 5.0 8–10 0.0 F(0,k⊥) = 0

forcing is isotropic in all runs except the last two that we
discus in Sec. III E. There was no averaged helicity or cross
helicity injected by the forcing by choosing 〈F · ∇ × F〉 = 0
and 〈F · ∇ × E〉 = 0. Since we are interested in the presence
of an inverse cascade we are forcing relatively large wave
numbers.

The MHD equations were solved using a standard pseu-
dospectral method and a third order in time Runge-Kutta
[28,29]. The resolution used in all the runs was 5123 grid
points. In the nine different runs that were performed the
amplitude of the external magnetic field, and the way the
system is forced, was varied. Table I gives all the parameters
of the runs.

The choice of G
K

in most runs is rather conservative
because it is not known beforehand what effect on the
resolution requirements a change in each of the parameters
has. In any case, in all runs a well resolved spectrum was
observed. The last run (R9) has a large value of G

K
because in

this case for similar forcing amplitude with the other runs the
flow is less efficient in absorbing energy because the k‖ = 0
modes are not forced. In this run also the time scale of the
forcing was set to τ ∼ (B0kf )−1 to be closer in resonance
with the forced Alfven modes and to improve this absorption
efficiency.

The diagnostics used are based on energy spectra and
energy fluxes that are now defined. If ûk and b̂k are the
Fourier modes of the velocity and magnetic field of wave
number k then the two dimensional energy spectra Eu(k⊥,k‖)
and Eb(k⊥,k‖) are defined as

Eu(k⊥,k‖) = 1

2

∑
|ûk|2, Eb(k⊥,k‖) = 1

2

∑
|b̂k|2,

where the sum is restricted in the wave numbers k‖ � |kz| <

k‖ + 1 and k⊥ �
√

k2
x + k2

y < k⊥ + 1. The averaged energy
spectra in the parallel direction are then defined as

Ēu(k⊥) =
∑
k‖

Eu(k⊥,k‖), Ēb(k⊥) =
∑
k‖

Eb(k⊥,k‖).

The total kinetic energy E
K

and magnetic energy E
M

are then
given by

E
K

=
∑
k⊥

Ēu(k⊥), E
M

=
∑
k⊥

Ēb(k⊥).
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Since the development of a direct or an inverse cascade
is expected to be anisotropic, we need to define the flux of
energy through an arbitrary surface in Fourier space. If uD and
bD stand for the projection of the two fields u,b to the flows
whose Fourier transform contain modes only inside the Fourier
domain “D,” the energy flux through this domain is given by

�
D

=
∫

[uD u · ∇u − uD b · ∇b + bD u · ∇b − bD b · ∇u]dV.

See [30] for more details. In this work we will consider the
flux through cylinders and planes. By �⊥(k⊥) we will refer to
the flux of energy through a cylinder of radius

√
k2
x + k2

y = k⊥
and by �⊥(k‖) we will refer to the flux of energy through the
planes |kz| = k‖. Positive flux implies cascade of energy to the
small scales while a negative flux implies cascade to the large
scales.

III. RESULTS

A. Pilot run

The first run in Table I serves as a basic run to which all
other runs are compared. For this reason this run is examined
in more detail. Figure 1 shows the evolution of the kinetic and
magnetic energy as a function of time. As can be seen the
magnetic energy grows and saturates very fast at a relatively
small amplitude. The kinetic energy, on the other hand, after
an initial fast growth transitions to a slower increasing phase.
Up until the end of the numerical simulation this slow growth
persists. The reason for this growth is the inverse cascade
of the kinetic energy that accumulates energy in the large
scales.

This inverse cascade is demonstrated more clearly in
Fig. 2. This figure shows the parallel and perpendicular
energy flux normalized by the total energy injection rate.
The perpendicular energy flux is positive for wave numbers
larger than the forcing wave number (direct cascade) while for
smaller wave numbers a negative constant energy flux (inverse
cascade) can be seen. On the other hand, the parallel energy
flux, shown by the dashed line, is small and always positive
(i.e., direct).

The presence of an inverse cascade can also be indicated
by looking at the energy spectra at late times. The top panel of
Fig. 3 shows the kinetic energy spectrum Ēu of run R1 averaged
over several outputs close to the end of the simulation. It can

FIG. 1. Time evolution of the kinetic energy E
K

(solid line) and
the magnetic energy E

M
(dashed line) for run R1.

FIG. 2. The energy flux for run R1 in the perpendicular direction
(solid line) and parallel direction (dashed line).

be clearly seen that most of the energy is concentrated in the
large scales. The dashed line in this panel shows Eu(0,k⊥). At
large scales this line is identical to the Ēu spectrum, thus the

FIG. 3. Kinetic (top panel) and magnetic (bottom panel) energy
spectra of run R1. The solid lines correspond to the averaged
spectra Ēu(k⊥),Ēb(k⊥) while the dashed lines indicate the zeroth
component (k‖ = 0) of the two-dimensional energy spectra Eu(0,k⊥)
and Eb(0,k⊥). The straight lines show for reference the power-law
spectra k−5/3,k−2,k−3.
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energy in these scales is mostly contained in the 2D modes
k‖ = 0. This means that the flow in the large scales is almost
2D. (Here the flow is referred to as 2D in the sense that u has no
dependence on the z direction and not that the uz component
is absent.) On the other hand, at the small scales Eu(0,k⊥) is
significantly smaller than Ēu, thus the 2D modes contain only
a small fraction of the energy and therefore the flow is three
dimensional.

The bottom panel of Fig. 3 compares the magnetic energy
spectra Eb(0,k⊥) and Ēb. Unlike the velocity field the magnetic
field remains strongly three dimensional for all scales since
Eb(0,k⊥) � Ēb. The amplitude of the magnetic energy is
much smaller than that of the kinetic energy in the large scales
but of the same order in the small scales. This is essential for
the presence of the 2D-inverse cascade. If the magnetic field
fluctuations were strong enough in the large scales, the flow
would behave as a 2D-MHD flow with a direct cascade.

The k−5/3 scaling prediction for the 2D inverse cascade, the
k−3 for the direct 2D cascade, and the k−2 prediction of WTT
are shown as a reference. The observed spectra are compatible
with k−5/3 in the large scales and k−2 in the small scales;
however, the inertial ranges in the examined flow are too small
to be conclusive.

B. Guiding magnetic field strength

As a next step the dependence of the inverse cascade,
observed in R1, on the amplitude of the uniform magnetic field
is examined. Runs R2 and R3 have all parameters similar to run
R1 but a different value of the magnetic field amplitude. The
flux of energy in both directions for runs R1, R2, and R3 are
compared in Fig. 4. As expected, the amplitude of the uniform
magnetic field has a drastic effect on the energy flux. The
top panel of this figure shows �⊥(k⊥). R2 (dashed line) that
has smaller value of V

A
than run R1 (solid line) has no inverse

cascade and a stronger direct cascade. R3 (dashed-dot line) that
has larger value of V

A
has on the contrary a stronger inverse

cascade and a weaker forward cascade. The bottom panel of

FIG. 4. Top panel: The energy flux in the perpendicular direction
for R1 (V

A
= 5, solid line), R2 (V

A
= 2, dashed line), and R3

(V
A

= 10, dashed-dot line). Bottom panel: The energy flux in the
perpendicular direction for the same runs.

FIG. 5. Top panel: The kinetic energy spectra of Ēu(k⊥) (solid
line) and Eu(0,k⊥) (dashed line) for R3, V

A
= 10 (top lines), R1, V

A
=

5 (middle lines), and R2, V
A

= 2 (bottom lines). Bottom panel: The
kinetic energy spectra Ēu(k⊥) (solid line) compared to the magnetic
energy spectra Ēb(k⊥) (dashed line) of the same runs and with the
same order. The spectra have been shifted for reasons of clarity.

Fig. 4 shows the energy flux in the parallel direction. As the
magnetic field is increased the flux to large kz is decreased.
This expected since in the V

A
= ∞ limit there is cascade only

in perpendicular direction. It is noted that although V
A

is larger
than the root mean square of the velocity fluctuations, because
the cascade moves the energy to large k⊥ the ratio ukk⊥/B0k‖
is larger than unity in the case of R2, making the cascade strong
in the small scales and leading to a nonzero flux in the parallel
direction.

The spectra for these runs are compared in Fig. 5. The top
panel of this figure shows the kinetic energy spectra Ēu(k⊥)
and Eu(0,k⊥). The spectra have been shifted for reasons of
clarity. In the two runs R1 and R3 that showed an inverse
cascade, energy is concentrated in the largest scales. What can
also be observed is that as V

A
is increased the flow comes

closer to a two-dimensional flow. For R2 for which V
A

= 2
and no inverse cascade is observed, the flow is far from two
dimensional even at the largest scales.

The bottom panel panel of Fig. 5 compares the kinetic
energy spectra Ēu(k⊥) (solid line) with the magnetic energy
spectra Ēb(k⊥) (dashed line). As the uniform magnetic field
is increased the magnetic fluctuations are decreased compared
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to the velocity fluctuations. Note that for R3 the magnetic
fluctuations are almost negligible in all scales while for R2
the two fluctuating fields are in equipartition. A possible
interpretation for this behavior is the following. Since in
these runs there is no forcing for the magnetic field the
magnetic fluctuations can be generated only by the stretching
of field lines of the uniform component or by a dynamo
mechanism. However, since the flow comes close to a 2D
flow as V

A
is increased, neither of these mechanisms is

possible. The dynamo mechanism however could depend
on the magnetic Reynolds number that for these runs is
relatively small.

C. Forcing scale

The second parameter we examine is the forcing scale
kf L. This parameter is important because it controls the
number of modes that satisfy the quasiresonance conditions
(1) and (2). The energy flux of runs R4 with 4 < kf � 5
and R5 with 16 < kf � 20 are compared to the energy flux
of R1 with 8 < kf � 10 in Fig. 6. The top panel again
shows the energy flux in the perpendicular direction while
the bottom panel shows the energy flux in the parallel
direction.

All flows show an inverse cascade in the perpendicular
direction. R4 has an inverse cascade of the same amplitude
with R1 while R5 that is forced in smaller scales has a weaker
inverse cascade. This is somehow expected since when the
forcing is in smaller scales the system is closer in violating
condition (2) for 2D behavior. Note also that R4 has a larger
flux in the parallel direction.

The spectra for these runs are shown in Fig. 7. All runs
have most of the kinetic energy concentrated in the large scales
that behave like 2D-hydrodynamic flows: Ēu(k⊥)  Eu(0,k⊥)
(top panel) and Ēu(k⊥) � Ēb(k⊥) (bottom panel). The scales
smaller than the forcing scale on the other hand behave like 3D-
MHD flows with Ēu(k⊥) > Eu(0,k⊥) and Ēu(k⊥)  Ēb(k⊥).

FIG. 6. Top panel: The energy flux in the perpendicular direction
for R1 (8 < kf � 10, solid line), R4 (4 < kk � 5, dashed line), and
R5 (16 < kf � 20, dashed-dot line). Bottom panel: The energy flux
in the perpendicular direction for the same runs.

FIG. 7. Top panel: The kinetic energy spectra of Ēu(k⊥) (solid
line) and Eu(0,k⊥) (dashed line) for R5 (top lines), R1 (middle lines),
and R4 (bottom lines). Bottom panel: The kinetic energy spectra
Ēu(k⊥) (solid line) compared to the magnetic energy spectra Ēb(k⊥)
(dashed line) of the same runs and with the same order. The spectra
have been shifted for reasons of clarity. The arrows indicate the
location of the forcing.

D. Mechanical and electromotive forcing

The inverse cascade observed in some of the discussed
runs is a property of 2D hydrodynamic turbulence that is
not present in 2D-MHD turbulence. The reason it appears
in the previous runs is that the amplitude of the magnetic
field fluctuations in the large scales remains weak. This effect
could possibly be destroyed by a large scale dynamo at larger
magnetic Reynolds numbers. Leaving this possibility open the
existence of the inverse cascade is investigated when magnetic
field fluctuations are amplified by an electromotive force. This
is examined in runs R6 and R7 where both the mechanical and
the electromotive force are present.

Figure 8 shows the energy flux for runs R6 with M = 0.4
and R7 with M = 0.6 compared with R1 for which M = 0.
The introduction of the electromotive force (M �= 0) destroys
the inverse cascade in the perpendicular direction (top panel),
while little change is observed in the parallel direction (bottom
panel). This change indicates that the system transitions
from an hydrodynamic 2D state to a forward cascading
MHD state.
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FIG. 8. Top panel: The energy flux in the perpendicular direction
for R1 (M = 0, solid line), R6 (M = 0.4, dashed line), and R7
(M = 0.6, dashed-dot line). Bottom panel: The energy flux in the
perpendicular direction for the same runs.

FIG. 9. Top panel: The kinetic energy spectra of Ēu(k⊥) (solid
line) and Eu(0,k⊥) (dashed line) for R1, M = 0 (top lines), R6, M =
0.4 (middle lines), and R7 M = 0.6 (bottom lines). Bottom panel: The
kinetic energy spectra Ēu(k⊥) (solid line) compared to the magnetic
energy spectra Ēb(k⊥) (dashed line) of the same runs and with the
same order. The spectra have been shifted for reasons of clarity.

FIG. 10. The vector potential spectrum Ē
A

for three different times.

This is further confirmed by looking at the energy spectra
in Fig. 9. The top panel compares again the kinetic energy
spectra Ēu and Eu(0,k⊥). The excess of kinetic energy that
is present in the large scales for run R1 is absent in runs R6
and R7, verifying further the absence of the inverse cascade
in the presence of an electromotive force. Note that in all runs
the large scales are still two-dimensional Ēu  E(0,k⊥) (top
panel) but the condition Ēu(k⊥) � Ēb(k⊥) is true only for R1
(bottom panel). This indicates that the absence of the inverse
cascades for runs R6 and R7 is not because the flow stops
behaving like a 2D flow, but rather because it starts behaving
like a 2D-MHD flow.

In 2D-MHD flows however there is an inverse cascade of
the square of the vector potential that is a conserved quantity.
If the flow in runs R6 and R7 behave like a 2D-MHD flow in
the large scales such a cascade should be observed. However
a flux for the squared vector potential in three dimensions
cannot be uniquely defined since it is not a conserved quantity.
Nonetheless, we plot the vector potential spectra for three
different times from run R7 in Fig. 10. The vector potential
a is defined so that b = ∇ × a and ∇ · a = 0. Its spectrum is
then defined as

Ē
A
(k⊥) = 1

2

∑
|âk|2, (3)

where the sum is restricted in the wave numbers k⊥ �√
k2
x + k2

y < k⊥ + 1 and âk is the Fourier transform of a. It can
be seen that as time progresses the vector potential is increasing
in the large scales. It is noted that a quasiconservation of the
square of the vector potential has been observed in [31,32] for
three-dimensional ideal reduced MHD.

E. Isotropic and anisotropic forcing

The last parameter that we vary is the isotropy of the
forcing. Unlike the previously examined runs for which all
Fourier modes within a spherical shell are uniformly forced in
runs R8 and R9 the modes k‖ = 0 and k⊥ = 0, respectably,
are forced preferentially. In particular, the amplitude of a
Fourier mode Fk of the forcing inside the chosen spherical
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FIG. 11. Top panel: The energy flux in the perpendicular direction
for R1 (solid line), R8 (dashed line), and R9 (dashed-dot line). Bottom
panel: The energy flux in the perpendicular direction for the same
runs.

FIG. 12. Top panel: The kinetic energy spectra of Ēu(k⊥) (solid
line) and Eu(0,k⊥) (dashed line) for R8 (top lines), R1 (middle lines),
and R9 (bottom lines). Bottom panel: The kinetic energy spectra
Ēu(k⊥) (solid line) compared to the magnetic energy spectra Ēb(k⊥)
(dashed line) of the same runs and with the same order. The spectra
have been shifted for reasons of clarity.

shell was proportional to

R8 : |Fk| ∝ k2
x + k2

y

k2
, R9 : |Fk| ∝ k2

z

k2
, (4)

where k2 = k2
x + k2

y + k2
z . Thus in run R8 the 2D modes

(kz = 0) are forced preferentially while in run R9 these 2D
modes are not forced at all and most forcing is at the high kz

modes.
The energy flux for these runs is shown in Fig. 11. The

energy flux of runs R1 and R8 are very close for both directions.
The reason for the slightly smaller flux of R8 at the largest
scales is because R8 was evolved for a shorter time than R1. R9
however has no inverse cascade in the perpendicular direction
(top panel). This is not surprising since for this run the 2D
modes are not forced at all. In the parallel direction there is
also a drastic change. R9 shows an inverse cascade from the
large kz wave numbers to the 2D kz = 0 modes. It is noted that
the flux toward the large parallel scales was strongly fluctuating
taking both positive and negative values. Only after averaging
several files the result shown in Fig. 11 was obtained.

The spectra for these runs are shown in Fig. 12. Again
not a lot of difference can be seen between run R1 and R8.
Both are close to two dimensional in the large scales and
three dimensional in the small scales (top panel), and both
have weak magnetic energy in the large scales but are close
to equipartition in the small scales (bottom panel). R9 on the
other hand is three dimensional for all scales and kinetic and
magnetic energy are almost identically equal at all scales. This
last remark indicates that Alfven waves (for which u = ±b)
dominate the turbulence.

IV. SUMMARY AND DISCUSSION

In this work we have shown that under certain conditions
an MHD flow in the presence of a strong magnetic field
can behave like a two-dimensional flow in the large scales
while like a three dimensional (possibly weak turbulence) in
the small scales, much like strongly rotating fluids. In the
large scales it was found that the magnetic fluctuations were
suppressed and a 2D inverse cascade of energy developed with
energy accumulating in the large scales.

This inverse cascade however is sensitive to various pa-
rameters. If the uniform magnetic field amplitude is decreased
sufficiently, or if the domain size is increased (or equivalently
the forcing scale is decreased) the flow recovers its 3D behavior
and cascades the energy forward. Furthermore, in the case that
an electromotive force is introduced the flow remains 2D but
a direct energy cascade is observed. Finally, absence of an
inverse cascade in the perpendicular direction is also observed
when the system is forced only in the large k‖ modes. In this
case an inverse cascade in the direction parallel to the magnetic
field exists.

The sensitivity of the inverse cascade to the strength of
the magnetic field and the box size only reflects the validity of
the condition (2) for two dimensionalization of the flow. For
the inverse cascade to be present the system has to be in the 2D
regime defined by inequality (2). If it is violated the systems
ceases to behave like 2D flow but rather like weak or strong
turbulence with a forward cascade of energy.
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The absence of the cascade in the presence of an electro-
motive force (M > 0) is due to a different reason. Although
condition (2) is satisfied the electromotive force results in a
nonnegligible magnetic energy in the forcing scales and the
system behaved as a 2D-MHD flow. As discussed in Sec. I
2D-MHD does not conserve vorticity and thus it does not
exhibit an inverse cascade of energy but rather an inverse
cascade of the squared vector potential. Accordingly, in the
runs R6 and R7 the energy cascades forward while an inverse
cascade of the squared vector potential is observed.

The transition from a forward to a backward energy
cascading system is expected to happen when the magnetic
energy is sufficiently strong so that the vorticity conservation
is violated. However the exact value of the magnetic energy
for which this transition occurs can depend on the choice of
forcing, and the scale of the magnetic field. In the present
case where it is the amplitude of the electromotive force that
is specified, the resulting amplitude of the magnetic field can
depend on the value of the magnetic Reynolds number RM

and the applied field strength V
A
. A study that determines the

properties of this transition is beyond the scope of this work
and is left for future work.

Finally, in the case of anisotropic forcing for which the
2D modes were not forced showed absence of an inverse
cascade. The system instead was dominated by Alfven waves
whose interactions was cascading energy to large k⊥. This
confirms previous investigations [12,13] that showed that weak
turbulence is observed in numerical simulations for which the
2D modes were not forced. The inverse cascade in the parallel
direction however still lacks a theoretical understanding.
Phenomenological estimates for the cascade in the parallel
direction have been derived before in the literature [33] but
were assumed then in the forward direction (towards large
k‖). More recently, during the revision of the present paper an
estimate for the cascade process in the presence or absence
of the forcing of the 2D modes has also been proposed [34].
Such estimates however need to be verified by future numerical
simulations and experiments.

All the simulations presented here that exhibited an inverse
cascade were stopped before the largest scale of the system
was reached due the computational cost. If the runs were
continued for a longer time as the energy and the perpendicular

wave number are increased, it is possible that a point will
be reached that the strength of the magnetic field will not be
sufficient to stop three-dimensional instabilities from breaking
the two-dimensional constrain. Such a transition point is
expected to appear when the eddy turn over frequency ukk⊥
becomes larger than the smallest Alfven frequency B0k‖ of a
3D perturbation (i.e., k‖ �= 0). In the inertia range of the inverse
2D cascade where the k

−5/3
⊥ scaling is expected the eddy

turnover frequency is decreasing as larger scales are reached.
On the contrary, the smallest Alfven frequency B0k‖ ∼ B0/L‖
depends only on the box size. Thus the ratio ukk⊥/B0k‖ will
decrease as the cascade proceeds and it is not expected that
such a transition point will exist in the inertial range, instead
as the cascade proceeds the flow will come closer to a 2D flow.
However, since there is no large-scale damping mechanism to
dissipate the energy when the largest scale of the system is
reached, the energy would pile up in this scale. In this case
the eddy turnover frequency will increase and eventually the
criterion (2) for two dimensionality will be violated. Then
energy could possibly return to the small scales as weak or
strong turbulence. Similar scenario for the fate of the inverse
cascade of rotating turbulence has been proposed in [35].

The sensitivity of the results on the domain size and type
of forcing poses a number of questions on the ability to
model the effect of large scale fields on small scales by a
uniform field B0. Even if large enough magnetic fields are
generated (by an alpha-dynamo mechanism for example) such
that the inequality on the left of (1) is satisfied it will still
remain unknown whether the flow will behave in a weak
turbulence manner or like a quasi-2D-MHD (or HD) flow.
Further numerical and theoretical studies would then be helpful
to clarify this issue.
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