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The fluctuations of turbulence intensity in a pipe flow around the critical Reynolds number is difficult to study
but important because they are related to turbulent-laminar transitions. We here propose a rare-event sampling
method to study such fluctuations in order to measure the time scale of the transition efficiently. The method is
composed of two parts: (i) the measurement of typical fluctuations (the bulk part of an accumulative probability
function) and (ii) the measurement of rare fluctuations (the tail part of the probability function) by employing
dynamics where a feedback control of the Reynolds number is implemented. We apply this method to a chaotic
model of turbulent puffs proposed by Barkley and confirm that the time scale of turbulence decay increases super
exponentially even for high Reynolds numbers up to Re = 2500, where getting enough statistics by brute-force
calculations is difficult. The method uses a simple procedure of changing Reynolds number that can be applied
even to experiments.
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I. INTRODUCTION

In 1883, Reynolds used a dimensionless quantity to char-
acterize pipe flows, the well-known Reynolds number Re [1].
This number, defined from the velocity, density, pipe diameter,
and the viscosity of fluid, determines the pattern of flows: the
flows tend to be laminar when this number is small and tend
to be turbulent when it is large. Reynolds himself believed that
there is a transition value Rec, the so-called critical Reynolds
number, that distinguishes these two patterns of flows. After
his proposition, however, many experiments and numerical
simulations revealed that the problem was more complex than
expected [2–4]. First of all, linear stability analysis shows
that the laminar flows are stable for any Reynolds number
if the perturbation added to the pipe is infinitesimally small.
This means that, in an experiment to observe the transition
without adding any perturbation to the pipe, the transition
Reynolds number depends on background fluctuations, i.e., it
depends on the detailed setting of the experiment. Second, even
with a sufficiently strong perturbation to create tiny patches
of turbulence (e.g., higher vorticity region) known as puffs
[5], these puffs show sudden decaying or splitting into two,
whose time scales are extremely long [3,6,7]. Because of this,
determining the precise value at which the puffs start to sustain
was for a long time an unsolvable task.

A breakthrough came after the detailed studies of puffs
that revealed that the time scales of the splitting and decaying
are stochastically and independently determined [8–12]. As
the Reynolds number increases, the time scale of decaying
(or splitting) increases (or decreases). There is thus a special
Reynolds number, Rec, in which these two time scales become
equal, and below this value the decaying of puffs is dominant,
but above it the splitting of puffs is dominant. In 2011,

more than a century after Reynolds’s proposition, Avila et al.
measured Rec by studying these two time scales of puffs [13]
finding a transition Reynolds number Rec around Re = 2040.
The obstacle of this measurement was that these time scales
became extremely long when Re was close to Rec. Avila et al.
overcame this difficulty by preparing a long (15 m) pipe, but
in their paper, they also stated that they could not observe the
puff decaying and splitting within numerical simulations for
Re ∼ Rec, due to high computational costs.

The study of the turbulent-laminar transition is difficult
around Rec, because the puffs are weakly unstable [14], and
splitting and decaying are observed as rare events. In fact a
superexponential increase of the puff-decaying time scale has
been observed as a function of the Reynolds number [8,9] and
its origin has been discussed using the extreme value statistics
[15–18] and directed percolation models [19,20], but it is still
unclear if this is an effective law observed only around Rec or if
it can be observed beyond. The goal of this paper is to introduce
a sampling method to help this situation by accelerating the
measurement of the puff decaying. For the application of this
method, we use a coupled map lattice model [21] to describe the
puff dynamics that has been proposed by Barkley [22] (below
we call it the Barkley model). However, we stress that our
method can be applied to more realistic systems, including
DNS of Navier-Stokes equation and experiments.

The structure of this paper is as follows. We first discuss the
relation between the puff-decaying time scale and a rare-event
probability (the tail of an accumulative probability function)
in Sec. II. We then introduce the sampling method that uses a
feedback control of the Reynolds number in Sec. III. In Sec. IV,
we demonstrate the application of the method to the Barkley
model, and we show that the superexponential increase of the
puff-decaying time scale is observed up to Re = 2500. Within
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FIG. 1. Typical time-series data of the total turbulence intensity
λ(X) in the Barkley model [22] with Re = 2046, showing puff
splitting and puff decaying. When there is only a single puff, λ(X)
takes a value from 10 to 30 (approximately), but when there are
two puffs, it takes a value from 30 to 60. Furthermore, as the puff
decays, λ(X) converges to 0. We thus define threshold values of λ

to judge if there exists only one puff in our pipe as λdecay = 1 and
λsplit = 41, which are used throughout this paper [23]. Note that,
although we show a decay of puff from a double-puff state to a
single-puff state around t = 1.7 × 105 in this figure, our measurement
of puff-decaying time scale described in Sec. II takes into account only
the decay from a single-puff state.

this section, we also discuss the improvement of calculation
efficiency of the method (Sec. IV D). In Sec. V, we conclude
this paper. We note that the detailed definition of the Barkley
model is provided in Appendix A.

II. FLUCTUATIONS AND PUFF-DECAYING TIME SCALE

We first discuss the connection between the fluctuations of
the turbulence intensity and the time scale of puff decaying.
Let us consider a pipe flow, where we denote the velocity
field of the flow by X (also by Xt the field X at time t). The
total turbulence intensity is calculated from the field X (e.g.,
by the total energy in the radial component of X or by the
axial component of average vorticity), which we denote by
λ(X). For the Barkley model (whose definition is shown in
Appendix A), typical dynamics of λ(X) is presented in Fig. 1.
One can see that λ(X) is fluctuating around a certain value,
and λ(X) becomes twice as big as this certain value when
the puff is split into two while it takes almost 0 after the
puff decays. In order to define relaminalized (puff-decayed)
states quantitatively, we introduce a threshold value λdecay,
such that the puff almost certainly decays once λ(X) takes
a value smaller than λdecay. Furthermore, in order to focus on
decay events from a single-puff state, we introduce another
threshold value λsplit that distinguishes these two puff states
(Fig. 1). By using these two threshold values, we consider the
following measurement of the time scale of puff decaying from
a single-puff state.

(i) We start a simulation (or an experiment) to observe the
turbulent puff by adding a localized perturbation to laminar
flows (where only a single small puff is created). After an initial

relaxation time τini, we check that the puff satisfies λdecay <

λ(Xt ) < λsplit with t = τini. We repeat (i) until we get a state
that satisfies this inequality.

(ii) During the time evolution of the puff (t � τini), we
store the value of λ(Xt ) for each time interval δtm. We stop
this simulation when λdecay < λ(Xt ) < λsplit is violated. [More
precisely, we stop the simulation the first time we store λ(Xt )
after λdecay � λ(Xt ) or λ(Xt ) � λsplit holds.]

(iii) When we stop the simulation, if λdecay � λ(Xt ), we
increment a number ndecay (which starts at 0 at the beginning
of the entire measurements) by 1. We also increment the total
number of measurements ntot (which also starts at 0 at the
beginning of the entire measurements) by (t − τini)/δtm, where
t is the time when λdecay < λ(Xt ) < λsplit becomes violated.

After repeating this measurement many times, we get the
estimate of the decaying time scale Td as

Td = ntotδtm

ndecay
. (1)

In Refs. [8,9,22], the puff-decaying time scale is measured
from an exponential fitting to the probability distribution
function of (each) puff-decaying time. Different from their
measurements, our estimator (1) directly gives the expected
value of the puff-decaying time. (Our estimator is equivalent to
the one used in Refs. [8,9,22] when ndecay is sufficiently large.)
In many experiments and numerical simulations, it has been
observed that Td scales in a superexponential way as a function
of Re [8,9], i.e., a measurement of Td based on brute-force
calculations becomes harder as the Reynolds number increases.

Td is connected to rare fluctuations of the turbulence
intensity. To see this, we define an accumulative probability
function of λ(X) as follows: by denoting the obtained (total)
time series of λ by λi (i = 1,2, . . . ,ntot), we define

P (λ) = 1

ntot

ntot∑
i=1

θ (λ − λi), (2)

where θ (λ) is the Heaviside step function: θ (λ) = 1 for λ > 0
and θ (λ) = 0 for λ � 0. By definition, we have P (λdecay) =
ndecay/ntot . From (1), we find

P (λdecay) = δtm

Td
, (3)

namely, the tail value of the accumulative probability P (λ) is
connected to the inverse of the puff-decaying time scale.

III. REYNOLDS-NUMBER-CONTROLLED PROCEDURE

To measure the tail of P (λ) efficiently, we propose a
simple procedure to control the Reynolds number during the
measurement. In Fig. 2, we show numerical examples of P (λ)
in the Barkley model [22] for several Reynolds numbers. One
can see that the domain of this probability function is separated
into two parts: large-λ part and small-λ part. The large-λ part
is described by the typical dynamics, whereas the small-λ part
is described by the dynamics of atypically small puffs. In the
small-λ part, the slope of P (λ) (in logarithmic scale) is smaller
than the one in the large-λ part. This observation suggests
the existence of a relatively stable state for small puffs before
decaying, which we call the metastable state in this paper. What
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FIG. 2. The accumulative probability function P (λ) for several
Reynolds numbers in the Barkley model [22] obtained from brute-
force measurements. P (λ) shows two different behaviors, namely
(i) the one described by typical dynamics of the puffs and (ii) the
one described by relatively stable dynamics (metastable dynamics)
before the puffs decay. For the typical part, we fit to the data
a superexponential function defined as (15), which shows good
agreement with the typical part of P (λ).

we propose is a procedure to change the Reynolds number to
efficiently create such a metastable state.

Let us suppose that we want to study the tail of P (λ) at
Re = Re1. We define another Reynolds number Re0 that is
smaller than Re1 (Re0 < Re1), where a puff tends to become
small easily. We also define two special values of the turbulence
intensity, λ0 and λ1 (λ0 � λ1), at which we switch the Reynolds
number. More precisely, during the procedures (i) and (ii)
explained in the previous section, the following control of
the Reynolds number (Re-control) is performed: we set the
Reynolds number to Re1 when λ(Xt ) crosses λ1 and to Re0

when λ(Xt ) crosses λ0. We show a schematic figure to explain
this control in Fig. 3. After finishing this procedure, we collect
the time-series data of λ(X) (in the same way as the brute-force
method) and calculate the accumulative probability function
of λ, which we denote by Ptail(λ). What we expect is that this
functional shape of Ptail(λ) can provide a good approximation

FIG. 3. Schematic figure to explain the procedure to control the
Reynolds number (Re-control) during the measurement. When λ

crosses λ1 (or λ0), we change the Reynolds number to Re1 (or to
Re0), where Re1 > Re0 and λ1 < λ0. The accumulative probability
of λ in this procedure is our estimator for the tail of P (λ).

of the correct probability P (λ) for small λ [tail of P (λ)]. More
precisely, we expect P (λ) � CPtail(λ) for λ � λ∗ with two
constants C and λ∗, which are determined by the following
conditions:

CPtail(λ
∗) = P (λ∗), (4)

C
dPtail(λ∗)

dλ
= dP (λ∗)

dλ
. (5)

After determining these constants, our estimator of P (λ) is

P (λ) �
{
CPtail(λ) for λ < λ∗
P (λ) for λ � λ∗. (6)

Note that obtaining P (λ) for λ � λ∗ is easier than obtaining
the full shape of P (λ) from brute-force calculations. Finally,
we obtain the estimator of the decaying time scale Td in our
method as

Td � δtm

CPtail(λdecay)
(7)

from (3).

IV. APPLICATION TO BARKLEY MODEL

In this section, we apply Re-control method to a model
of puff dynamics proposed by Barkley [22]. To this end, in
Sec. IV A, we first discuss how to choose three parameters
λ0, λ1, and Re0 appearing in the method. The criteria to choose
them are also summarized in Table I. We then show the results
of the application in Sec. IV B, followed by the discussion on
how much the method accelerates the measurement of the time
scale Td in Sec. IV D.

A. Parameters λ0, λ1, and Re0

1. Criterion for λ0

In the method, the Reynolds number is set to a smaller value
Re0 from the target Reynolds number Re1 at λ = λ0 in order to
suppress the growth of puff and to weaken it. However, if λ0 is
too small, the puff does not have enough time to evolve in the
target Reynolds Re1 and is suppressed before its equilibration.
We thus set the value of λ0 to be equal or larger than the typical
value of λ in the target Reynolds number Re = Re1. More
precisely, by introducing a probability density p(λ) as

p(λ) = d

dλ
P (λ), (8)

we denote the average value of λ for the Reynolds number
Re by

λ̄Re =
∫

dλ p(λ)λ. (9)

We then assign a condition to λ0 as

λ0 = λ̄Re1 . (10)

Note that although this condition may be weakened as λ0 �
λ̄Re1 , we use (10) for the simplicity of the argument. We stress
that calculating λ̄Re1 is not difficult, since it does not require
the tail values of the probability P (λ). Numerical examples of
λ̄Re are provided in Table II.
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TABLE I. Criteria to choose the parameters λ0, λ1, and Re0.

Condition

Higher transition value λ0 = λ̄Re1

λ0 (λ̄Re1 is the average value of λ for Re1)

Lower transition value λRe1
ms � λ1 < λ0 − √

2σRe1

λ1 [λRe1
ms is the boundary value between the metastable and typical

regions (Fig 2) for Re = Re1. σ Re1 is a variance of λ for Re1]

Smaller Reynolds number Re0 > Re1 − δRe∗

Re0 (δRe∗ is a constant around 200 ∼ 300)

2. Criterion for λ1

After changing the Reynolds number from Re1 to Re0, the
puff is weakened and finally reaches a state that takes λ = λ1.
We then change the Reynolds number from Re0 to Re1. We
expect that the puff quickly forgets how it is prepared and the
statistics for λ < λ1 obtained afterward is equivalent to the
brute-force results [in the sense of (6)]. For this, we discuss
the lower and upper bounds of the parameter λ1 as follows.

We first discuss the upper bound. When λ1 is too large
(i.e., too close to λ0), the puff often goes back to λ0 before
equilibrating. The method is not efficient in this case, since
many failed attempts are needed to get an equilibrated puff
that can explore λ < λ1. In order to prevent this, we assign the
upper bound of λ1 as

λ1 < λ0 − √
2σRe1 , (11)

where σRe is the variance of λ calculated from the probability
distribution p(λ) as

σRe =
∫

dλ p(λ)(λ − λ̄Re)2. (12)

Numerical examples of σRe are shown in Table II.
Next, we discuss the lower bound. If the value of λ1 is in the

metastable range of Fig. 2 (i.e., too small), the puff determines
to decay from the configuration before equilibrated after Re
is changed to Re1 at λ = λ1. These artificial decays carry the
information of the lower Reynolds number Re0 and thus bias
the obtained statistics. To prevent this, we set the lower bound
of λ1 as

λ1 � λRe1
ms , (13)

where λRe1
ms is the boundary value between the metastable

and typical regions of P (λ) for Re = Re1. Within brute-force
simulations, this value is determined as the maximum value of
λ where the superexponential fit [which is (15) in Sec. IV B]
cannot describe P (λ). Estimating such an exact value is
difficult since it requires the information of the metastable part
of P (λ). Without knowing this metastable part, what we can
get is the higher bound of λRe1

ms , which we denote λ̃Re1
ms . This

fact is fortunately compatible with the condition (13): we can
get a weaker inequality using such a higher bound by simply
replacing λRe1

ms in (13) by λ̃Re1
ms , i.e., the practical condition is

λ1 > λ̃Re1
ms . Rough estimations of λRe1

ms are provided in Table II.

3. Criterion for Re0

By choosing λ0,λ1 following the conditions (10), (11), and
(13) above, we expect that (6) is satisfied if Re0 is sufficiently
close to Re1, i.e.,

Re0 > Re1 − δRe∗ (14)

with a constant δRe∗. From numerical simulations for a broad
range of Re1, what we observe is that there indeed exists such
a threshold value δRe∗, which is around 200 ∼ 300 (see Fig. 5
in Sec. IV C for Re0 dependence of the estimator Td). To derive
such a threshold value δRe∗ based on a theory seems difficult,
which remains as an important open question.

B. Numerical demonstration of (6): Equivalence between
P(λ) and C Ptail(λ)

We numerically demonstrate (6). In order to determine the
constant C from the two conditions (4) and (5), we use the
shape of the typical part of P (λ). In order to make sure that we
do not use the information of the tail of P (λ) (because it is our
goal), we use the following function Pfit(λ) instead of P (λ),
which describes only the typical part:

Pfit(λ) ∝
∫ λ

0
dx exp[−γ̃ (x − λ̃) − e−β̃(x−λ̃)], (15)

where γ̃ , λ̃, β̃ are parameters determined by fitting to P (λ).
[This fitting can be done without knowing the tail of P (λ).]
Examples of this function for several Reynolds numbers are
shown in Fig. 2. Note that the derivative of Pfit(λ) has a
simpler form, which is studied in Appendix B. To determine
the constant C, we first fix λ∗ from the following condition

∂

∂λ
log Ptail(λ

∗) = ∂

∂λ
log Pfit(λ

∗). (16)

TABLE II. Estimated values of λ̄Re1 ,
√

2σRe1 , and λRe1
ms .

Re1 = 2100 Re1 = 2200 Re1 = 2300 Re1 = 2400

λ̄Re1 21.746 (±0.003) 27.5005 (±0.0005) 32.4543 (±0.0001) 35.6467 (±0.0002)√
2σRe1 6.760 (±0.002) 7.5069 (±0.0004) 6.4556 (±0.0001) 5.0249 (±0.0001)

λRe1
ms ∼11 ∼13 ∼15 ∼20
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FIG. 4. log10 P (λ) obtained from brute-force simulations and log10 CPtail(λ) obtained from Re-control method for several λ1. The target
Reynolds number Re1 is set to 2100, 2200, 2300, 2400 for (a), (b), (c), (d), respectively. In each panel, we also plot the superexponential fitting
curve (15). The parameters Re0 and λ0 are set to Re1 − 200 and λ̄Re1 according to Table I, II. Different lines in the figures correspond to different
values of λ1. To find which lines correspond to which values of λ1 in the print grayscale version, we note that the value of λ1 increases as the
plateau (for large λ) gets close to zero, as indicated in (a). For the (a)–(c), one can see that, within the range of λ1 that satisfies the condition of
Table I, P (λ) agrees with CPtail(λ) for λ < λ∗ [where λ∗ is the connecting point between log10 P (λ) and log10 CPtail(λ)]. This demonstrates the
relation (6). For each simulation, we repeat the procedure (i)–(iii) in Sec. II until ndecay becomes 3600, except for some lines in (c) and (d): in
these cases, because of limited simulation time, we stop the procedure (i)–(iii) before ndecay reaches this value. The values of ndecay to stop the
procedures are summarized in Table III in Appendix C. The statistical errors of each line are small. In order to show this, we divide the obtained
data (for each line) into three sets and plot the averaged results over each set in the same figure. Three independent-realization lines are hardly
distinguishable, demonstrating small statistical errors. In (d), we only plotted the lines obtained from Re-control method, since the brute-force
results are not converged in the tail. (“Fitting” describes the typical part of this unshown brute-force line). With the aid of our Re-control method,
the full shape of P (λ) can be obtained even in this case, whose tail CPtail(λdecay) corresponds to the inverse of the puff-decaying time scale
[as (7)].

More technically, we determine λ∗ that minimizes (left-hand
side−right-hand side)2 of (16). After determining λ∗, we then
calculate C from

C = Pfit(λ∗)

Ptail(λ∗)
. (17)

It is straightforward to see if these C and λ∗ satisfy (4) and (5).
We plot CPtail(λ) obtained in this way in Fig. 4 for several

target Reynolds numbers: Re1 = 2100,2200,2300,2400. We
choose the parameters λ0,Re0 following the criteria discussed
in the previous section (summarized in Table I together with
Table II) for several λ1. We also plot P (λ) obtained from brute-
force simulations in the same figure. One can see that CPtail(λ)
agrees with P (λ) for λ < λ∗ when λ1 satisfies the criterion.

C. Puff-decaying time scale

In Fig. 5(a), we plot the puff-decaying time scale Td as
a function of λ1/λ0, obtained from CPtail(λdecay) by using
(7) (where we set δtm = 1). We also plot Td obtained from
brute-force simulations. One can see that the estimator of
Re-control method agrees with the brute-force result in the
range of parameters that satisfy the condition in Table I. We
note that our estimator tends to predict larger values than the
correct one if the value of λ1/λ0 is smaller than this range.

In Fig. 6, we plot the puff-decaying time scale Td as a
function of Re. The results of brute-force and Re-control
methods agree with each other for a broad range of Re. We
then fit a superexponential function to these data and plot
it in the same figure. One can see that the superexponential
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FIG. 5. (a) The logarithm of puff-decaying time scale log10 Td

obtained from Re-control method as a function of the parameterλ1/λ0,
(where λ0 is fixed to λ̄Re1 , whose value is given in Table II). The brute-
force estimation ofTd is also shown in the same figure as solid lines. By
using dashed double-headed arrows, we indicate the range of λ1/λ0 in
which the condition of Table I is satisfied. In this range, one can see that
the estimators of Td in brute-force and Re-control methods agree well.
(b) The average simulation time δt̄ to observe one decaying event for
Re-control method, divided by the same quantity for the brute-force
method δt̄ |brute-force. How much faster the Re-control method is than
the brute-force one is given as the inverse of this quantity. In the
range of λ1 where the condition of Table I is satisfied [indicated by
double-headed arrows in the same way as in the (a)], this value takes
less than 1, meaning that Re-control method is more efficient than the
brute-force method.

curve describes well the obtained numerical data, supporting
the existence of superexponential law even for high Reynolds
numbers. We expect that the small deviation of data from this
superexponential curve at Re = 2500 is an artifact: possible
reasons of this deviation are too small value of ndecay (Table III
in Appendix C) or λ1 (the description in Appendix D), because
of our limited simulation time.

D. Efficiency of Re-control method

Here, we discuss how much the Re-control method accel-
erates the measurement of the puff-decaying time scale Td.
For this, we consider the time duration of an entire simulation

FIG. 6. The puff-decaying time scale Td obtained from brute-
force measurements (from Re = 1800 to 2300 indicated as red
crosses) and by Re-control method (from Re = 2100–2500 indicated
as green circles). We stop the measurement procedures (i)–(iii) in
Sec. II when ndecay becomes 3600 for lower Reynolds numbers and
much smaller values for higher Reynolds numbers. See Table III in
Appendix C for more detail. By dividing the obtained data for each
point into three sets, we estimate error bars. These error bars in the
figure show small statistical errors. The data points by brute-force
measurements (from Re = 1800–2300) and the ones by Re-control
method (from Re = 2350–2500) are fitted by a superexponential
function defined as exp {exp[a(Re − b) + c]} with fitting parame-
ters a,b,c. These parameters are determined using the Levenberg-
Marquardt algorithm, which are a = 2.12 × 10−3, b = 945, and c =
0.82. The obtained superexponential function is plotted as a yellow
dashed line in the figure, showing a good agreement with the data
points. For Re-control method, we use the parameters λ0,λ1,Re0 that
satisfy the condition in Table I. For more precise values, see Table IV
in Appendix D.

to observe one puff-decaying event in average. This time
duration includes the preparation of initial conditions in the
procedure (i) (Sec. II). We count the total time steps during the
repetition of the procedure (i)–(iii), which we denote by Tall.
Then, the average time duration δt̄ per unit decaying event is
defined as

δt̄ = Tall

ndecay
. (18)

As this number becomes smaller, one can observe more decay-
ing events in a fixed simulation time, i.e., obtain more statistics
to evaluate the time scale of decaying events. We also define the
same quantity for brute-force calculations, which we denote by
δt̄brute-force. In Fig. 5(b), we plot the ratio between these two time
durations: δt̄/δt̄brute-force. One can see that in the range of λ1 that
satisfies the condition of Table I, δt̄/δt̄brute-force takes a value
from (roughly) 0.005–0.5. Since the inverse of δt̄/δt̄brute-force is
the speed-up due to the method, we find that the Re-control
method is 2–200 times more efficient than the brute-force
method. Note that the efficiency of the method increases as λ1

decreases (or Re1 − Re0 increases). This tendency continues
even if the condition in Table I is not satisfied, although, in
this case, the systematic errors from the correct result become
non-negligible.
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V. CONCLUSION

In this paper, in order to measure the puff-decaying time
scale efficiently, we introduce a simple procedure where the
Reynolds number is controlled during the measurement. The
method does not include any complicated procedure: only
changing the Reynolds number is required. We thus expect
that it can be applied to DNS of Navier-Stokes equation and
even to experiments.

The method is applied to the chaotic Barkley model [22],
and shows that the superexponential law of the puff-decaying
time scale is satisfied even for high Reynolds numbers until
Re = 2500, where the puff-decaying time scale is around
1012 ∼ 1013 and brute-force calculations cannot be used to
estimate it. As a byproduct of the application, we find that
the bulk part of P (λ) is well described by a superexponential
function (see Fig. 2 and Appendix B). Although this fitting
function is not necessary for the application of our method, it
will be interesting to see if this property holds for even more
realistic systems, since the superexponential behavior of a
probability function may be the origin of the superexponential
time scale of the puff decay [17].
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APPENDIX A: BARKLEY MODEL

Here we introduce a coupled map lattice model proposed by
Barkley [22] to describe the puff dynamics in pipe flows. This
one-dimensional deterministic model consists of only a few
hundreds of degrees of freedom, but in spite of the simplified
nature of the model, it captures the basic property of puff
dynamics, splitting, decaying, and also the superexponential
law of the puff-decaying and puff-splitting time scale.

1. Definition of the model

We consider a pipe flow modeled as follows [22]. We
denote by x = 1,2, . . . ,L the axial position of the pipe, and
we define, at each position x, the axial velocity of the flows ux

and the turbulence intensity (such as the axial component of the
vorticity)qx . These variables depend on time, which we assume
discrete t (= 0,1,2, . . . ), i.e., ut = (ut

x)Lx=0 and qt = (qt
x)Lx=0

for t = 0,1,2, . . . . We impose periodic boundary conditions
to these fields: ut

L+1 = ut
1 and qt

L+1 = qt
1. For simplicity, we

denote by X the set of these two fields: X = (q,u). We set the
downstream advection speed to be 1 without loss of generality,
which means that qt+1

x+1 and ut+1
x+1 are determined from the fields

one step before at the position x, qt
x,u

t
x , and their derivatives

(such as qt
x − qt

x−1,u
t
x − ut

x−1,q
t
x−1 − 2qt

x + qt
x+1, . . . ). In

laminar flows, the axial velocity field ut
x takes the largest

value 1 (the downstream advection speed) at all the position
x. However, in the presence of turbulence, ut

x becomes
inhomogeneous, taking a value less than 1. We take into
account this fact in the time-evolution equation of ut

x by
constructing a simple combination of these fields as follows:

ut+1
x+1 = ut

x + ε1
(
1 − ut

x

) − ε2u
t
xq

t
x − c

(
ut

x − ut
x−1

)
, (A1)

where ε1,ε2,c (ε1 > 0,ε2 > 0,c > 0) are parameters.
The second term of this right-hand side enhances the
relaminarization of flows, since this second term takes only a
positive value, which makes ut+1

x+1 be closer to the downstream
advection speed, while the third term reduces the value of
ut+1

x+1 due to the presence of the turbulence (nonzero value
of qt

x). The fourth term enhances the uniformity of the field
ut

x . When ut
x − ut

x−1 is positive (or negative), it decreases (or
increases) ut+1

x+1 to reduce ut+1
x+1 − ut+1

x in the next time step.
For the turbulence intensity qt

x , from the observation that the
pipe flow turbulence is locally a chaotic repeller [14], we con-
sider two types of dynamics for qt+1

x+1, which are decaying dy-
namics and chaotic dynamics. When the turbulence intensity is
locally smaller than a certain value, the time-evolution equation
for the turbulence intensity in that region is a simple diffusion-
like equation that enhances relaminarization. However, when
it is locally larger than the certain value, the time evolution is
described by a chaotic map, introducing a nontrivial nature to
this model. Such a threshold value should be a function of ut

x .

FIG. 7. (a) Functional shape of the tent map fu(q) for different
values of q th

u . As q th
u decreases (or increases), the size of the triangle

increases (or decreases), which makes the system to be more (or less)
chaotic. We set the Reynolds number Re to 2046, and the rest of the
parameters d,ε1,ε2,c,γ,β to 0.15,0.04,0.2,0.45,0.95,0.4 according to
Ref. [22]. (b), (c) Snapshots of typical configuration of qt

x (b) and
ut

x (c).
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When ut
x is large (or small), such a threshold value should be

small (or large), because large (or small) axial currents easily
(or with difficulty ) induce turbulence. As the simplest manner,
we define this threshold value q th

u as a linear function of u as

q th
u ≡ 2000

2 − γ
(1 − 0.8 u)Re−1, (A2)

where γ is a parameter that takes a value close to 1 (but less
than 1), Re is a parameter corresponding to the Reynolds
number and u is the local axial velocity, such as ut

x . The
constant 2000/(2 − γ ) is merely to adjust the scale of Re
to make the transition happen around 2040. By using this
threshold value, qt+1

x+1 is determined as [22]

qt+1
x+1 = Fut

x

[
qt

x + d
(
qt

x−1 − 2qt
x + qt

x+1

)]
, (A3)

where d is a small parameter and Fu[·] is defined from the
following map fu as Fu[·] ≡ fu(fu(·))):

fu(q) = γ q, (A4)

for q < q th
u (decaying dynamics) and

fu(q) =
⎧⎨
⎩

2q − q th
u (2 − γ ) if q th

u � q < 1,

4 + β − q th
u (2 − γ ) − (2 + β)q if 1 � q < Q0,

γ q th
u if Q0 � q,

(A5)
for q � q th

u (chaotic dynamics) with a constant Q0

[≡ (4 + β − q th
u (2 − γ ) − γQ1)/(2 + β)] and a parameter

β. We note that the chaotic dynamics (A5) is nothing but a
tent map. To provide an insight into the map fu, we show
an example of fu in Fig. 7(a), where one can see that as q th

u

becomes larger, the triangle part (the tent-shape part in the
figure) becomes smaller, making the system less chaotic. When
qt

x < q th
u [or more precisely qt

x + d(qt
x−1 − 2qt

x + qt
x+1) <

q th
u ], the time-evolution equation is simply written as

qt+1
x+1 = γ 2[qt

x + d(qt
x−1 − 2qt

x + qt
x+1)]. Since we set γ < 1,

one can see that qx is diffusing with decreasing its intensity
by γ 2. We note that, when all qx (x = 1,2, . . . ,L) follow such
dynamics, they converge to 0.

2. Numerical example

We set the parameters (d,ε1,ε2,c,γ,β) to
(0.15,0.04,0.2,0.45,0.95,0.4) according to Ref. [22]. In
the main text, we only change the value of the parameter
Re without modifying the others. We start a simulation
from a localized configuration, such as the Kronecker-δ
configuration with a randomly chosen intensity between 0 and
1. After an initial relaxation time, the puff dynamics becomes
statistically stable (especially for Re ∼ 2040). In Figs. 7(b),
7(c) we plot snapshots of a puff configuration. Although these
dynamics are stable, one can sometimes observe splitting and
decaying of puffs in a long-time simulation. The snapshots
in Fig. 8 demonstrate such splitting and decaying, observed
after simulating the system around 105 steps. The duration

FIG. 8. Snapshots of configurations q [(a) and (c)] and u [(b) and (d)], demonstrating puff splitting [(a) and (b)] and puff decaying
[(c) and (d)] for Re = 2046. In each panel, we plot q or u for every five time steps. In order to avoid overlaps of these configurations in a single
panel, we shift each configuration along the y axis when time is incremented. More precisely, we plot qt

x + (1/5)t or ut
x + (1/5)t for several t

(t = 0,1,2, . . . ) in each panel. We redefine t = 0 as the time a few hundred steps before the puff splitting or the puff decaying. The true starting
times of these simulations are more than 104 steps before this t = 0.
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of time before the splitting and the decaying is determined
stochastically following an exponential law (see Fig. 12 in
Ref. [22] for the observation of this law within this model,
and also see Refs. [8–12] in more realistic settings).

3. Total turbulence intensity

We define a total turbulence intensity λ as

λ(X) =
L∑

x=0

qx. (A6)

We show a typical time series of λ(X) for splitting and decaying
in Fig. 1 of the main text. From the figure, we find that λ(X)
does not take a value less than 1 when there is at least one puff,
but it takes less than 1 after the puff decays. We thus define

λdecay = 1 (A7)

as a threshold value of the lower bound of λ(X), below which
the puff completely decays. At the same time, λ(X) takes a
value around 40 when double puffs occur, and it takes (almost)
always a value less than 40 in the presence of a single puff.
Since we focus on the dynamics of a single puff and its
decaying, we thus define

λsplit = 41 (A8)

as a threshold value for the upper bound of λ(X) [23].

APPENDIX B: SUPEREXPONENTIAL FITTING TO THE
PROBABILITY DISTRIBUTION FUNCTION p(λ)

Here we show a superexponential fitting to the bulk part
of the probability distribution function p(λ). We consider a
probability distribution function p(λ) defined as a derivative
of the accumulative probability P (λ), (8). We show in Fig. 9
numerical examples of p(λ) for several Reynolds numbers,
together with the derivative of the fitting function (15):

pfit(λ) = C exp{− exp[−β̃(λ − λ̃)] − γ̃ (λ − λ̃)}, (B1)

where C is a normalization constant, and β̃,γ̃ ,λ̃ are fitting
parameters. We note that this fitting function reduces to a
Gumbel distribution function [16] when β̃ = γ̃ . Interestingly,
as shown in Fig. 9(a), the fitting curve describes perfectly the
numerical data in a certain range of λ for several different
Reynolds numbers. We also plot the (normalized) fitting
parameters, β̃/β̃(1850), γ̃ /γ̃ (1850), λ̃/λ̃(1850) in Fig. 9(b).
The data indicate β 	= γ in general, namely the distribution
function is not described by Gumbel distribution.

To provide an insight into this superexponential form (B1),
we introduce an effective Brownian motion describing typical
dynamics of λ(X). Since it has been observed that the puff-
decaying time scale is simply described by a memoryless
exponential law [8–12], we assume that the typical dynamics
of λ(X) itself can be described by the following Brownian
process λt

s

dλt
s

dt
= f

(
λt

s

) + ξ t , (B2)

where ξ t is a Gaussian white noise satisfying zero mean
〈ξ t 〉 = 0 and the delta-function correlation 〈ξ t ξ s〉 = Dδ(t − s)
with a noise intensity D. The function f (λ) represents the

FIG. 9. (a) The probability distribution functions of λ, p(λ) for
several values of the Reynolds number Re (Re = 1850, 1900, 1950,
2000, 2020, 2040, 2060, 2080, 2100, 2200), which are measured
from brute-force simulations. We also plot the superexponential curve
(B1) by using the parameters determined by fitting to the data. The
agreement between the fitting curve and the numerical data is excellent
for a certain range of λ. (b) The (normalized) fitting parameters,
β̃/β̃(1850), γ̃ /γ̃ (1850), λ̃/λ̃(1850) as a function of the Reynolds
number, where the values of β̃(1850), γ̃ (1850), λ̃(1850) are 0.1012,
1.574, 38.75, respectively. One can see that β̃ and λ̃ show a plateau in
the range from Re = 1950 to Re = 2050, whereas γ̃ is monotonically
decreasing.

effective force describing the dynamics of the turbulence
intensity. For this function, we consider two contributions,
f−(λ) and f+(λ). The first contribution is to reduce the size
of the puff at the interface between the turbulent region and
the Laminar region. This contribution does not depend on the
value of λ, so that we model this effect as a constant term
f0, i.e., f−(λ) = −f0. The second contribution is to enlarge
the turbulent region. When the turbulence intensity is small,
puffs immediately develop their intensity, whereas when the
turbulence intensity is large, the dynamics immediately lose
such a driving force. To model this behavior, we assume that
f+(λ) is written as an exponential function f+(λ) = αe−β(λ−λ0)

with three parameters α,β, and λ0. To sum up f+ and f−, we
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TABLE III. nmax
decay: the values of ndecay when we stop the measure-

ment procedures (i)–(iii) in Sec. II. For Re-control method, nmax
decay for

λ1 and Re0 specified in Table IV is shown.

Re1 Brute-force Re-control

1800 3600 –
1850 3600 –
1900 3600 –
1950 3600 –
2000 3600 –
2050 3600 –
2100 3600 3600
2150 3600 3600
2200 3600 3600
2250 2746 3600
2300 578 3600
2350 – 1647
2400 – 151
2450 – 149
2500 – 12

get f (λ) = −f0 + αe−β(λ−λ0). Since the stationary distribution
function of λt

s, pst(λ), is derived as the canonical distribution
function e(1/D)

∫
dλf (λ), we thus obtain

pst(λ) = C̃ exp

{
−f0

D
λ − α

Dβ
exp [−β(λ − λ0)]

}
(B3)

with a normalization constant C̃. By redefining the parameters
in this expression, one can see that pst(λ) is equivalent to the
fitting function (B1).

APPENDIX C: VALUES OF ndecay WHEN STOPPING
THE MEASUREMENTS

For getting the data in Figs. 4, 5, 6, we stop the measurement
procedure (i)–(iii) in Sec. II when ndecay reaches a certain

TABLE IV. The values of λ0, λ1, Re0 used in Fig. 6 for Re-
control method.

Re1 λ0(= λ̄Re1 ) λ1 Re1 − Re0

2100 21.75 14 200
2150 24.55 16 200
2200 27.50 18 200
2250 30.23 18 200
2300 32.45 22 200
2350 34.22 22 200
2400 35.65 24 200
2450 36.81 24 300
2500 37.73 24 300

value, which we denote by nmax
decay. We summarize nmax

decay
in Table III.

APPENDIX D: VALUES OF PARAMETERS λ0, λ1, Re0

FOR FIG. 6

In Table IV, we summarize the parameters used in Fig. 6 for
Re-control method. These parameters are chosen according to
the condition in Table I.

For Re = 2500, in order to observe the puff-decaying event
in our limited simulation time, we needed to set λ1 to be close
enough to λRe1

ms . This is a possible reason why the predicted
value of puff-decaying time scale for Re = 2500 in Fig. 6
is slightly higher than the superexponential curve, because
as seen from Fig. 5(a), as λ1 gets close to λRe1

ms , the method
becomes much faster, but the estimated value of Td tends to be
larger than the correct value.
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