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Origins of the k−2 spectrum in decaying Taylor-Green magnetohydrodynamic turbulent flows
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We investigate the origins of k−2 spectrum in a decaying Taylor-Green magnetohydrodynamic flow with
zero large scale magnetic flux that was reported by Lee et al. [Phys. Rev. E 81, 016318 (2010)]. So far, a
possible candidate for this scaling exponent has been the weak turbulence phenomenology. From our numerical
simulations, we observe that current sheets in the magnetic Taylor-Green flow are formed in regions of magnetic
discontinuities. Based on this observation and by studying the influence of the current sheets on the energy
spectrum, using a filtering technique, we argue that the discontinuities are responsible for the −2 power law
scaling of the energy spectra of this flow.
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I. INTRODUCTION

In magnetohydrodynamic (MHD) turbulence there are sev-
eral phenomenological theories [1–3] competing as possible
candidates for the interpretation of the power law exponent of
the energy spectrum. Moreover, numerical simulations to date
are unable to provide a definitive answer to this scaling. This
has many implications; for example, the energy dissipation
rate, which is required to predict heating rates in solar and
space physics [4], is connected to the slope of the energy
spectrum.

In freely decaying isotropic MHD turbulence, some simu-
lations obtained k−3/2 while others k−5/3 scaling for the energy
spectra [5,6]. Observations from astrophysical plasmas have
shown that this difference in the power law scaling also exists
for the measured energy spectra of the solar wind [7]. Recently,
large resolution simulations by Lee et al. [8] demonstrated k−2,
k−5/3, and k−3/2 total energy spectrum scalings for different
initial conditions of the magnetic field. Hence, they showed
dependence of the energy spectrum at the peak of dissipation
on the initial conditions and consequently they suggested
lack of universality in decaying MHD turbulent flows. The
difference between −5/3 and −3/2 power laws is subtle
enough (10% difference) that an inertial range of an order of
magnitude is not enough to make a clear distinction between
them. However, a −2 scaling exponent can be more transparent
at least in such high enough Reynolds numbers. Indications of
k−2 scaling are also reported for the magnetic energy spectrum
measured in the magnetosphere of Jupiter [9].

At the time Lee et al. [8] interpreted the k−2 spectrum
in terms of weak turbulence (WT) theory that predicts
this exponent for weakly interacting waves in the presence
of strong uniform magnetic field. Here, we would like to
emphasize that the WT scaling is for an anisotropic energy
spectrum E(k‖,k⊥) ∝ f (k‖)k−2

⊥ [10,11], where the indices ‖
and ⊥ indicate the direction parallel and perpendicular to an
imposed large-scale mean magnetic field B0, respectively. In
the simulations of Ref. [8], no large-scale magnetic field was
applied but large-scale magnetic structures were formed that
were assumed to play the role of B0 locally. In this paper,
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we investigate the origins of the k−2 spectrum through direct
numerical simulations (DNS) by reconsidering the insulating
magnetic Taylor-Green (TG) initial condition used in Ref. [8].

The paper is organized as follows. All the necessary details
on our DNS of decaying MHD turbulent flows are provided
in Sec. II. Section III focuses on the scaling of the energy
spectra of our flows and provides an outline of the WT
phenomenology. In particular, we focus on the justification
of the k−2 scaling for the spectrum of the magnetic energy
Eb. Based on clear indications from our DNS, that regions of
high shear with abrupt changes in the direction of the magnetic
field occur in the flow, we show that the −2 power law can be
derived analytically without WT assumptions (see Sec. III A).
To further support our argument, in Sec. IV we employ a
filtering technique to assess if the k−2 scaling originates from
these strong shearing regions that manifest as discontinuities
in the magnetic field or not. Finally, in Sec. V we conclude by
summarizing our findings.

II. NUMERICAL SIMULATIONS

A. Governing equations and numerical method

In this study, we deal with the three-dimensional, incom-
pressible MHD equations of fluid velocity u and magnetic field
b:

∂t u = (u × ω) − ∇P + ν�u + ( j × b), (1)

∂t b = ∇ × (u × b) + κ�b, (2)

∇ · u = ∇ · b = 0, (3)

with ν the kinematic viscosity, κ the magnetic diffusivity,
ω ≡ ∇ × u the vorticity, j ≡ ∇ × b the current density of
the magnetic field, and P = p/ρ + 1

2 u2 the fluid pressure,
composed by the ratio of plasma pressure p with the con-
stant mass density ρ and the hydrodynamic pressure 1

2 u2.
The magnetic induction can be defined through a magnetic
potential a as b ≡ ∇ × a with ∇ · a = 0. Note that magnetic
induction has units of Alfvén velocity, i.e., b/

√
ρμ0, where

μ0 = (κσ )−1 is the permeability of free space with σ the
electrical conductivity. For ν = κ = 0, the total energy Et ≡
1
2 〈|u|2 + |b|2〉 = Eu + Eb, the magnetic helicity Hb ≡ 〈u · b〉,
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and the cross helicity Hc ≡ 〈a · b〉 are conserved in time,
where the angle brackets 〈.〉 in this study denote spatial
averages.

To numerically solve Eqs. (1)–(3) we employ the standard
pseudospectral method [12], where each component of u and
b is represented as truncated Galerkin expansions in terms of
the Fourier basis. The nonlinear terms are initially computed
in physical space and then transformed to spectral space using
fast-Fourier transforms [13]. Aliasing errors are removed using
the 2/3 dealiasing rule, i.e., the maximum wavenumber is
kmax = N/3, where N is the number of grid points in each
Cartesian coordinate of our periodic box with period 2π . The
nonlinear terms along with the pressure term are computed
in such a way that u and b are projected on to a divergence-
free space so that Eqs. (3) are satisfied [14]. The temporal
integration of Eqs. (1) and (2) is performed using a second-
order Runge-Kutta method. The code is parallelized using a
hybrid parallelization (MPI-OpenMP) scheme [15].

B. Initial conditions and numerical parameters

Based on the results of Ref. [8], we choose the initial
velocity field to be the Taylor-Green vortex [16] defined as

uT G(x) = u0(sin x cos y cos z, − cos x sin y cos z,0) (4)

and the initial magnetic field to be a modification of the
TG vortex, i.e., bT G = −(b0/u0)∇ × uT G, which takes the
following form:

bT G(x) = b0

⎛
⎜⎝

cos x sin y sin z

sin x cos y sin z

−2 sin x sin y cos z

⎞
⎟⎠

T

. (5)

The current density j I is everywhere parallel to the faces of the
sub-boxes [0,π ]3, called the impermeable boxes [17], and thus
considered as electrical insulators. Note that the magnetic and
cross helicity are globally restricted due to the TG symmetries
to vanish for all times.

This magnetic TG flow exhibits several intrinsic sym-
metries within the periodic box of size [0,2π ]3 (see also
Ref. [17]). These are mirror (anti)symmetries about the planes
x = 0, x = π , y = 0, y = π , z = 0, and z = π as well
as rotational (anti)symmetries of angle Nπ about the axes
(x,y,z) = (π

2 ,y, π
2 ) and (x,π

2 , π
2 ) and of angle Nπ/2 about the

axis (π
2 , π

2 ,z) for N ∈ Z. The above-mentioned planes that
possess mirror symmetries form the insulating faces of the
impermeable boxes.

Note that Lee et al. [8] enforced numerically these symme-
tries in order to gain substantial savings in both computing
time and memory usage at a given Reynolds number. In
contrast, our DNS of the magnetic TG flow was performed
without imposing any symmetry constraints, allowing thus the
turbulence to evolve freely. As it was observed in Ref. [18],
where no symmetries where also imposed for the MHD TG
flows, even for their highest Taylor microscale Reynolds
number simulations [∼O(102)], the TG vortex symmetries
did not break within the time interval of reaching the peak of
dissipation. This indicates that these symmetries are a strong

TABLE I. Numerical parameters of the DNS. The values pre-
sented are taken at the peak of total dissipation. Note that kmax = N/3,
using the 2/3 dealiasing rule.

Run N Re Reλt Lt λt ηt u′ b′ kmaxηt

(×10−1) (×10−1) (×10−3)

TG 1024 1111 121.8 6.84 2.03 6.54 0.27 0.62 2.23
R 1024 1250 164.7 7.95 1.83 6.18 0.36 0.49 2.11

property of the MHD equations, preserved by time evolution
of the solutions (see also Ref. [19]).

For comparison to the MHD TG flow, which carries
special global restrictions due to the TG symmetries, we
further consider a run with random initial conditions (run “R”
hereafter). In order to obtain the broadest inertial range, run R
is initialized by exciting wavenumbers with |k| = 1 and 2 with
random phases. At t = 0, we ensure Hb = Hc = 0 as well as
kinetic helicity Hu ≡ 〈u · ω〉 = 0. During the time evolution
magnetic and cross helicity remain zero for all times relative
to the total energy. However, the kinetic helicity reaches an
approximate value of Hu�/Et < 0.2 at its absolute maximum
over time but when dissipation is maximum Hu�/Et < 0.04
and hence negligible.

In the simulations we used unit magnetic Prandtl number
(ν = κ) and a grid of N = 10243 points. At time t = 0,
the fields are normalized such that Eu = Eb = 0.125, i.e.,
the kinetic and magnetic energies are in equipartition. The
Reynolds number, which is our input parameter, is defined
based on the velocity rms value at t = 0 and the smallest
wavenumber kL = 1 in the box, i.e., Re = u/νkL. All the
necessary numerical parameters of our DNS are provided in
Table I.

The total, kinetic, and magnetic integral length scales are
defined, respectively, as

Lt,u,b ≡ 3π

4

∫
k−1Et,u,b(k)dk∫

Et,u,b(k)dk
(6)

and similarly applies for the Taylor scales

λt,u,b ≡
(

5

∫
Et,u,b(k)dk∫

k2Et,u,b(k)dk

)1/2

. (7)

In Table I, we report the Lt and λt as well as the Reynolds
number based on the total Taylor length scale given by Reλt

≡
u′λt/ν, with ν the kinematic viscosity and u′ the rms velocity,
which is defined as

u′ ≡
[

2

3

∫
Eu(k)dk

]1/2

(8)

and similarly the rms magnetic field b′. Finally, the smallest
length scale in our flows is defined based on K41 scaling
ηt ≡ (ν3/εt )1/4, where εt = ν〈|ω|2〉 + κ〈| j |2〉 is the total
dissipation. The time we address in our analysis is the moment
of maximum dissipation, when the highest scale separation
occurs ηt � � � Lt , where � is a typical length scale in the
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FIG. 1. (Color online) Three-dimensional compensated (a) mag-
netic kpEb(k) and (b) kinetic kpEu(k) energy spectra with scaling
exponents p = 2, 5/3, 3/2 for run TG.

inertial range. Thus, the values provided in Table I correspond
to that moment unless stated otherwise.

III. SCALING OF THE ENERGY SPECTRA

Figure 1 presents the three-dimensional compensated mag-
netic and kinetic energy spectra that we obtain for run TG
at the peak of dissipation. The spectra are compensated with
the exponents p = 2, 5/3, and 3/2. These are in summary
the power law scaling exponents obtained in the various
MHD turbulence phenomenologies based on weak and strong
turbulence arguments both for isotropic and anisotropic fields
[1–3,10,11]. Following Pouquet et al. [20], the spectra for run
TG are averaged between adjacent shells in order to get rid of
the even-odd oscillations due to the specific structure of the TG
configuration and obtain less biased plateaus in our spectra.

According to the simulations by Lee et al. [8], the total
energy spectrum at the peak of dissipation for the insulating
magnetic TG initial condition [Eqs. (4) and (5)] scales as
Et (k) ∝ k−2. The same scaling was also confirmed by our
runs [18] for the same initial conditions but without enforcing
the TG symmetries. Looking at the spectra of the kinetic and
magnetic energy individually, we observe that they exhibit
different scalings exponents as previous works have also
shown [7,21]. In detail, Fig. 1(a) shows the compensated
magnetic energy spectrum for run TG, which scales very
well like Eb ∝ k−2 for a decade of wavenumbers. These
compensated spectra are clearly steeper for the −5/3 and
−3/2 power laws, which can be excluded as possible fits

to this spectrum. The compensated kinetic energy spectrum
of run TG [see Fig. 1(b)] is clearly steeper than the k−5/3

spectrum and possibly even steeper than the k−2 spectrum.
However, we observe that the slope kpEu does not seem to
be monotonic with two different peaks appearing, one at large
and one at smaller wavenumbers. Thus, we do not have a clean
power law behavior for the energy spectrum at this Reynolds
number. We denote that in run TG the total energy spectrum
is dominated by Eb, since Eb > Eu as one can also observe
from Fig. 1. Thus, when plotting the total energy spectra of
the TG flow it is the k−2 behavior of the magnetic field that is
observed.

This scaling is in agreement with WT theory of Alfvén
waves in the presence of a strong large scale magnetic field B0.
In this case, the sweeping effect of Alfvén waves propagation
becomes important. Hence,

τA/τnl � 1, (9)

where τA ∝ �‖/B0 is the timescale associated with the propa-
gation of Alfvén waves along the magnetic field lines of B0 and
τnl ∝ �⊥/u� is the nonlinear timescale related to the transfer
of energy from an eddy of characteristic lengthscale and
velocity to smaller eddies. If Eq. (9) is valid, then turbulence
is weak [22], meaning that the nonlinear energy transfer is
delayed and thus the scaling of dissipation in the inertial range
at high enough Reynolds numbers is taking the following form:

ε ∝ u2
�

τnl

(
τA

τnl

)
. (10)

Then, from Eq. (10) follows that the anisotropic weak
turbulence energy spectrum is E(k‖,k⊥) ∝ f (k‖)k−2

⊥ [10,11],
whereas the Iroshnikov-Kraichnan spectrum is E(k) ∝ k−3/2

[23,24] assuming isotropy (i.e., �⊥ ∼ �‖ ∼ �).
Even though no external magnetic field was imposed in the

present simulations, these particular initial conditions lead to
the formation of large-scale magnetic structures with the total
magnetic energy growing significantly larger than the kinetic
energy, i.e., Eb � 4Eu (see also the rms values of u′ and b′ in
Table I, at the peak of dissipation). Hence, for scales smaller
than the integral scale L it is assumed that the large-scale
magnetic field BL can be approximated as a quasiuniform field
for which Eq. (9) applies and leads to the weak turbulence
spectrum observed in the simulations. It is thus tempting to
interpret the k−2 spectrum in terms of weak turbulence theory.

Although a strong magnetic field is a necessary condition
for weak turbulence to occur, it is not sufficient for the energy
spectrum to exhibit a k−2 power law for various reasons,
other than isotropy. Small-scale variations �⊥ can couple to
large-scale parallel variations �‖, with �⊥/u� ∝ �‖/BL so that
strong turbulence becomes important. In this case, the scaling
of the dissipation rate is not expressed by Eq. (10) but it rather
takes the classical form, i.e., ε ∝ u2

�/τnl [25]. In addition, it was
recently shown by Alexakis [21] that Eq. (9) is not necessarily
valid for MHD turbulence with zero flux large-scale magnetic
fields, even when Eb  Eu. Thus, the weak turbulence scaling
for the energy spectrum was absent from that investigation. As
a result, based on the condition Eb  Eu alone we cannot
a priori decide if turbulence falls in the weak or strong
turbulence regime. Therefore, we infer that k−2 scaling for
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run TG could possibly manifest from rather different origins
than weak interactions of Alfvén waves.

Further insight can be obtained by looking at the structures
developed in the TG flow. These structures were analyzed
in Ref. [18] by classifying their local topology. According
to Dallas and Alexakis [18], the dominant structures in run
TG both in the vorticity and current density fields can be
characterized as quasi-2D structures that are formed at the
faces of the [0,π ]3 sub-boxes of the [0,2π ]3 periodic box.
These types of quasi-2D structures were also observed in
the current density field of run R (see Ref. [18]). However,
in this case the current sheets are weaker and randomly
oriented in contrast to the structures of run TG, which are well
organized. Thereafter, we investigate what is the influence of
these quasi-2D current sheetlike structures on the magnetic
energy spectrum.

A. The spectrum of discontinuities

The quasi-2D structures observed in the current density
of run TG are created due to strong shearing, as it was
mentioned in Ref. [18]. This can be obvious when looking
at the individual magnetic field components b = (bx,by,bz) at
the peak of dissipation, which are presented in Fig. 2(a) on the
(x,y,z) faces of the periodic box, respectively. One can easily
notice that strong shear layers exist in the magnetic field with
the white regions corresponding to positive values (outwards
from the box) and the black regions to negative values (inwards
to the box). For clarity, we focus at the top face of the box (i.e.,
plane z = 2π ), which shows the bz component [Fig. 2(b)].
To be more precise, we then plot the variation of bz in the
y direction at x/2π = 0.2, where we obtain a clear-cut high
shearing profile [see Fig. 2(c)], which could be represented by
a Heaviside function H (y). From there one finds that

jx = ∂ybz = δ(y) (11)

from definition, i.e., H (y) ≡ ∫ y

−∞ δ(s) ds, where δ is the Dirac
δ function. The Fourier transform of a δ function in three
dimensions gives

ĵx(k) =
∫ +∞

−∞
δ(y)eikx d3x ∝ δ(kx)δ(kz), (12)

since δ(y) ≡ 1
2π

∫ +∞
−∞ e−iky dk, which is the definition of the δ

function in terms of the Fourier integrals. The integration of
ĵ 2
x (k) over all spherical cells in spectral space is

ĵ 2
x (k) ∝

∫ k+1

k

δ(k′
x)δ(k′

z) d3k′ = 1. (13)

So, the magnetic energy spectrum will then be

Eb(k) = 1

2

k+1∑
k

ĵ 2
x (k′)
k′2 ∝ k−2. (14)

Hence, the k−2 spectrum observed in our run TG is due to
extreme shearing regions that manifest discontinuities in the
magnetic field corresponding to the quasi-2D structures of
the current density. This result is in analogy with Burger’s
turbulence [26], where a k−2 scaling law for the energy
spectrum also emerges due to discontinuities in the velocity
field.
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FIG. 2. (Color online) (a) Contours of the individual components
of the magnetic field (bx,by,bz) at the peak of dissipation plotted on
the corresponding (x,y,z) faces of the periodic box. (b) View of the
bz component on the plane z = 2π . (c) Profile of bz as a function of
y/2π at x/2π = 0.2.

It is well known that current sheets form spontaneously
in MHD turbulence, providing a natural source of discon-
tinuities [27]. It is interesting that magnetic discontinuities
have been recently observed in the solar wind [28] and it
is hypothesized that they are generated predominantly by
nonlinear interactions [29].
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TABLE II. Percentage of high-pass filtering of the current density
field.

jcut/ jmax (%) j 2
kept/ j 2

total (%) Vkept/Vtotal (%)

Runs TG and R Run TG Run R Run TG Run R

0 100 100 100 100
5 92 82 8 20
10 88 63 6 8
20 74 30 3 1
30 51 16 1 0.4

Nevertheless, one has to be careful when relating structures
to spectra. A nice exposition of misleading examples can
be found in Ref. [30]. Therefore, in the next section we try
to strengthen our argument by studying the influence of the
structures on the energy spectrum.

IV. FILTERING

In order to identify the role of the quasi-2D current sheets
on Eb, we would like somehow to isolate these coherent
structures from the background current density and check if
the k−2 spectrum precisely originates from these regions of
strong shear or not. To do this we generate a new field b> by
eliminating the current density at points where | j | < jcut (i.e.,
high-pass filter) with jcut a given threshold. So, we set

j0 =
{

j if | j | � jcut

0 otherwise.
(15)

and we make this field solenoidal by projection, i.e.,

j> = j0 − ∇φ, (16)

where the scalar φ = ∇−2(∇ · j0). Then, the new field j>

is the solenoidal projection of j0 satisfying ∇ · j> = 0.
Ultimately, the filtered magnetic field can be computed as

b> = −∇−2(∇ × j>) (17)

and its energy spectrum E>
b (k) can also be obtained. Note that

the current density of j> is not strictly zero outside the current
sheets that we want to isolate but the above variational analysis
guarantees that the residual −∇φ is minimal by satisfying the
Poisson equation (see also Ref. [31]).

So, we apply this high-pass filter to the current density, at
the peak of dissipation, of run TG but also of run R so that
we highlight the influence of the filtering in each case. The
first column of Table II lists the percentage cutoff in terms of
the maximum current density (jcut/jmax), which is common
for runs TG and R. The second and third columns represent
essentially the percentage of Ohmic dissipation that is kept in
the flow field after the filtering (j 2

kept/j
2
total) for run TG and R,

respectively. Finally, the third and fourth columns show the
volume percentage (Vkept/Vtotal) of the structures related to
j 2

kept for runs TG and R.
According to Table II, for run TG with only 5% cut-off

of jmax, we keep 92% of j 2
total where this is concentrated at

the utmost 8% of the total volume of the box. This 8% of the
volume corresponds to the structures at the faces of the [0,π ]3

sub-boxes where the discontinuities of the magnetic field can
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FIG. 3. (Color online) The PDF of | j |/jmax and the curve of
j 2P (j ) appropriately normalized with jmax for (a) run TG and (b)
run R. Note that jrms/jmax = 0.07 and 0.06, respectively.

be seen in Fig. 2(a). For run R, where current sheets are not so
strong, a 5% cutoff keeps 82% of the total Ohmic dissipation in
the flow, which is associated with structures that occupy 20%
of Vtotal (see Table II). Note that the jrms of the original field is
7% and 6% of the jmax for runs TG and R, respectively. The
different levels of filtering in Table II delineate how diversely
the Ohmic dissipation is distributed within the two flows that
we deal with in this study.

The probability density function (PDF) of | j |/jmax for runs
TG and R are presented in Figs. 3(a) and 3(b), respectively.
In order to indicate where most of the Ohmic dissipation
occurs, we note that 〈| j |2〉 = ∫ +∞

−∞ j 2P (j )dj and we include
in Fig. 3 the curve of j 2P (j ) normalized appropriately with
jmax. Therefore, we see that most of the dissipation in run
R occurs around jrms/jmax = 6% with monotonic drop of the
PDF for larger values [see Fig. 3(b)]. The PDF of run TG is
significantly different with the maximum j 2P (j ) occurring at
much higher values than jrms/jmax = 7% [see dashed line in
Fig. 3(a)], i.e., 20% � | j |/jmax � 40%, indicating that a few
points of the computational box give significant contribution
to the total Ohmic dissipation. It is worth noting that for j>

with jcut/jmax = 5% we keep all these extreme points but we
throw away the left part from the dashed line.

Figure 4 presents the energy spectra E>
b compensated with

kp where p = 2 and 5/3 for runs TG and R, respectively.
Increasing gradually the cut-off threshold of the filtering, we
can observe that the high wavenumber end of the spectrum
E>

b is modified due to sharp filter. It is clearly demonstrated
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FIG. 4. (Color online) The high-pass filtered magnetic energy
spectrum E>

b compensated with k2 at various levels of filtering for
(a) run TG and (b) run R.

in Fig. 4(a) that the original k−2 scaling is not affected by the
filtering in an intermediate range η � � � L. Thus, we deduce
that the −2 power law in run TG can be reconstructed just from
the structures that occupy only 1% of the total volume and
accommodate almost half (�51%) of the Ohmic dissipation
if we consider the extreme case of 30% filtering of jmax. This
outcome supports our argument that Eb ∝ k−2 originates from
the regions of strong magnetic shear with discontinuous profile
(see Fig. 2), where quasi-2D structures are formed. Similarly,
the scaling of the E>

b spectrum of run R [see Fig. 4(b)] does
not deviate from the original k−5/3 in an intermediate range
η � � � L, even if we cut off 30% of jmax and we are left
with the structures that hold only 0.4% of Vtotal to which
attribute the 16% of j 2

total. This result is in analogy to studies
in hydrodynamic turbulence using several eduction techniques
such as the Karhunen-Loéve decomposition [32], where only
a few modes are necessary to reconstruct various statistics of
the turbulent flows.

One could still argue that weak Alfvén wave interactions,
emanating away from the regions where discontinuities appear
in the magnetic field, could potentially contribute to the
formation of the −2 power law in the Eb spectrum. To
counteract on this argument, we also filter out the current
density field at points where | j | > jcut (i.e., low-pass filter).
We then compute j< as well as its spectrum E<

b (k), where the
quasi-2D current sheets from the strong shearing regions are
truncated, so that we scrutinize if the k−2 scaling remains in
an intermediate range of scales. Here, we should mention that
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FIG. 5. (Color online) The low-pass-filtered magnetic energy
spectrum E<

b compensated with k5/3 at various levels of filtering
for (a) run TG and (b) run R.

the values of j 2
kept/j

2
total and Vkept/Vtotal for the low-pass filter

is simply what is left from the high-pass filter if we subtract
the total amounts accordingly (see Table II).

So, with reference to Table II and Fig. 5(a), we deduce
that for jcut/jmax = 5%, where we keep only 8% of j 2

total
but almost the whole volume (i.e., 92% of Vtotal) occupied
by the remaining structures in the field, the compensated
spectrum E<

b is not even nearly to a k−2 spectrum. This
clearly demonstrates that the −2 power law is due to the
strong current sheets that occupy only the 8% of the volume of
the computational box and concentrate the 92% of the Ohmic
dissipation of the flow [see Table II and Fig. 4(a)]. Of course, as
we increase the cut-off threshold, elements from the high-shear
regions are involved and therefore we slowly start to recover
the original spectrum. On the other side, the scaling of E<

b for
run R does not go that far from the original k−5/3 spectrum,
which is recovered much faster than for run TG as we increase
jcut/jmax [see Fig. 5(b)].

V. CONCLUSIONS

In the presence of a strong mean magnetic field, it is
assumed that τA � τnl and according to weak turbulence
theory an anisotropic energy spectrum scales as k−2

⊥ . A paper
by Lee et al. [8] obtained k−2, k−5/3, and k−3/2 scalings
for different initial conditions of the magnetic field, showing
dependence of the energy spectrum at the peak of dissipation
on the initial conditions. It has been hypothesized in Ref. [8]
that weak turbulence phenomenology is a possible candidate
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to explain the k−2 scaling in their total energy spectrum.
However, their DNS have zero flux and their flows are fully
nonlinear composed by quasi-2D vortex and current sheets
[18].

In this paper, we adopt the insulating magnetic TG initial
condition from Ref. [8] without enforcing the TG symmetries
and we also obtain a clear −2 power law for the total energy
spectrum (see also Ref. [18]). We further observe that this
law for the total energy emerges due to the scaling of the
magnetic energy spectrum, since Eb > Ev at the peak of
dissipation. Then, looking in more detail at the magnetic field
of our DNS, we observe that the quasi-2D current sheets are
created in regions of strong shear, where the magnetic field
changes direction abruptly and therefore forms discontinues
profiles. Using this result, we are able to derive analytically
the spectrum of discontinuities in the magnetic field, which
entails a k−2 scaling, demonstrating the origin of this scaling
exponent from the numerical simulations.

To strengthen our claim, we study the effect of the quasi-2D
current sheets on the Eb spectra by isolating and eliminating
the regions with strong shear in the current density field from
the rest of the flow using a filtering technique. From there, we
can clearly observe that the −2 power law actually emerges
due to the regions that manifest discontinuities in the magnetic
field and not due to any other turbulent effects.

The presence of a clear k−2 spectrum due to the strong
current sheets implies lack of universality in decaying MHD

turbulence. However, an important point regarding the TG
flows, that has to be addressed before claiming nonuniversality,
is the role of the TG symmetries imposed by the initial
conditions and their self-preservation in time evolution of the
flow. In other words, are these discontinuities formed due to
TG symmetries or are there more random cases where a −2
spectrum emerges due to discontinuities? What happens if
we somehow break the TG symmetries before the peak of
dissipation? Will the scaling of the energy spectra converge to
a single value? Do we have classes of universality for these
moderate Reynolds numbers or is there a universal power law
for the high Reynolds number limit? These are questions we
plan to address in our future work.
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