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Structures and dynamics of small scales in decaying
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et Marié Curie, Université Paris Diderot, 24 rue Lhomond, 75005 Paris, France

(Received 3 April 2013; accepted 20 September 2013; published online 10 October 2013)

The topological and dynamical features of small scales are studied in the context of
decaying magnetohydrodynamic turbulent flows using direct numerical simulations.
Joint probability density functions (PDFs) of the invariants of gradient quantities re-
lated to the velocity and the magnetic fields demonstrate that structures and dynamics
at the time of maximum dissipation depend on the large scale initial conditions at the
examined Reynolds numbers. This is evident in particular from the fact that each flow
has a different shape for the joint PDF of the invariants of the velocity gradient in con-
trast to the universal teardrop shape of hydrodynamic turbulence. The general picture
that emerges from the analysis of the invariants is that regions of high vorticity are
correlated with regions of high strain rate S also in contrast to hydrodynamic turbulent
flows. Magnetic strain dominated regions are also well correlated with region of high
current density j. Viscous dissipation (∝S2) as well as Ohmic dissipation (∝ j2) re-
sides in regions where strain and rotation are locally almost in balance. The structures
related to the velocity gradient possess different characteristics than those associated
with the magnetic field gradient with the latter being locally more quasi-two dimen-
sional. C© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4824195]

I. INTRODUCTION

Various studies have questioned the key assumptions of isotropy and locality in different con-
texts of magnetohydrodynamic (MHD) turbulence.1, 2 MHD has been shown to be anisotropic3, 4 and
although asymptotically local5 it is more non-local than hydrodynamic turbulence.6 Therefore, the
validity of the classical phenomenology of Kolmogorov (K41),7 which provides to a good approx-
imation the power law of the energy spectrum in hydrodynamic turbulence (besides intermittency
corrections), is questionable in MHD turbulence, where several debatable phenomenological theo-
ries exist.8–14 In summary, the power law scaling exponents obtained in the various MHD turbulence
phenomenologies based on weak and strong turbulence arguments both for isotropic and anisotropic
fields are −5/3, −3/2, and −2.

Numerical simulations to date are unable to provide a definitive answer to the scaling of the
energy spectrum in MHD turbulence15, 16 possibly because the high enough Reynolds numbers have
not been reached yet.17 Recently, large resolution simulations by Lee et al.18 (using a code that
enforces the symmetries of the Taylor-Green vortex to achieve higher resolution) demonstrated
different scaling of the total energy spectra at the peak of dissipation for different initial conditions.
Thereby, they suggested that freely decaying MHD turbulent flows could be non-universal. The lack
of the detailed knowledge of the energy spectrum in MHD turbulence has many implications. For
example, to predict heating rates in solar and magnetospheric plasmas, the energy dissipation rate is
required, which is intimately connected to the slope of the energy spectrum. This is also the reason
why sub-grid scale models, required for numerical modelling in astrophysics and geophysics, are
less developed in MHD.
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On the other hand, several universal small scale features have been observed in a variety of
hydrodynamic turbulent flows since the seminal works by Perry, Chong, and Cantwell19–21 on
the analysis of the velocity gradient tensor invariants. One of the most important universal results is
the well known teardrop shape22–24 of the joint probability density function (PDF) of the invariants
of the velocity gradient tensor, which describes the topology and dynamics of small scales in hydro-
dynamic turbulence. Other important directions of research in hydrodynamic turbulence involving
the study of such invariants has been the topological classification of the coherent structures25, 26 and
the use of the invariants in sub-grid scale modelling.27

In this paper, we try to provide an alternative tool to investigate universality due to the limited
information that can be extracted just from the slopes of the energy spectra. Therefore, we analyse
the joint PDFs of the invariants of the velocity gradient, magnetic field gradient, and related gradient
statistics to try and gain insight on small scale universality in MHD turbulence, which is one of the
key assumptions of inertial range phenomenologies. In addition, through this analysis we attempt
to provide a classification of the structures in MHD turbulence. This investigation was carried out
using Direct Numerical Simulation (DNS) data of incompressible, homogeneous, decaying MHD
turbulence with no imposed symmetries and no magnetic flux either in or out of our periodic
boxes.

The paper is organised as follows. The numerical method, the initial conditions, and the param-
eters of our DNS of decaying MHD turbulent flows are provided in Sec. II. In Sec. III we present the
energy spectra of our flows. Before presenting our results we give an outline for the classification
of fluid flow topology in Sec. IV. Then, in Secs. V and VI we unravel our joint PDF analysis for the
invariants of gradient quantities related to the velocity and magnetic field, respectively, delineating
the structure and dynamics of the examined MHD flows. At the end, in Sec. VII, we summarise our
results.

II. DNS OF DECAYING MHD TURBULENCE

A. Governing equations and numerical method

We consider the three-dimensional, incompressible MHD equations of fluid velocity u and
magnetic induction b to be

∂t u − ν�u = (u × ω) + ( j × b) − ∇P, (1)

∂t b − κ�b = ∇ × (u × b), (2)

∇ · u = ∇ · b = 0, (3)

with ν the kinematic viscosity, κ the magnetic diffusivity, ω ≡ ∇ × u the vorticity, j ≡ ∇ × b
the current density of the magnetic field, and P = p/ρ + 1

2 u2 the fluid pressure, composed by
the plasma pressure p, the constant mass density ρ, and the hydrodynamic pressure 1

2 u2. Note
that magnetic induction has units of Alfvén velocity, i.e., b/

√
ρμ0, where μ0 = (κσ )−1 is the

permeability of free space with σ the electrical conductivity. In ideal MHD, where ν = κ = 0, the total
energy Et ≡ 1

2 〈|u|2 + |b|2〉 = Eu + Eb, the magnetic helicity Hb ≡ 〈a · b〉 and the cross helicity
Hc ≡ 〈u · b〉 are conserved, where the angle brackets 〈.〉 in this study denote spatial averages. Here,
a is the magnetic potential, which is defined as a ≡ −�−1(∇ × b), since one can define b ≡ ∇ × a
with ∇ · a = 0.

Our numerical method is pseudo-spectral,28 where each component of u and b is represented
as truncated Galerkin expansions in terms of the Fourier basis. The nonlinear terms are initially
computed in physical space and then transformed to spectral space using fast Fourier transforms.29

Aliasing errors are removed using the 2/3 dealiasing rule, i.e., wavenumbers k ∈ [1, N/3], where
N is the number of grid points in each Cartesian coordinate of our periodic box with period 2π .
The nonlinear terms along with the pressure term are computed in such a way that u and b are
projected on to a divergence-free space so that Eqs. (3) are satisfied. The temporal integration of
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Eqs. (1) and (2) is performed using a second-order Runge-Kutta method. The code is parallelised
using message passing interface (MPI) with one-dimensional domain decomposition.30

B. Initial conditions and numerical parameters

The initial conditions that we consider in this study are the three different cases studied in
Ref. 18. In particular, the initial velocity field is the Taylor-Green (TG) vortex31 defined as

uT G(x) = u0(sin x cos y cos z,− cos x sin y cos z, 0) (4)

and the initial conditions of the magnetic field are generalisation of the TG vortex symmetries. In
detail, the insulating case (run “I” hereafter) is

bI (x) = bI
0(cos x sin y sin z, sin x cos y sin z,−2 sin x sin y cos z), (5)

where j I = ∇ × bI is parallel to the faces of a subvolume [0, π ]3, which can thereby be considered
as electrical insulators. Note that in this case the magnetic field bI = −(bI

0/u0)∇ × uT G and the
magnetic as well as cross helicity are globally restricted to vanish for all times due to the TG
symmetries. The conducting case (run “C” hereafter) takes the following form

bC (x) = bC
0 (sin 2x cos 2y cos 2z, cos 2x sin 2y cos 2z,−2 cos 2x cos 2y sin 2z) (6)

with jC = ∇ × bC perpendicular to the faces of a subvolume [0, π ]3, which can consequently be
considered as electrically conductive. In this configuration, Hb = 0 for all times but Hc �= 0 although
negligible (i.e., Hc�/Et < 0.04 at its maximum over time, where � is a typical length scale). The final
case that is considered by Lee et al.18 is an alternative (run “A” hereafter) to the insulating initial
conditions above (see Eq. (5)), namely

bA(x) = bA
0 (cos 2x sin 2y sin 2z,− sin 2x cos 2y sin 2z, 0) (7)

for which again Hb = Hc = 0 for all times, at least up to the peak of dissipation.
The above TG fields exhibit several intrinsic symmetries within a cubic box of size [0, 2π ]3,

where periodic boundary conditions are applied. These are mirror (anti)symmetries about the planes
x = 0, x = π , y = 0, y = π , z = 0, and z = π as well as rotational (anti)symmetries of angle
Nπ about the axes (x, y, z) = (π

2 , y, π
2 ) and (x, π

2 , π
2 ) and of angle Nπ /2 about the axis (π

2 , π
2 , z)

for N ∈ Z. The above mentioned planes that possess mirror symmetries form the insulating and
conducting walls of [0, π ]3 sub-boxes, also called impermeable boxes,32 for the corresponding initial
conditions.

It is important to mention that Lee et al.18 imposed numerically these symmetries in order to gain
substantial savings in computational resources. Unlike Ref. 18, our computations were performed
without imposing any symmetry constrains, allowing thus the turbulence to evolve freely with the
view that the initial TG vortex symmetries will break at high enough Reynolds numbers. However,
even for our highest resolution simulations with Taylor Reynolds number of the order of 100 the TG
symmetries are not broken within the time interval of reaching the peak of dissipation. They seem
to be a strong property of the MHD equations, preserved by time evolution of the solutions (see also
Ref. 33).

Due to the fact that there are special global restrictions on these TG flows, we further consider
a run with random initial conditions (run “R” hereafter) for comparison, ensuring that Hb = Hc = 0
and kinetic helicity Hu ≡ 〈u · ω〉 = 0 at time t = 0. During the time evolution magnetic and cross
helicity remain zero for all times relative to the total energy. However, the kinetic helicity reaches
an approximate value of Hu�/Et < 0.2 at its absolute maximum over time but when dissipation is
maximum Hu�/Et < 0.04.

We report results based on the analysis of decaying MHD turbulence simulated with N = 10243

grid points. In order to obtain the broadest inertial range, runs I, A, and C are initialised at the
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TABLE I. Numerical parameters of the DNS. The values presented are taken at the peak of total dissipation. Note that kmax

= N/3, using the 2/3 dealiasing rule.

ν Lt λt ηt

Run N (×10−4) Reλt (×10−1) (×10−1) (×10−3) u′ b′ kmaxηt

R 1024 5.5 140.7 8.33 2.15 7.80 0.36 0.48 2.66
I 1024 4.5 121.8 6.84 2.03 6.54 0.27 0.62 2.23
C 1024 4.5 138.0 6.23 1.35 5.82 0.46 0.35 1.97
A 1024 4.5 115.1 3.76 1.40 5.77 0.37 0.46 1.99

largest scales and run R at wavenumbers k = 1 and 2, adding extra randomness. At time t = 0 the
fields are normalised such that the kinetic and magnetic energies are in equipartition, i.e., Eu(t = 0)
= Eb(t = 0) = 0.125. Note that all flows have unit magnetic Prandtl number (i.e., ν = κ). The
numerical parameters of our computations are provided in Table I.

The rms velocity u′ is defined as

u′ ≡
(

2

3

∫
Eu(k)dk

)1/2

, (8)

and similarly for b′, the rms of the magnetic field. The integral length scales are then defined as the
total, kinetic, and magnetic integral length scales, respectively,

Lt,u,b ≡ 3π

4

∫
k−1 Et,u,b(k)dk∫

Et,u,b(k)dk
(9)

and likewise for the Taylor scales

λt,u,b ≡
(

5

∫
Et,u,b(k)dk∫

k2 Et,u,b(k)dk

)1/2

. (10)

In Table I, we report the total integral and Taylor length scales as well as the Reynolds number based
on λt given by Reλt ≡ u′λt/ν. Finally, the smallest length scale in our flows is defined based on K41
scaling ηt ≡ (ν3/εt)1/4, where εt = ν〈|ω|2〉 + κ〈| j |2〉 is the total dissipation. The time we address in
this study is the moment which the dissipation reaches its maximum value and therefore the highest
scale separation occurs ηt 
 � 
 Lt, where � is a typical length scale in the inertial range. Therefore,
the values provided in Table I correspond to that moment. The temporal behaviour of these initial
conditions has been discussed in more detail in Refs. 18 and 34. We should confirm, however, that
for run I there is still a decrease of the peak of εt as Reynolds number is increased with no asymptote
for these resolutions as it has been already observed by Ref. 34.

III. ENERGY SPECTRA

Figure 1 presents the three-dimensional compensated total energy spectra kpEt(k) that we obtain
at the peak of dissipation for all the runs of Table I. The spectra are compensated with the scaling
exponents p = 2, 5/3, and 3/2. The small increase in the spectrum right before the cut-off wavenumber
kmax shows the quality of our simulations. The adequate spatial resolution of our simulations is also
confirmed from the values of kmaxηt in Table I.

According to Lee et al.,18 the energy spectrum of the magnetically dominated flow I, i.e., Eb/Eu

> 1 (see also u′ and b′ values in Table I), is close to a k−2 power law (see Fig. 1(b)), which is
the weak turbulence (WT) theory expectation.13, 14 Here, we would like to emphasise, however, that
the WT scaling (E⊥ ∝ k−2

⊥ ) is for an anisotropic energy spectrum, where perpendicular denotes the
direction relative to an imposed large scale mean magnetic field B0 that does not exist in this flow.
In fact, it is argued that in MHD turbulence there is no prescribed cascade in the parallel direction.35

This is based on the idea that small-scale turbulent fluctuations become anisotropic, as it is easier
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FIG. 1. Three-dimensional compensated total energy spectra kpEt(k) with scaling exponents p = 2, 5/3, 3/2 for (a) run R,
(b) run I, (c) run C, and (d) run A of Table I.

to shuffle strong magnetic field lines than to bend them due to the preventing action of the Lorentz
force j × b.

Furthermore, Lee et al.18 argue that the kinetic energy dominated flow C, i.e., Eb/Eu < 1 (see
also Table I), is compatible with a k−3/2 slope (Fig. 1(c)) and the less magnetically dominated flow
A is near a k−5/3 scaling (Fig. 1(d)). In addition, we report that the power law of the total energy
spectrum for our also magnetically dominated run R (see Table I) seems to be between k−5/3 and
k−3/2. The difference between these two power laws is subtle enough that any type of contamination,
such as intermittency or any dissipative small-scale effects, will blur the results. However, even a k−2

spectrum which is slightly more transparent in these high Reynolds numbers can be misinterpreted.
For example, in contrast to Ref. 18, we claim that the total energy spectrum of run A (Fig. 1(d))
scales like Et ∝ k−2 but we leave this to the readers’ judgement.

Therefore, the following questions are raised: How can we circumvent this ambiguity of the
results? Is there a dependence of small scales on the large scale initial conditions and thereby non-
universality in decaying MHD turbulence? Since limited information can be extracted just from the
slopes of the spectra, we try to answer these questions by examining the topology of the small scales
through the invariants of related gradient statistics, which some have shown universal characteristics
for hydrodynamic turbulent flows.

IV. CLASSIFICATION OF THE FLUID FLOW TOPOLOGY

An approach that provides a well-defined and unambiguous language to describe eddying
motions and flow patterns is the framework of critical point concepts from bifurcation theory.36

This framework was studied extensively in the context of hydrodynamic turbulent flows by Perry,
Chong, Cantwell, and co-workers19, 37–39 but only in Ref. 40 for MHD turbulence. Here we provide
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a brief outline on the background material related to the geometric invariants of second-order
tensorial quantities in turbulence before going to consider various statistics of these invariants in
Secs. V and VI. Extensive reviews on the subject can be found in Refs. 22, 23, and 41 and references
therein.

Geometric invariants remain unchanged under the full group of rotations (i.e., rotations plus
reflections),22 therefore being independent of the frame of reference, regardless of the form of
the time evolution equations. Any traceless second-order tensor M has the following characteristic
polynomial:

det[M − λi I] = 0 ⇒ λ3
i + Pλ2

i + Qλi + R = 0, (11)

where λi are the eigenvalues of M and its invariants are

P = −tr (M) = −(λ1 + λ2 + λ3) = 0, (12)

Q = 1

2
[P2 − tr (M2)] = λ1λ2 + λ2λ3 + λ3λ1, (13)

R = − det(M) = −λ1λ2λ3. (14)

The value of the discriminant for P = 0 is

D = 27
4 R2 + Q3 (15)

and provides a general classification for the solutions of the cubic equation (11) dividing the (Q,R)
space into the following regions:

1. D > 0: 1 real and 2 complex-conjugate eigenvalues,
2. D = 0: 3 real eigenvalues of which 2 are equal,
3. D < 0: 3 real distinct eigenvalues,

which correspond to various local flow topologies. In this study, the first invariant is P = 0 from
definition (12) since the vector fields that we consider are solenoidal.

V. INVARIANTS OF THE VELOCITY GRADIENT, THE STRAIN RATE
AND ROTATION RATE TENSORS

A. Joint PDFs of the velocity gradient invariants

The velocity gradient tensor A = ∇u can be decomposed into a symmetric and skew-symmetric
component,

A = S + � = Si j − 1
2εi jkωk, (16)

where S = 1
2 (∇u + ∇uT ) and � = 1

2 (∇u − ∇uT ) are the strain rate and rotation rate tensors,
respectively. According to Eqs. (13) and (14), the second and third invariants of A are

Q A = 1
4 [ω2 − 2tr (S2)] (17)

and

RA = − 1
3 [tr (S3) + 3

4ωiω j Si j ], (18)

respectively. Here we are interested in the joint probability density function of these invariants. A
diagram of this joint PDF called the (RA, QA) invariant map is presented in Fig. 2, labelling the
various topological classifications.

If QA > 0 then enstrophy ω2 dominates over tr (S2) and vice versa if QA < 0. For positive values
of RA the topologies are unstable, whereas for negative RA the topologies are stable. Moreover, the
DA = 0 line (see Fig. 2), where DA = 27

4 R2
A + Q3

A is the discriminant, divides the invariant map into
two regions. One where DA > 0 with one real and two complex-conjugate eigenvalues as solutions
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Stable tube
structure

Unstable sheet

stretching
Stable vortex

compressing
Unstable vortex

AD   = 0

QA

RA

AD   < 0

AD   > 0

structure

FIG. 2. Diagram of the (RA, QA) invariant map indicating the local flow topologies related to each zone.

of Eq. (11) for the velocity gradient tensor and the other where DA < 0 with three real distinct
eigenvalues. Note that along the vertical RA = 0 axis one of the eigenvalues is zero and therefore
locally the flow topology is invariant in this direction.

Now, if QA is much greater than zero (i.e., DA > 0) then RA ≈ − 1
4ωiω j Si j . In this case,

for RA < 0 vortex stretching dominates over vortex compression, whereas for RA > 0 vortex
compression dominates (see Fig. 2). On the other hand, if QA is much less than zero and DA < 0
then RA ≈ − 1

2 tr (S3). In this case, RA > 0 locally is related to a sheetlike structure (or unstable
node/saddle/saddle topologies according to the terminology of Chong et al.19) whereas RA < 0
with a tubelike structure (or stable node/saddle/saddle topologies19). This will also become more
transparent when we will deal later with the third invariant of the strain rate tensor (see Sec. V B).

In hydrodynamic turbulent flows, ranging from atmospheric boundary layers to free shear flows
in wind tunnels and even simulations of compressible turbulence, there is the prominent tendency of
the joint PDF of (RA, QA) to develop an inclined teardrop shape. This shape aligns with the second
and fourth quadrants, with a cusp lying along the RA > 0, DA = 0 branch (see, for example, Fig. 10.1
in Ref. 22) and is considered to be a universal feature. Therefore, there is a preference for vortex
stretching and sheetlike structures. In many visualisations of enstrophy in hydrodynamic turbulent
flows the dominant structures seem to be tubelike structures but between these vortex-tubes there
are sheetlike structures, where most of the dissipation is located.22, 42

Before analysing the results, we would like to note that the aspect ratio of the axes of all joint
PDFs, that are reported in this paper, has been kept the same but the abscissa and the ordinate
are different to reflect the change in magnitude of the plotted quantities in the four flows that we
consider. In addition, the points near the origin correspond to low gradient values associated with
the large scale motions, whereas points far away characterise the high-gradient small scales. All the
joint PDFs were computed at the instant of maximum dissipation.

In Fig. 3, we present the joint PDFs of RA versus QA for all the decaying MHD runs of Table I.
The most important outcome from the plots in Fig. 3 is that the shape of the joint PDF of RA with
QA is not universal in decaying MHD turbulence and small-scales seem to depend on the large-scale
initial conditions. However, we should be cautious here as it is not clear whether the self-preservation
of the TG vortex symmetries during the evolution restrict the dynamics in some way.

On the other hand, it is clear that there is a modest but still present trend of the (RA, QA) map
to align along the second and fourth quadrants for our simulation with random initial conditions
(Fig. 3(a)). It is noteworthy that the shape of the joint PDF is more symmetric with respect to the
RA = 0 axis in comparison to hydrodynamic flows (see, for example, Ref. 39). Run I gives a striking
joint PDF (Fig. 3(b)) with a significant percentage of its points lying in the first quadrant and with
high absolute values of QA in comparison to the rest of the runs. Points of the joint PDF in the first
quadrant that are far from the origin (see Fig. 3(b)) are associated with very low rates of kinetic
energy dissipation. This suggests that the structure is likely to be quite long-lived. Run C seems
to resemble more the teardrop shape of hydrodynamic turbulence with the classic narrow cusp in
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FIG. 3. Joint PDFs of the second invariant QA and the third invariant RA of the velocity gradient tensor normalised
appropriately by powers of the mean enstrophy for (a) run R, (b) run I, (c) run C, and (d) run A of Table I. The line
DA = 27

4 R2
A + Q3

A = 0 is plotted for reference.

RA > 0, DA = 0 branch (Fig. 3(c)). Finally, Fig. 3(d) shows the (RA, QA) map of run A, which has
a shape with features in between the random MHD and hydrodynamic turbulence. In other words,
there is a modest tendency of the joint PDF to align with the second quadrant like in the random
MHD run (Fig. 3(a)) but there is a high correlation between RA > 0 and QA < 0 values forming a
long cusp in analogy to hydrodynamic turbulent flows.

B. Joint PDFs of strain rate invariants

Setting � to zero or essentially ω to zero in Eqs. (17) and (18), we can obtain the invariants of
the strain rate tensor, which are

Qs = − 1
2 tr (S2), (19)

Rs = − 1
3 tr (S3). (20)

The (Rs, Qs) invariant map features the geometry of the local straining of the fluid elements (see
Fig. 4). The second invariant Qs is related to viscous dissipation ε = 2νS2 through Qs = − 1

4ε/ν

because the strain rate tensor is symmetric, i.e., S2 = Si j S ji = tr (S2). So, locations with Qs much
less than zero are highly dissipative regions. Note that Qs is negative definite. The third invariant
Rs has two important physical meanings. First, it is proportional to strain skewness SijSjkSki, which
appears as part of the production term in the evolution equation of S2 (see Ref. 22). Second, it can
be written as a function of the eigenvalues of Sij, viz.

Rs = − 1
3 (λ3

1 + λ3
2 + λ3

3) = −λ1λ2λ3 (21)
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FIG. 4. Diagram of the (Rs, Qs) invariant map. Each plotted curve corresponds to the following flow geometries: λ1: λ2:
λ3 = 2: −1: −1 (axisymmetric contraction), 1: 0: −1 (two-dimensional flow), 3: 1: −4 (biaxial stretching), and 1: 1: −2
(axisymmetric stretching).

since tr (S) = λ1 + λ2 + λ3 = 0 due to incompressibility, with λ1 ≥ λ2 ≥ λ3. Owing to the symmetry
of Sij all eigenvalues are real and therefore the (Rs, Qs) invariant map is contained only in the region
where Ds = 27

4 R2
s + Q3

s ≤ 0 (see Figs. 4 and 5). So, Rs > 0 implies production of S2 and hence
of viscous dissipation with λ1, λ2 > 0 and λ3 < 0 related to sheetlike structures. On the contrary,
Rs < 0 indicates destruction of S2 with λ1 > 0 and λ2, λ3 < 0 associated with tubelike structures.

FIG. 5. Joint PDFs of the second invariant Qs and third invariant Rs of the strain rate tensor normalised appropriately by
powers of the mean enstrophy for (a) run R, (b) run I, (c) run C, and (d) run A of Table I. The line Ds = 27

4 R2
s + Q3

s = 0 is
plotted for reference.
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Note, therefore that sgn(Rs) = sgn(λ2). We should point out here that if we define the following
ratio a = λ2/λ1 of the eigenvalues of Sij, then each value of a corresponds to a line in the (Rs, Qs)
plane with the following expression:

Rs = (−Qs)3/2a(1 + a)(1 + a + a2)−3/2, (22)

where each line is associated with a flow topology (see the caption of Fig. 4).25, 41

The (Rs, Qs) invariant map in many hydrodynamic turbulent flows away from boundaries
manifests a tendency for the Rs > 0 region, implying a predominance of sheetlike structures related
to the strain rate (see, for example, Fig. 8(c) in Ref. 39). In particular, numerical and experimental
evidences in homogeneous hydrodynamic turbulence propose the ratios of the mean eigenvalues of
Sij to be 〈λ1〉:〈λ2〉:〈λ3〉 = 3:1:−443, 44 (see the corresponding curve in Fig. 4).

The joint PDFs of Rs versus Qs for the four runs of Table I are illustrated in Fig. 5. Their
dependence on initial conditions is clearly depicted. The shape of the (Rs, Qs) map for run R
(Fig. 5(a)) moves away from the Ds = 0 line towards the Rs = 0 axis expressing a more quasi
two-dimensional (2D) character of the structures related to Sij than in hydrodynamic turbulent flows
away from the boundaries. We should point out, however, that this particular shape is reminiscent
to the joint PDFs of (Rs, Qs) found in the buffer layer, i.e., a region very close to the wall, of
wall-bounded turbulent shear flows (see, for example, Fig. 6(f) in Ref. 25). The joint PDF of run
I (Fig. 5(b)) is aligned along the Rs = 0 with some highly dissipative small scales in contrast to
the rest of the runs. The local topology in this case seems to have a strong tendency towards quasi
two-dimensionality. Part of the shape of this joint PDF can be explained through two-dimensional
shearing (or vortex sheet), i.e.,

Ai j =

⎛
⎜⎝

0 ∂yux 0

0 0 0

0 ∂yuz 0

⎞
⎟⎠ (23)

which gives Qs = − 1
4 [(∂yux )2 + (∂yuz)2] and Rs = 0 in analogy to the influence of the wall on the

velocity gradient in wall-bounded flows.25 The (Rs, Qs) invariant map of run C in Fig. 5(c) also falls
away from the Ds = 0 branch with low correlations between Rs and Qs. Finally, the joint PDF of run
A (Fig. 5(d)) is almost identical in shape but less correlated with respect to Fig. 5(a).

We now try to summarise and clarify our arguments by tabulating the mean eigenvalues of the
strain rate tensor and their ratios for all our runs in Table II but also by plotting the curves that can
be constructed from Eq. (22) using the mean eigenvalues of Table II (see Fig. 6).

In Fig. 6, we plot for reference the curve that corresponds to 3:1:−4, the characteristic eigenvalue
ratios for homogeneous hydrodynamic turbulent flows that we denote as “HD”. In that respect, all
the ratios of the mean eigenvalues that we obtain are different than 3:1:−4. However, all the cases
represent biaxial expansion apart from run I, which is characterised by quasi two-dimensionality
with weak biaxial contraction (see Table II and Fig. 6). Figure 6 makes clear that on average the flow
topologies related to Sij of runs C and A are close to run R giving weight to our argument for the
similarity of their (Rs, Qs) joint PDFs. The curve for run I also summarises Fig. 5(b) by demonstrating
that the quasi 2D structures associated with the strain rate tensor are weakly contracted in a average
sense.

TABLE II. Mean eigenvalues of the strain rate tensor Sij and their ratios.

Run 〈λ1〉 〈λ2〉 〈λ3〉 〈λ1〉: 〈λ2〉: 〈λ3〉

R 0.14 0.03 −0.17 5 : 1 : −6
I 0.25 − 0.00 −0.25 1 : 0 : −1
C 0.25 0.04 −0.29 6 : 1 : −7
A 0.25 0.04 −0.29 6 : 1 : −7
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FIG. 6. Plot of Eq. (22) using the mean eigenvalues of Sij from Table II. The dashed line Ds = 27
4 R2

s + Q3
s = 0 is plotted

for reference. With HD we label the curve that corresponds to 3:1:−4, the characteristic eigenvalue ratios for homogeneous
hydrodynamic turbulence.

C. Joint PDFs of the second invariants of the strain and rotation rate tensors

Another important joint PDF we analyse is the one of −Qs versus the second invariant of the
rotation rate tensor, Qω, which is in fact the only invariant for �. To see this, set S to zero in
Eqs. (17) and (18), then

Qω = − 1
2 tr (�2) = 1

4ω2 (24)

which is positive definite and it is related to the second invariants of A and S through Qω = QA

− Qs. The (Qω, −Qs) invariant map that is shown schematically in Fig. 7 identifies the relative
importance of the straining and rotational part of velocity gradient tensor. A good example that
describes simply the physical meanings of Fig. 7 is the Burger’s vortex tube.45 As it was mentioned
before Qs characterises the topology associated with viscous dissipation. So, points near the −Qs

axis reflect nearly pure straining motions, i.e., regions of strong dissipation but negligible enstrophy,
like outside and away from the Burger’s vortex tube. On the other hand, points close to the Qω

axis are in nearly pure solid-body rotation, like at the centre of the Burger’s vortex tube with high

Vortex
sheet

Solid−body
rotation

Straining
motion

s−Q = Q    ω

0

s

ω

−Q

Q

FIG. 7. Diagram of the (Qω , −Qs) invariant map pointing out the important regions related to strain and rotation.
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FIG. 8. Joint PDFs of the second invariants of strain rate and rotation rate tensors normalised by the mean enstrophy for
(a) run R, (b) run I, (c) run C, and (d) run A of Table I.

enstrophy but very weak dissipation. Regions with comparable strain rate and rotation map to points
close to the Qω = −Qs line, which correspond to vortex sheets.

Generally, from observations in many hydrodynamic turbulent flows, regions of intense en-
strophy tend to be concentrated in tubelike structures, whereas regions of high dissipation are not
correlated with regions of concentrated enstrophy.22 So, the joint PDF of Qω versus −Qs is very
spread for many hydrodynamic turbulent flows away from walls (see results in Refs. 25 and 46).

Figure 8 shows the joint PDFs of Qω versus −Qs, normalised with the mean enstrophy, for the
four runs of Table I. The dependence on initial conditions is pronounced once more in these plots.
The (Qω, −Qs) invariant map of run R (Fig. 8(a)) is very different to hydrodynamic turbulence
away from walls. Here, the joint PDF is concentrated around the Qω = −Qs line demonstrating
stronger correlation between these two variables. This result in conjunction with the outcome from
Fig. 6 confirms many visualisations of homogeneous MHD turbulent flows,35 which illustrate large
population of sheetlike rather than tubelike structures.

The shape of the joint PDF (Qω, −Qs) for run I is even more extreme with a very narrow
distribution along the main diagonal (Fig. 8(b)), where regions of high dissipation are strongly
correlated by high levels of enstrophy particularly for points far from the origin. The high gradients
in this flow can be well approximated by Eq. (23) where Qω = −Qs = 1

4 [(∂yux )2 + (∂yuz)2]. Ac-
cording to Cantwell41 the presence or absence of points very far from the origin, associated with
quite long-lived structures, is closely related to the regularity of the initial conditions. He further
mentions that such structures are much less prominent in a flow with randomised initial conditions.
Here, this is transparent if one compares the run with random initial conditions (Fig. 8(a)) with run I
(Fig. 8(b)). Moreover, it could be argued that the core of the joint PDF (Qω, −Qs) of run I is similar
to the joint PDF obtained in the buffer layer of wall-bounded flows (see results by Refs. 25 and 38).
The (Qω, −Qs) map of run A (Fig. 8(d)) resembles Fig. 8(a) but with weaker correlations between

Downloaded 10 Oct 2013 to 129.199.120.226. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pof.aip.org/about/rights_and_permissions



105106-13 V. Dallas and A. Alexakis Phys. Fluids 25, 105106 (2013)

high dissipation and high enstrophy regions. Finally, the joint PDF of Fig. 8(c), which corresponds
to run C, presents the weakest correlations between Qω and −Qs among the four cases with a weak
trend of alignment along the main diagonal.

D. Flow structures and enstrophy dynamics

Various flow field quantities were viewed interactively using a visualisations software47 to get
an idea of the spatial structures in our flows. In order to substantiate our approach, we present
indicatively plots of iso-contours of the vorticity field in our [0, 2π ]3 periodic boxes at the moment
of maximum dissipation for the four runs of Table I (see Fig. 9). Figure 9 displays iso-contours of
vorticity for |ω| ≥ 3ω′ where ω′ ≡ (|ω|2)1/2. The predominant structures in Fig. 9(a) (run R) are
randomly oriented sheetlike structures in support of our joint PDF analysis. In comparison to the
randomly oriented structures of run R, the TG vortex symmetries become apparent in Figs. 9(b)–9(d)
revealing their preservation in time. Remember that we did not impose any symmetries during the
evolution of our runs. According to the above analysis, the peculiar run I should be prevailed by
quasi two-dimensional sheetlike structures, which are shown in Fig. 9(b). These flat structures are
formed on the insulating faces of the [0, π ]3 boxes and on their mid-planes in the vertical direction,
i.e., z = π /2. The structures of run A (Fig. 9(d)) are also sheetlike but more randomly oriented
in contrast to run I. In the end, run C is a more complicated TG flow as it is demonstrated in
Fig. 9(c) for |ω| ≥ 3ω′. It is generally interesting that runs I and A are mainly dominated by quasi
2D sheetlike structures in contrast to run C.

According to Jiménez et al.,46 in hydrodynamic turbulent flows away from walls, it is qualitative
clear that there is no other way of production of enstrophy other than straining of weak vorticity to
form stronger vortex regions. Then, strain itself is induced by vorticity and the process may become
nonlinear. This mechanism is called self-amplification of velocity derivatives.22, 48

FIG. 9. Vorticity field iso-contours with |ω| ≥ 3ω′ for (a) run R, (b) run I, (c) run C, and (d) run A of Table I.
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In order to have an initial picture of this mechanism and in particular of the formation of the
vorticity fields in our MHD flows, we examine the rate of vortex stretching


 = ω · S · ω

|ω|2 = Rs − RA

Qω

(25)

which is essentially the part of the strain that is aligned with the local vorticity and it is the term that
stretches or compresses the vortex lines in the evolution equation of the enstrophy

dt ( 1
2ω2) = ω · S · ω + νω · �ω + ω · ∇ × ( j × b). (26)

Notice that 
 can be written as a function of the invariants RA, Rs, and Qω (see Eq. (25)).
Figure 10 shows joint PDFs of essentially the enstrophy (i.e., Qω) with the rate of vortex

stretching 
 appropriately normalised for all the flows of Table I. Various common features can
be observed in Fig. 10. To be more specific, the highest values of enstrophy are associated with
positive but low values of 
, i.e., stretching of vorticity, whereas high rates of stretching as well
as compression correlate with regions of low Qω. So, there is little evidence of self-stretching
by structures in the flow which have large enstrophy in analogy to hydrodynamic turbulence.39, 46

Another common feature in all the plots of Fig. 10 is the tilt towards positive values, i.e., vorticity
vectors are being more stretched than compressed.

On the other hand, quantitative differences are evident, such as the asymmetry of the (
, Qω)
joint PDFs, which seems to be different for each flow. In other words, the joint PDF of run C
(Fig. 10(c)) is shifted more towards 
 > 0 values, akin to hydrodynamic turbulence (see results in
Refs. 39 and 46), in comparison to run A (Fig. 10(d)) which is closer to the joint PDF of run R
(Fig. 10(a)). Another quantitative difference between the four flows is the very high values of

FIG. 10. Joint PDFs of the second invariant of the rotation rate tensor Qω and the vortex stretching rate 
 normalised
appropriately by powers of the mean enstrophy for (a) run R, (b) run I, (c) run C, and (d) run A of Table I.
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enstrophy (Qω � 6〈|ω|2〉) that are obtained in run I (Fig. 10(b)) for values of vortex stretching rate
of the same order for all the flows (i.e., 
 < 0.3〈|ω|2〉1/2).

Another important mechanism for amplification or reduction of enstrophy that exists only in
MHD turbulence is that due to the Lorentz force. This process essentially manifests from the last
term of Eq. (26), which we write here as

L = ω · ∇ × ( j × b)

|ω|2 , (27)

so that it is comparable with 
 (see Eq. (25)). In order to shed light on the dynamics of this term
with respect to the enstrophy, we consider in Fig. 11 the joint PDFs between L and Qω, normalised
appropriately, for the four runs of Table I.

It is characteristic for all the plots of Fig. 11 that there is a preference for L > 0 for most of the
local topology in the flow. It is also common in all the four cases that the highest values of Qω are
associated with regions of low but positive L, whereas high values of |L| are related to regions of
low enstrophy in a similar fashion to the self-amplification mechanism. Once more, the quantitative
differences between the plots of Fig. 11 are evident with the most notable being the joint PDF of run
I (Fig. 11(b)) with the highest values of Qω in terms of L.

A comparison between the two mechanisms of amplification and reduction of enstrophy reveals
the cause of high and low enstrophy regions. For the MHD flow with random initial conditions, L is
more correlated with regions of higher enstrophy than 
 but the opposite is true for the TG flows.
On the other hand, the lowest enstrophy regions present correlations with higher absolute values of
L than 
 for all the runs.

FIG. 11. Joint PDFs of the second invariant of the rotation rate tensor Qω and L normalised appropriately by powers of the
mean enstrophy for (a) run R, (b) run I, (c) run C, and (d) run A of Table I.
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VI. INVARIANTS OF THE MAGNETIC FIELD GRADIENT, THE MAGNETIC STRAIN RATE
AND THE CURRENT DENSITY RATE TENSORS

In this section, we try to classify the topology related to the magnetic field by extending the
above joint PDF analysis for the invariants of magnetic field gradient tensor as well as for the
invariants of its symmetric and skew-symmetric components.

A. Joint PDFs of the magnetic field gradient invariants

The magnetic field gradient X = ∇b can be also decomposed into its symmetric and skew-
symmetric components

X = K + J = Kαβ − 1
2εαβγ jγ , (28)

where K = 1
2 (∇b + ∇bT ) and J = 1

2 (∇b − ∇bT ) are the magnetic strain rate and current density
rate tensors, respectively. The skew-symmetric part of X is related to the electric current through
Ampere’s law ∇ × b = μ0 j where μ0 = (κσ )−1 is the permeability of free-space and σ is the
electrical conductivity. When the magnetic field lines are bended, current is produced providing a
Lorentz force that inhibits the bending of the field lines. On the other hand, the symmetric part of X
characterises the force-free regions in the magnetic field, where j = 0 and therefore j × b = 0. An
important relation one can easily derive by taking the divergence of Eq. (1) and using the fact that
our fields u and b are solenoidal is the following Poisson equation:

∇2 P = ∇ · [(u × ω) + ( j × b)]

= (�2
αβ − S2

αβ) + (K 2
αβ − J 2

αβ). (29)

What is interesting in this expression is the interchange between the symmetric and skew-symmetric
tensors of ∇u and ∇b related to ∇2 P . It is also appealing that the viscous dissipation is related to
the symmetric part of the velocity gradient, whereas the Ohmic dissipation to the skew-symmetric
part of the magnetic field gradient.

Now, we consider the joint PDF of the second and third invariants of X, which are defined
according to Eqs. (13) and (14) as follows:

Q X = 1
4 [ j2 − 2tr (K 2)], (30)

RX = − 1
3 [tr (K 3) + 3

4 jα jβ Kαβ]. (31)

For the classification of the magnetic field structures, the DX = 27
4 R2

X + Q3
X = 0 line was included

in the plots of Fig. 12. The topological classification emerging from the joint PDFs of RX and
QX can be interpreted in analogy to the invariant map of the velocity gradient (Fig. 2). Note,
however, that the individual terms of the third invariant in Eq. (31) do not appear in any evolution
equation. Thus, RX does not have a physical meaning here but it is mathematically important for the
classification of the magnetic field structures, in terms of the eigenvalues of Xαβ associated with these
structures.

In contrast to the invariants of the velocity gradient, the (RX, QX) invariant map does not
show a particular tendency towards any quadrant (see Fig. 12). For all the runs the core shape
of the joint PDF is symmetric along the RX = 0 axes, meaning that there is a balance between
stable and unstable structures. The small scales, on the other hand, are slightly different espe-
cially for run I (Fig. 12(b)) and run C (Fig. 12(c)). Moreover, the joint PDF for runs C and A

Downloaded 10 Oct 2013 to 129.199.120.226. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pof.aip.org/about/rights_and_permissions



105106-17 V. Dallas and A. Alexakis Phys. Fluids 25, 105106 (2013)

FIG. 12. Joint PDFs of the second invariant QX and the third invariant RX of the magnetic field gradient tensor normalised
appropriately by powers of the mean squared current density for (a) run R, (b) run I, (c) run C, and (d) run A of Table I. The
line DX = 27

4 R2
X + Q3

X = 0 is plotted for reference.

(see Figs. 12(c) and 12(d), respectively) diminish towards the origin of the axes. In general, one
could claim that this symmetric shape seems to be a general characteristic for the magnetic field
gradient for all initial conditions with some small deviations, which might be due to the TG vortex
symmetries.

B. Joint PDFs of the magnetic strain rate invariants

Looking at the joint PDFs of the second and third invariants of K we can study the geometry
of the local magnetic straining. The invariants of the magnetic strain rate tensor can be obtained by
setting j = 0 in Eqs. (30) and (31), which reduce to

QK = − 1
2 tr (K 2) (32)

and

RK = − 1
3 tr (K 3), (33)

where QK is negative definite due to the symmetric nature of K. Note that QK is not directly related
to Ohmic dissipation in contrast to the Qs for viscous dissipation. Then, the physical interpretation
of the (RK,QK) invariant map is quite different from Fig. 4 but similar in terms of flow topology. So,
very low values of QK in Fig. 13 can be physically interpreted as regions of high magnetic-strain
or regions where the Lorentz force is small. The third invariant RK can be written as the product of
the eigenvalues of Kαβ in analogy to Rs (see Eq. (21)). Then, the interpretation of RK in terms of
sheetlike and tubelike structures is also determined by sgn(RK ) = sgn(λ2).
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FIG. 13. Joint PDFs of the second invariant QK and the third invariant RK of the magnetic strain rate tensor normalised
appropriately by powers of the mean squared current density for (a) run R, (b) run I, (c) run C, and (d) run A of Table I. The
line DK = 27

4 R2
K + Q3

K = 0 is plotted for reference.

The joint PDFs between RK and QK, representing the local topology of the structures related to
magnetic strain rate, appear to be symmetric along the RK = 0 axis for most of the runs of Table I
(see Fig. 13). In detail, the joint PDF of run R (Fig. 13(a)) illustrates an equipartition between tube-
like and sheetlike structures associated with K. The shapes of the (RK, QK) invariant map for runs
I and A (see Figs. 13(b) and 13(d), respectively) are also symmetric and they can be well approxi-
mated by a magnetic field gradient of the form of Eq. (23) with QK = − 1

4 [(∂ybx )2 + (∂ybz)2] and
RK = 0. In Fig. 13(b) there are very low values of QK correlated with RK = 0 in comparison to the
rest of the flows. Therefore, this approximation for X is especially valid for the small scale structures
that correspond to low values of QK in this joint PDF. Figure 13(c) (run C), on the other hand, is
slightly asymmetric, showing a tangible inclination of the joint PDF towards RK < 0. This implies
that there is a preference for the intermediate eigenvalue of Kαβ to be negative and hence a tendency
for tubelike structures.

Now, we attempt to provide an outline of the joint PDFs of Fig. 13 by tabulating the mean
eigenvalues of the magnetic strain rate tensor (see Table III) and by plotting the analogous expression
to Eq. (22) for RK and QK using the mean eigenvalues of Table III (see Fig. 14). The values of the
mean eigenvalue ratios tell us that on average runs I and C are described by quasi two-dimensional
structures in agreement with the joint PDF analysis. Moreover, the values 1:0:−1 that we obtain for
run R agree with the argument that the joint PDF of Fig. 13(a) is symmetric but also express that in
an average sense the flow topology is locally invariant in one direction. The only case that deviates
from two-dimensionality is run C, which is on average characterised by biaxial contraction (i.e.,
〈λ2〉 < 0) and thereby tubelike structures.

Downloaded 10 Oct 2013 to 129.199.120.226. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pof.aip.org/about/rights_and_permissions



105106-19 V. Dallas and A. Alexakis Phys. Fluids 25, 105106 (2013)

TABLE III. Mean eigenvalues of the magnetic strain rate tensor Kαβ and
their ratios.

Run 〈λ1〉 〈λ2〉 〈λ3〉 〈λ1〉: 〈λ2〉: 〈λ3〉

R 0.26 0.00 −0.26 1 : 0 : −1
I 0.44 0.00 −0.44 1 : 0 : −1
C 0.35 − 0.02 −0.33 18 : −1 : −17
A 0.44 0.00 −0.44 1 : 0 : −1

C. Joint PDFs of the second invariants of the magnetic strain
and current density tensors

The skew-symmetric part of the magnetic field gradient tensor, J has only one invariant in
analogy to the rotation rate tensor �. This can be obtained by letting K to be zero in Eqs. (30) and (31),
then

Q j = − 1
2 tr ( J2) = 1

4 j2, (34)

which is also related to the second invariants of X and K through Qj = QX − QK.
The (Qj, −QK) invariant map describes the relative importance between the straining and

rotational parts of the magnetic field gradient in analogy to (Qω, −Qs) map for the velocity gradient
(see Fig. 7). However, the important difference in this case is that the rotational part of X is directly
related to Ohmic dissipation and not the straining part. Hence, the points of the joint PDFs close to
the Qj axis that are nearly in solid-body rotation are regions in the flow of strong Ohmic dissipation
and negligible magnetic straining in contrast to the picture we get from Fig. 7. On the other side,
points adjacent to the −QK axis express nearly pure magnetic straining motions in regions of where
the current is negligible and thereby Lorentz force is suppressed.

The joint PDFs of Fig. 15 show that points near the axes are rare in MHD turbulent flows and
are related only to the large scales of the flows, where Qj and −QK are small in comparison to
〈| j |2〉. Most of the points in the plots of Fig. 15 lie near the main diagonal, in agreement with the
fact that Ohmic dissipation occurs in current sheets. Here, the magnetic field gradient tensor can be
well approximated by the form of Eq. (23), which gives Q j = −QK = 1

4 [(∂ybx )2 + (∂ybz)2]. This is
particularly a good approximation for runs I and A (see Figs. 15(b) and 15(d), respectively), where
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FIG. 15. Joint PDFs of the second invariants of magnetic strain rate and current density rate tensors normalised by the mean
squared current density for (a) run R, (b) run I, (c) run C, and (d) run A of Table I.

Qj and −QK are strongly correlated for all scales. It can also be argued that this approximation is also
valid for the small scales of runs R and C (see Figs. 15(a) and 15(c), respectively) that correspond
to high values of Qj and −QK.

D. Structures in the current density field

To further validate our joint PDF approach, we present indicatively iso-contours of current
density (Fig. 16) in our [0, 2π ]3 periodic boxes at the moment of maximum dissipation for all the
runs that we have considered (see Table I). All the visualisations of Fig. 16 display current density
iso-contours with |j| ≥ 6j′ where j ′ ≡ (| j |2)1/2. The field of current density for run R (Fig. 16(a))
is composed by randomly oriented sheetlike structures which seem to be extremely thin, supporting
the fact that the values of the mean eigenvalue ratios for the magnetic strain rate tensor are 1: 0: −1.
It is clear that locally quasi two-dimensional structures are the dominant structures in Figs. 16(b) and
16(d) (runs I and A, respectively), validating the joint PDFs of (RK, QK). These 2D current sheets are
also the structures where most of the Ohmic dissipation occurs. For run I these dominant structures
are formed at the faces of the [0, π ]3 boxes, whereas for run A these are randomly oriented. On the
other hand, run C (Fig. 16(c)) seems to be dominated by tubelike structures but one can also observe
the coexistence of isolated thin current sheets in agreement to our analysis. Finally, the TG vortex
symmetries are clearly depicted in these visualisations with each TG flow having different degree of
randomness. This raises again questions as to what degree these symmetries restrict the dynamics
of the flows.

Here, we would like to emphasise that the structures related to the magnetic field gradient have
different characteristics than those related to the velocity gradient. This might well be a reason that
the energy spectra that we obtain, as well as other studies, for the kinetic and magnetic energy
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FIG. 16. Current density field iso-contours with |j| ≥ 6j′ for (a) run R, (b) run I, (c) run C, and (d) run A of Table I.

(not shown here) seem to obey different power laws. Moreover, there is evidence that the quasi
two-dimensional organised structures that appear in run I are responsible for the k−2 scaling that we
observe in the total energy spectra in Fig. 1(b) (see Ref. 49).

VII. CONCLUSIONS

The universality of the energy spectrum in MHD turbulence is in doubt by various studies.
One aspect is the manifestation of different, dubious scaling exponents. In order to avoid ambiguity
between scaling exponents, we explore various statistics based on the invariants of the velocity
gradient and related tensors. Note that for a big family of hydrodynamic turbulent flows, the joint
PDF of the invariants of the velocity gradient is generally considered to be universal. We further
extend this analysis to the invariants of gradient statistics related to the magnetic field. In particular,
we explore DNS data of decaying MHD turbulence with random initial conditions as well as a set
of three different Taylor-Green type initial conditions without imposing any symmetry constrains
in our flows during their evolution. The TG flows were chosen to be examined since recently, Lee
et al.18 reported that the scaling of the energy spectrum at the peak of dissipation depends on the
initial conditions.

Our study attempts to classify the structures of our MHD flows. The structures related to the
strain rate tensor are predominantly sheetlike structures (i.e., 〈λ2〉 > 0) for all the flows apart from
run I (see Fig. 6), which is quasi two-dimensional (i.e., 〈λ2〉 � 0). The biaxial stretching for our
MHD flows is different in comparison to hydrodynamic turbulence, namely 〈λ1〉: 〈λ2〉: 〈λ3〉 = 3: 1:
−4 (see Table II). Furthermore, the enstrophy dominated regions are well correlated with regions of
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high viscous dissipation in contrast to hydrodynamic flows. We also find that viscous dissipation is
an intrinsic element of vortex sheets.

On the other side, magnetic field consists of quasi two-dimensional structures, i.e., 〈λ2〉 = 0,
for all the cases apart from run C, which is on average dominated by tubelike structures, i.e., 〈λ2〉
< 0 (see Table III). The correlation between magnetic strain dominated regions and regions of
high Ohmic dissipation is generally stronger than the correlation between enstrophy and viscous
dissipation. We also corroborate that Ohmic dissipation resides in current sheets, which are thinner
than the vortex sheets in the same flow. Visualisations support further our joint PDFs analysis of the
invariants.

The present results demonstrate that at the examined Reynolds numbers small scales depend on
the initial conditions in decaying MHD turbulence. This is illustrated through the joint PDF of RA

with QA (see Fig. 3), which has a universal teardrop shape for hydrodynamic turbulence away from
walls. Lack of small scale universality in decaying MHD turbulence will have important implications
in modelling. Large-eddy simulation models are based on the assumption of small scale universality
(i.e., although large scales may be dependent on boundary conditions or initial conditions, smaller
scales are less flow dependent and more amenable to modelling). Therefore, if MHD turbulence
is non-universal or if different classes of universality exist, then the construction of sub-grid scale
models needs to be revisited.

However, there are various issues regarding the examined flows that one has to address before
claiming that small-scale universality is absent. One such issue is whether the attained values of
the Reynolds number are sufficiently large for universality to manifest itself. As mentioned in the
introduction, MHD is more non-local than hydrodynamic turbulence and higher values of Reynolds
numbers are in general needed to reach the asymptotic regime. Another point is that the time for
the flow to reach the peak of dissipation might not be long enough for universality to establish
itself. In the presented runs, however, not much difference has been observed in the duration of
the high resolution runs. A third element is the self-preservation of TG vortex symmetries during
the evolution of the flow, which seem to be a strong property of the MHD equations. To verify the
presence of different universality classes one needs to also demonstrate that the initial conditions,
which fall in a class, form a finite set (i.e., a small deviation from them remains in the same class).
Therefore, natural questions that emerge are: What happens if we perturb the TG flows in order to
break these symmetries before the peak of dissipation? Will the joint PDFs converge to a single
shape or/and the scaling of the energy spectra to a single value? What is the role of the symmetries
imposed by the initial conditions in terms of the dynamics? Do we have classes of universality for
these moderate Reynolds numbers or is there a universal power law in the high Reynolds number
limit? We plan to address these questions in our future work.
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