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Shear instability of fluid interfaces: Stability analysis
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We examine the linear stability of fluid interfaces subjected to a shear flow. Our main object is to generalize
previous work to an arbitrary Atwood number, and to allow for surface tension and weak compressibility. The
motivation derives from instances in astrophysical systems where mixing across material interfaces driven by
shear flows may significantly affect the dynamical evolution of these systems.
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I. INTRODUCTION +pq) the Atwood number for a density interface between
fluids of densityp, [upper fluid and p, [lower fluid], with

The stability of fluid interfaces in the presence of shearp;<p,) can couple to this wind profile at a heightvhere
flows has been studied for almost half a century, and was~U(2). At the time, it was not possible to construct a self-
largely motivated by the problem of accounting for observa-consistent description of the problem, such that a logarithmic
tions of surface water waves in the presence of winds. Agvind profile automatically emerged from the analysis; and
early as the 1950s, it was realized that classical Kelvininuch of the subsequent work has focused on establishing the
Helmholtz instability[1] could not account for the observed nature of this wind shear profilee.g., [9,10)). Finally, we
water wavescf. [2,3]), and efforts were initiated to study the NOt€ that these studies have since been applied to a number
full range of possible unstable modes by which interface®! Other contexts, including especially shear flows in atmo-
such as those represented by the water-air interface couﬁphe”C boundary layers, where they have been extensively
become unstable. By the early 1960s, the basic mechanis 1panded, including into the weakly compressible regime
was understood, largely on the basis of work by M[&s 7] I

. . . Our own paper is originally motivated by an astrophysical
and Howard[8]: They discovered that interface waves for . ,p\0m in which mixing at a material interface between two
which gravity provided the restoring forde.g., waves that

) o X fluids with different densities is essential to the evolution of
can be identified with so-called deep water wavesn be e asirophysical problem. Specifically, consider a white
driven unstable via a resonant interaction with the ambieng,arf star, whose composition is almost completely domi-
wind; this work was also one of the first applications in nteq by carbon and oxygen. If such a star is in a close
which resonantor critical) layers played an essential role in binary orbit with a normal main sequence star, then it has
both the physics and the mathematics. Work carried out 8§ecen known for some timee.g.,[12]) that accretion of mat-
that time showed that the precise form of the vertical windigr from the normal staflargely in the form of hydrogen and
shear _profile was critical to the nature of the_instability; typi- helium) can lead to a buildup of an accretion envelope on the
cally, it was assumed that the wind immediately above theyhite dwarf, which is capable of initiating nuclear hydrogen
water surface could be characterized by a logarithmic profilebuming_n This burning process can lead to a nuclear run-
of the form away, in which the energy released as a result of these

nuclear fusion reactions is sufficient to expel a large fraction
U(z)=U,+U4In(z/6+1), (1.1 of the accreted matter in the form of a shell; such a runway is
referred to in the astronomical literature as a “nova.” The
whereU, is the velocity jumpl(if any) at the water-air inter-  key element relevant to our present paper is then that obser-
face,z s the vertical coordinatéwith z=0 marking the ini-  vations show that approximately 30% by mass of the ejecta
tial water-air interfacg and 6 is the characteristic scale are in the form of G-O nuclei: since neither carbon nor
length of the shear flow in the dirThe idea was then to oxygen are products of hydrogen burning in the accreted
demonstrate that surface gravity waves whose phase speeceisvelope, it must be the case that some sort of mixing pro-
given byc=\g\AA/27 (g the gravitational acceleration, cess brought large amounts of stellae., white dwarf car-
the perturbation mode wavelength, awd=(p,—p1)/(p, bon and oxygen into the overlying accreted material before
envelope ejection. Furthermore, a detailed analysis of the
energetics of the runaway process has shown that simple
ISuch velocity profiles are commonly observed in the boundanhydrogen burning in the envelope cannot provide enough
layer of winds blowing over the surface of extensive bodies ofenergy to power the observed nova; thus, additional energy
water; cf. Miles. release via “catalytic” nuclear reactions in which+@ play
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important roles is required in order to match the observationseutral; and as long as the stellar magnetic fields are weak

(cf. [13-18). Thus, from the perspective of both observed[e.g., B=(gas pressure/magnetic presserd) we can ig-

abundances of nova ejecta and consideration of the nova enere the Lorentz force. Furthermore, the ratio of the spatial

ergetics, efficient mixing at the star-envelope interface isscales of interest to the Kolmogorov scale is large

called for. Several possible mixing processes have been digtypically>10* so that we are in the large Reynolds number

cussed in the literature, including undershoot driven by therlimit, and viscous effects on the motions of interest will be

mal convection in the burning envelope and Kelvin- negligible. As a consequence, the Euler equations will be

Helmholtz instability; but detailed studies have shown all ofdescribing our system.

them to be ineffective in producing the required mixiegg., We consider a two-dimensional flow wittthe horizontal

[20,21,19). In this regard, the current astrophysical situationdirection andy the vertical. The system consists of a layer of

resembles the problem encountered by oceanographers in thight fluid (densityp;) on top of a layer of heavy flui¢den-

1950s, as they tried to explain the observed mixing betweesity p,). In most of our analysisp, andp, are constant in

the seawater-atmosphere interface. A new instability isach layer, and in the most general scenario, both layers can

needed to account for the observed mixj2d be stratified densities are functions gf). The two layers are
Following the previous oceanographic work, we exploreseparated by an interface given Yy h(x;t), which initially

the possibility that a critical-layer instability related to the is taken to be flafy=h(x;0)=0]. The upper layer4;) is

coupling of stellar surface gravity waves to a shear flow inmoving with velocityU(y) in the x direction parallel to the

the hydrogen envelope can account for the enhanced mixingitial flat interface, while the lower layerpg) remains still.

rate. Thus, in this paper, we embark on a systematic study of As already mentioned, the instability of such stratified

such an instability and apply our results to the specific casghear flow has been investigated. [2,8]), albeit under lim-

of mixing of C-O to H-He envelope of white dwarf stars ited physical circumstances. We study this problem in full

[22,23. We note that similar scenarios can arise in a Variet)generality' allowing for a variety of effectincluding broad

of other astrophysical systems, such as in the boundary layeanges in the values of the Atwood number/gravity and in

between an accretion disk and a compact star, where mixingompressibility with the motivation that one can establish

between fluids of different densites—as in the novathe role of the relevant instabilities under more general as-

problem—is expected to play an important role. Howevertrophysical circumstances than the restricted case of nova-

the earlier nonastrophysical work largely focused on the casgelated mixing, which provided motivation for our paper.

of very large density differences between the two fluids sepa-

rated by an interface, and primarily considered the fully in-

compressible caséhe weakly compressible case has been

considered by11]). For the astrophysical case, the density A wind (shear flow is assumed to flow only in the layer

ratios can be of order unitffor the nova case, a typical value Of light fluid (p;) and is zero in the heavy fluichg). Within

would bep;/p,~1/10) and the Mach number for the inter- €ach layer, the governing equations are the continuity equa-

face between the accretion flow and the white dwarfs surfacBon

can range from very subsonic to of order 0.2. The aim of this - o

paper therefore is to extend the shear-flow analysis to arbi- dp+V-(pu)=0, 2.

trary density ratios, shear, and compressibility. We provide . . )

estimates of the growth rates of unstable surface waves, arfti'd the two-dimensional Euler equation

determine the regions in the control parameter space that .. L R .

correspond to different instabilities for different physical pdu+pu-Vu=—VP+pg. (2.2

situations. This paper is structured as follows: In the next

section, we define the problem to be solved more preciselyl he equation of state closes the system, which is expressed

Sec. IIl describes the linear analysis for the incompressibldn dynamical terms:

two-layer case. Section IV and V describe, respectively, the

inclusion of surface tension and extension to compressible

flow of low Mach numbers. We discuss and summarize our

results in the final section.

A. The general problem

_DP_ yP Dp

(3I+U‘V)P—D—t—7ﬁ, (2.3)

wherey is the polytropic exponent. The background density
and pressure are in hydrostatic equilibriumyP,=—p.g.
Il. FORMULATION The basic state is then defined by a shear floify) ] in the

The starting point of our formulation is the identification Upper layer, and hydrostatic pressuf,f and density pro-
of the appropriate material equations of motion. This issudiles (p,). We perturb around this basic state
has been well-discussed in the literature, including the moti- _ o
vating white dwarf cas§24]: in general, we can expect the u=U(y)x+u’, p=po(Y)+p', P=Py(y)+p’,
gaseous surface and atmosphere of such stars to be well de- (2.4)
scribed by the single fluid equations for an ideal gas. More
specifically, the length scales of the physical mixing pro-and study the growth of the perturbatioipsimed variables
cesses discussed here are all far larger than the Debye lengBrom Eq.(2.3), the density and pressure perturbations satisfy
so that the ionized stellar material can be considered to bthe relation
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Dp’ _ ,Dp’ 2
ot SDr +W'(gpotCspoy), (2.5

po(K2US+gky+gkgw=ikUg(dy+Ky)p,

_ _ _ ik?2(UZ&/c2—1)p=pok(kgUg+ dyUg—Ugdy)W,
wherew’ is the vertical component of the perturbation ve- (2.1
locity, g is the gravitational acceleration, aod=/vPqy/pg
is the sound speed for the background state. Upon expandinghereU ;= U —c is the Galilean-transformed velocity in the
the perturbations in normal modes™~°Y, we obtain the reference frame of the wave= peldypo is the inverse
linearized equations in the perturbation quantitishere we  giratification length scale, arig=g/c2. We further simplify
have dropped the primes for convenience the equations by applying the transformat{@%]

ik(U—c)u+wa,U=—ikp, 'p, - W=iUgqf PR
1 ’ (0] o

ik(U—-c)w= —pglayp—palgp, with f= o/ tkg(2dz

ik(U—=c)p=—p,(iku+ad,w)—wd,p,, 2.6 i . _ .
( Jp="pal W) yPo 29 Equations(2.11) are then rewritten in terms of these vari-

ik(U—c)p—wgp,=c[ik(U— C)p+Waypo). ables as follows:

The above equations form an eigenvalue problem for the ?)(kzué+gkg+gks)q= kayf),
complex numberc. One immediately sees that the incom-
pressibility conditionV-u=0 can be obtained by taking the k2(1—Ué/c§)f)=7)OkUéayq, (2.12

limit cs—oo. Our problem simplifies greatly with this as-
sumption. Therefore, we first present our results for the inyyhich can be combined to givid1]
compressible case, and then examine how compressibility
modifies the stability properties. ~
( Poué(}yq
y

- B
1-02/2 ué/cg) —po[K?UG+0(kst+kg)1q=0. (2.13

B. The incompressible case
For the incompressible case we define a stream functio
¥ such thatu=g,¥ andw= —d,¥. The two-dimensional
(2D) Euler equation thus reads

O\/e rewrite the above equation into canonical form. The re-
sulting equation is similar to the Rayleigh equation for the
incompressible flow, except for an additional stratification

GV -, V2P + W V2W,=0, y#h. (27 term—g(ks+ky)/UZ¢:

The total stream function? =W ,+ ¢ consists of a back-

ground stream functionV',= [¥U(z)dz and a perturbation a§¢—
b= ¢(y)e**=cY The linear equation forp is the well-

studied Rayleigh equation,

- ketk, 02U0g
2 S g y
K+ — +—=
9po U(23 0

$=0  (2.19

G

) where  k?=k?*(1-UZ2/c?),Ug=kUg\Vps/x, and ¢
K2+ _>¢=0_ 2.8 =qUg/k=—ik *pw(1-UZ/c?) . It can be shown that
U-c the stratified Rayleigh equation can be recovered by taking

¢u _

" . - the limit of cg—oe.
The boundary conditions at the interface for the continuity of s

the normal component of the velocity and pressure are

o, ks 95Uc\po)
K+tg—+—F7—
G UgVpo

#=0. (2.19

24
(U-c)h—¢* =0, (2.9 i

A{p[(U=c)¢p'—U’' ¢} +gh(p1—p,)=0, (2.10  Furthermore, we recover the unstratified Rayleigh equation
in the same limit, ifks+ky=0 (which corresponds to an
whereA indicates the difference across the interface, nd adiabatic atmosphere, as we will show latey.dfinally, the

is the amplitude of the perturbed interfate= helk(x—ct). bOlindary conditions at the interface are expressed in terms
of Ug and ¢
C. The compressible case . -
For the compressible case, wh(e:r@i_s compq_rabl_e to_ the q= ¢_+ = __:F,, (2.1
background shear flow and the density stratification is non- Us Ug

negligible on the scales of interests, we start from the full set
of Egs.(2.6). We obtain the following equations by eliminat- using the continuity ofj and integrating E¢(2.13 across the
ing p andu: interface we obtain
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A[Deﬂyfﬁ— (ayUG)¢_g;¢/UG]:O- (2.17 ; TABLE I. Approximate range for paramet& in three different
ituations.
D. Wind profiles Ui(ecmsl) g(cms? a Ycm) G
In general, it is not trivial to determine the wind profile: Ocean 18~10° 10° 10~10¢ 10 1~1
strictly speaking, the wind profile should be determined assun's surface 1~ 10° 1003 10P~10° 10-3~10P3
part of the solution of the evolution equation for the wind \yp 100~ 107 108 1083~ 10f 1~10

shear interface. However, it has been customary to simplify
the problem by assuming anpriori analytical form for the
wind profile, and to use this in order to study the stability KCZ—r[(VO—C)2¢y—(VO—C)Vy]—G(l—r)=0,
properties of the interface; thus, MilE8] used a logarithmic (3.9
wind profile from turbulent boundary layer theory to model
the wind profile in the air over the ocean. In this example,where C=c/U,,K=k/a,G=g/U%a,V,=U(0)/U,;, and r
the turbulence level in the wind is simply defined by the=p,/p,.
scale height of the wind profile, which in turn simply de-  For a given wind profile, the system then is characterized
pends on how “rough” is the boundary. by the four parametersk(G,V,,r). Parametec measures

In our formulation, we shall also assume the wind profilethe ratio of potential energy associated with the surface wave
to be of simple form and scale distance with respect to theo the kinetic energy in the wind. The Richardson number
length scale of the wind boundary layer. In order to exploredefined in stratified shear flow is not useful in quantifying
the sensitivity of our results to the nature of this wind bound-the stability in our case. However, as will be shown later, we
ary layer, we will examine two different kinds of wind pro- find parameteiG to be a good substitute in describing the
files: the first is the logarithmic wind profilk)(y)=U, effect of stratification on the surface wave instability. In the
+U,ln(ay+1), which is derived from turbulent boundary case of accretion flow on the surface of a white dw@rf
layer theory for the average flow above the sea surface; the 1, while in the case of oceanic waves driven by winds,

second is given byJ(y)=U;tanh@y), which has the more 0.1<G<1.0. Table I lists the values d& for a variety of
realistic feature of reaching a constant finite flow speedphysical conditions.

above the interface. The aim of our linear analysis then is to find the value of
C in the complex plane as a function of these four param-
Il. LINEAR ANALYSIS: INCOMPRESSIBLE CASE eters, and to establish the stability boundaries in the space

. . . . . (K,G,r,V,); note that in our convention, {€}>0 implies
We start with the stability analysis of the incompressible; s : " :
case with constant densities in the two layers. The fluid is!nStabmty (where In{} refers to taking the imaginary part
described by the Rayleigh E.8) within each layer; and _ N
we ignore surface tension for the time being. We solve the A Kelvin-Helmholtz modes and critical layer modes
following equation in each layer: Before solving this problem, some general remarks about
the set of Eqs(3.3—(3.4) are required. We observe that in
the inviscid limit, if C is an eigenvalue, then so@&"; there-
¢=0, Ply-2»=0, (3. fore, we will have a stable wave only if f&}=0. If that is
the case, then at the height wh&g=V(y,,)=C (assuming
with boundary conditiorat y=0) such a height existghe Rayleigh equation has a singularity;
this locationy=y,, is called the critical layer, and is well
discussed in the literatuf@7,26.

The existence of such a critical layer is crucial for the
presence of instability. One can proi&ppendix A that our
system can be unstable only@,=Re[C}=<V,,.,. For the
case thaV,=0, there always exists a point in the flow where
C,=V=V,,.xfor all unstable modes. We denote this point as
a critical layer even itC is complex, i.e.C;=Im{C}#0; and
thus, there is no singularity. However\f,# 0, such a point
might not exist(e.g., if C,<V,). In that case, the only
K2+ Vyy )¢=0 bly_o=1 bly_=0; mechanism that can destabilize the flow would be a Kelvin-

v-C ' y=0—" y=eo Helmbholtz instability. These two kinds of instabilities exhibit
(3.3  very different properties, both in terms of the physical
mechanisms involved, as well as in the mathematical treat-
and the boundary condition at the interface now becomes ment required. Hence, we need to distinguish betwggn
modes becoming unstable due to the discontinuity of the
wind profile (from now on, called KH-modes and (ii)
2In oceanography, such a length scale is referred to as the “roughmodes becoming unstable due to the presence of a critical
ness” of the wind profile. layer (from now on, called CL modes

U
2 yy
ke+ U—c

d’yy_

szCZ_Pl[(U_C)zd’y_(u_C)Uy]_g(pz_pl)za
(3.2)

where we have normalized by setting¢>|y=0= 1.

We scale lengths bg ™2, the characteristic length of the
wind profilé® and the velocity by the reference veloclty.
The dimensionless equation thus reads

byy—
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The KH-modes have been studied for over a centurysolution of Eq.(3.4) will give a complex value ofC. That is,
here, we summarize the results for a step-function wind prothe pressure gradient reaches minimum value not on top of
file and some of the features can also be found for other winthe crests, but rather in front of the crests, where gravity does

profiles[1]. The dispersion relation is given by not act as effectively as a restoring force. In particular, the
) 5 destabilizing force is now nonzero at the nodes of the bound-
p2c°+pi(c+U)“=(p—p1)g/k, (3.9 ary displacement fieldi.e., whereh=0), where the gravita-

whereU is the jump in velocity across the interface betweenfuonal restoring force vanishes, but where the vertical veloc-

py and p,. The pressure perturbatign(c+ U)?, providing ity of the interface is maximum; thus, the forcing resembles

S . T X ... pushing a pendulum at its point of maximum velocity but
the driving force for the instability, is always in phase with pust . . . ;
the wavegand is independent ofx':he wave?/en thp The restomnlmum displacement. Note that in this case, there is thus
) ’ P =lengtn. 1 no cutoff for CL modes corresponding to the wave number
ing force (p,— p1)g/k, on the other hand, is proportional to

. ’ cutoff due to gravity for KH modes.
the wavelength, and so we have instability when the wave- Having discussed the physical mechanisms for destabili-

length is sufficiently small for the pressure to overcome th ation, we now turn to the implications for our choices of

restoring force. In more physical terms, the flow stream Iinesirlitial wind profiles. For wind profiles with/,=0, one no-
above the crests of the perturbed interface wave are com- . ) o =
fices that if we assume, to be real and known, then the
pressed, and above the troughs are decompressed. Accord@oqm lex eigenvalu€ is oybtained by solving Eq3.4)
to Bernoulli's equation, the pressure above the crests is P 9 y 9 ’
therefore decreased, and is increased above the troughs. The >
wave thus becomes unstable when these destabilizing pres- _r= vr +4G(1—r)(K—r¢>y),
sure forces exceed the stabilizing effects of gravity. The dis- 2(K=rdy)

persion relation

which will have a nonzero imaginary component onlyif

- is positive and K—r ¢,)<0. However, the negative real
P1 g(p2—p1 p1p2 2 Sl y fedl
c= i, U=V P b ;U5 (3.6 part ofCimplies that the surface wave would be traveling in
P17 P2 17 P2/ (p1tp2) the direction opposite to that of the wind—this case can be

also shows that the growth rate becomes positive only fo??(CIUd.ed on ph_yS|caI ground@ more rigorous proof is
wave number>g(p2—p2)/(U2p1p,). given |n'Append|x A, where we show th@;>0). Thus, the
The CL modes behave very differently. The solutions Ofmechanlsm that gives rise to the unstable KH modes can be
Eq. (3.3 near the critical layer for small or zex@; have a exclud_ed. 'I_'hus, we con_clude_ t_hat surface waves become un-
singular behavior. The two Frobenius solutionslat the poin tablg n t.h'S case onlly ifa crmcall layer exists. If we use the
wherey=y,, are given by ogarithmic wind profile, we ot_>ta|n unstable waves f(_Jr all
er wave numbers because yr{1) is an unbounded function,
52V therefore a poiny whereC,=V(y) exists for every value of
Y ) z2 , (3.7 C, . This however is not true for the tanh wind profile. Be-
20V ], cause waves witl, >V, are stable an€, (in the absence
of surface tensionis a decreasing function d€, there must

ba=z+

B k2 BV (B, be a lower bound o ,K ., 0O that waves withK <K i,
dp=1+ ?+2¢~7_V (9V)2 + are stable, and unstable otherwise. The valu&gf,, in
Y y cr general, will depend on the exact form of the wind profile. In
92V Appendix B, we find the exact value d&€,,;, for a wind
+ ay—v) ba(2)In|Z], (3.8 profile of the formv=1—eY,
Y= ler
2 2
wherez=y—y,, (subscriptcr means “evaluated at the criti- Kmin:G(l—r)+r—rJ[G(l—r)+r] - )_
cal point”). The singular behavior appears in the first deriva- 1—r2
tive of ¢,. The singularity is removed either becauSe (3.9

=0, in which case, the Frobenius solutions have the same

form buty,, is now complex(so z never becomes zeroor  We remark the following about the previous formula. First of
because viscosity becomes important in this narrow regiorgll, we note that although the previous result holds only for
in which case, the inner solution can be expressed in terms dhe specific wind profile used, it can provide a general esti-
generalized Airy function$26,27). In either case, the basic mate ofK.,;,. Moreover, we note that, unlike the Kelvin-
result is that there is a phase change across the critical layddelmholtz case, in the limit —0K,;, remains finite and
by which we mean that ith=ad¢,+ b, is the solution for equal toG (however, the growth rate goes to zero linearly
the stream function above the critical layer, then the solutiowith r, i.e., KC;~r); this confirms that for small density
below would be¢=(a+imb) ¢, +bde, in the previous for- ratios CL modes dominate. Finally, by writing the wind pro-
mula. Physically, this means that the perturbation wavdile in its dimensional fornU=U;(1—e~®) and taking the
above the critical layer is not in phase with the wave belowlimit a— o (which takes the wind profile to the limiting form
this layer. Moreover, when we apply the boundary condition®f a step functionU=U, for y>0 andU;=0 otherwisg

at the interface, sincéy¢|0 is now in general complex, the we getkmin»=g(1—r)/U? which is different from the result
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Kelvin-Helmholtz instability gives. We therefore conclude  soxio=*p7————— T A R Aan A iaas e
that different limiting procedures lead to different results. i

The situation is more complicated ¥,>0. No critical 25x1074f — 6=02
layer exists forC, smaller thanV,. Hence, modes of suffi- N G=04 1
ciently largeK become stablée.g., there is a upper bound on ;04 - 2:22 ]
K for the unstable CL modgs One notes thatC=V, e omto

=yG(1-r)/K is a solution to Eq(3.4). This solution cor-  Z , g+
responds to the case where the critical layer is right at the
interface. For slower modes than thi€,&V,), a critical
layer will not exist, and therefore the surface gravity modes
will be stable. Thus, CL-unstable modes exist only For
<G(1—r)/Vc2,; this result has been confirmed numerically.
As K is increased, the discontinuity of the wind profile be- Jats e
comes important and Kelvin-Helmholtz instability rises. The o . - 3 s
system therefore will be unstable fé&¢<K and for K K
>Kyn, whereKe, is the upper bound of the CL modes and  zgx10-%f
Kkp Is the lower bound for the KH modes. This implies that i
there is a band of wave numbéfs <K<Ky that corre-
sponds to stable modes, and separates the two unstab
wave-number domains. However, as we will show later, for
some values of the control parameters, this stable region dis
appears, and the two instabilities overlap.

1.0x107%

5.0x1073 [

2.0x1074

Im{C}

B. Small density ratio Y

1.0x10
We are now ready to present results from the linear analy- i
sis for the logarithmic and the tanh wind profiles. The exist-
ing literature has primarily covered the case of smaWith
the other parameters assumed to be of order one. In contras
we are interested in covering a wider range of the control

parameters, and thus provide a complete description of the K
full dispersion relatiorC= C(K). We therefore briefly sum- FIG. 1. Imaginary part of for r=0.001(a) logarithmic wind

marize M',Ies’ results and mov_e on t_o _the general case. profile, (b) tanh wind profile. Note that the growth rate is given by
Assuming the mass density ratiois a small number K Im{C}.

(which is true for the air-over-water cgsend the other pa-
rameters are of order one, Milg2] expanded the eigenfunc-
tion and the wave velocitZ with respect tar

ol

1
Im(Cy) =52 (Vo= Co)*Im{dy o}
d=r o+ r2¢,+r3p,+ (higher-order terms
C=Cqy+rC;+r2C,+ (higher-order terms -

(vo—co>2<a§v
Vo~ Co)
(3.10

yr 2
2K &yv)cr|¢cr| 1 (313)

one then obtains the zeroth order solution as a linear gravityhere the last relation is obtained by multiplying £g.3)
wave with constant amplitude and phase sp€gé VG/K.  with the complex conjugate of and taking the principal

At first orderO(r), one finds value integral, with the contour going below the singularity;
the subscript tr” means evaluated at the critical point.
92V The first case we examine is when the velocity at the
a§¢o— K2+ Voy C0> $0=0, (3.11 interface is zero. This simplifies things slightly because, as

we discussed before, there are no Kelvin-Helmholtz unstable
modes in this case. The dispersion relatiof @tK)] is
2KCoCy— (Vo= Co)2dypo+ (Vo—Cp) +G=0. shown in Figs. (&) and 1b) for the logarithmic and for the
(3.12  tanh wind profile for various values @. The only differ-
ence between the two wind profiles appears at small wave
The asymptotic expansion breaks down at the critical poinhumbers: the tanh wind profiléwhose asymptotic wind
y=Y,, since to first ordeC is real. Using the phase change speed is boundg¢ddoes not permit waves traveling faster
of i rule across the critical layer from theofg27], Miles  than the wind to become unstable. For this reason, there is a
obtains the growth rate of the perturbation at leading ordecutoff which can be found in our smallapproximation to be
inr: at K= G for the tanh wind profile.
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Next, we look at the case wheié&>0. Now we have 0.0030 T AR RRRRRRAN RARARRAN AR ]
both modes present. As discussed before, the CL modes al 1

stable for wave numbeK=<Kc =G(1-r)/V2. The KH T o0
modes will appear whe¥(,K/G increases to order i/If we e
denote byKyy the minimum value oK that the KH insta- 0.0020 L E:g:
bility is allowed, then for the KH modes in the smallimit o acto

K scales as 1t/ and one can perform a regular perturbation &
expansion for largé, smallr (Appendix Q to find

Im{

L N L[ GNVe TNV, 0.00101; .
Hlo=—K-3 Vo—C 4|V,—C (v,-C)?
T (3.14
OAOOOO’L’"‘
G o] 1 2 3 4 5
C=1r e VerrVot-, ¢

and

K _o1 VoV o+ G)+
KH_WF(0|0 ) :

The above resembles the result for a step-function windg ©0z0
profile except for small corrections due to the nonconstant
velocity profile. Thus, for small density ratio, the difference
between the two modes is as discussed in Sec. Il A. We will
discuss the two instabilities in more detail in the O(1)
case.

C. Large density ratio

For large density ratio, we solve the system of Egs3)—
(3.4) directly. We focus on the instability properties of spe-
cial interest, such as the maximum growth rate, the wave-
length of the fastest growing mode, and the dependence o
the the stability boundaries on the parameters of the model
First, we present results for cases where the wind has zen
velocity at the interface \(,=0) in Figs. Z2a)—2(c) and
3(a)—(c). We solve Egs.(3.3)—(3.4 numerically using a
Newton-Ralphson method; the results for both wind profiles
logarithmic and tanh are presented together for comparison
The plots suggest that for small enouglthe dependence on
r is linear (e.g., ther=0.001 case is proportional to the
=0.01 case by exactly a factor of 10.@or larger values of
r, the dependence is stronger than linear, and the sniéller
modes seem to become more unstable.

We have repeated these calculations for the 84s€0;
the results for the In) are shown in Figs. @-4(c) and ) S .
5(a)—5(d). In this case, we have to distinguish again between FIG. 2. Imaginary part ot for a logarithmic wind profile(a)
the two different kinds of instabilities. The distinguishing " =0-01.(b) r=0.1, and(c) r=0.5.
factor for the Kelvin-Helmholtz instabilitfymost prominent
in the discontinuous wind profilés that the growth rate is and they do overlap for some parameters. The criterion for a
positive only for wave numbers larger than some lowercritical layer to exist in this caseyG(1—r)/K=V,, pro-
bound. However, the critical-layer instability, which owes its vides a upper bound oK for unstable CL modes. An exact
presence to the phase change in the critical layer, has eolution for the upper boundary is not available, but the
upper bound in wave number for instability. Thus, in generalasymptotic behavior of the second boundary, for ldfgend
there exists a band of wave numbers for which both modefor smallV,, [cf. Eq.(3.14)] suggests that it takes the form of
are stable. The difference between small and large densit§~ 2 thus, the two stability boundaries are not expected to
ratios is that the two instabilities are not necessarily separateyoss in the large-wave-number limit. However, the two

Im{C}
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FIG. 3. Imaginary part ofC for a tanh wind profile(a) r
=0.01,(b) r=0.1, and(c) r=0.5.

boundaries do meet for sm&lland largeV,, as can be seen

in the stability boundary plots Figs(#—6(c).

D. General features of the CL instability

PHYSICAL REVIEW EG5 026313
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FIG. 4. Imaginary part ofC for a logarithmic wind profile and
V,=1.0(a) r=0.01,(b) r=0.1, and(c) r=0.5.

low us to identify the most unstable modes in different pa-
rameter regimegand thus physical situations-urthermore,

the maximum growth rates give us an estimated time scale of
the nonlinear evolution, and the length scale of the fastest-

The main goal of this paper is to establish the relevance ofjrowing mode allow us to estimate the thickness of the mix-
the critical-layer instability under various astrophysical oring layer as instability grows; this allows us to provide rough
geophysical conditions. Results from our linear analysis alpredictions of the physical conditions for which more exact
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fully nonlinear calculations should be carried out to establish In Figs. 1@a) and 1@b) we have plotted the wave number

the mixing zone properties more precisely. With this motiva-of the most unstable modevhose growth rate corresponds

tion in mind, we show here how these two quantities behavéo Eq.(3.15] as a function ofc. We see that the wavelength

as functions of the physical paramet&g, anda. of the most unstable mode highly depends on the wind pro-
In Figs. 7a)—7(b), we have plotted the maximum growth file length scale. In particular, for fixed density ratipn ;,«

rate y=Im{CK}nax Of the perturbation as a function of the ~a*; the dependence on gravity or oris weaker.

control paramete® for the two wind profiles and for differ-

ent values of. It is clear in all cases that there is an expo- IV. SURFACE TENSION

nential dependence da for G=1. This might be expected )

because increasing gravity leads to an increase of the real FOr the sake of completeness, we have also examined the

part of C; therefore, the imaginary part @, that falls expo-  CaS€ in which surface tension at the density interface is
L] ] 7 . 3 . . .
nentially with the distance from the critical layer, will have included:We again assume a wind shear profile of the form

an exponentially smaller component at the interface. Furthetn(y+1) and tanhy). The only change in our set of equations

more, as the density ratioapproaches unity, the dependenceto solve is then an additional term in the boundary condition,

on gravity becomes weaker. We plot the slopes of the curve§d- (3-4- Hence,

from Figs. 7 as a function af in Fig. 8. The dependence on 2 2 A1 T2

[ is roughly linear(deviations from linearity will not be im-  <C ~ "L(Vo=C)%dy=(Vo=C)Vy ] = G(1=1) = TK"=0,

portant since only takes values in the range<0 <1) (see (4.1)

Fig. 9. This allows us to write an empirical scaling law for _ 2 . ;
where T=cal[p,U7)] and o is the surface tensiono(

the dependence of the growth rate on the control parameterg.Bz/(zw,uK) for the case of the magnetic fie[d]). We

'ymaXEKCi:ﬁre_a(l_r)G- (3.19
For the logarithmic wind profile, we found=2.8 andg 3We note that a magnetic field in the lower fluid, whose direction
=0.10; while for the tanh wind profile we foun#=2.9 and is aligned with the flow, would lead to an equivalent treatneate,
B=0.18. for example[1] Sec. 106.

026313-9



A. ALEXAKIS, Y. YOUNG, AND R. ROSNER PHYSICAL REVIEW EG5 026313

10.00F T T E 100 ———————— ————————r—r 5
r Tl KH unstable (3) 1 F
F E F (a) i
B 1 07 E
1072 -
E r=0.5 ]
% 107 E
10_4 E E
E r=0.1 ]
1075 -
L CL unstable E g
L r=0.01 ]
0.01 ] e E— ol Lo e I
0.1 1.0 ‘ 10.0 100.0 0 1 2 3
G
10.00 = T T E X S R ]
I KH unstable  (b) ] E E
- T . C (b) ]
X ] 07
_E 10_2 E 3
7 z 1073 3
_ H E 3
o i 1
E 0t 3
] 107 =
CL unstable i E g
0.01 e e e 1078 ]
0.1 1.0 10.0 100.0 0 1 2 3
K G
10.00F l T 3 FIG. 7. Growth rate of the fastest growing mode as a function of
F KH unstable () ] G (a) logarithmic wind profile,(b) tanh wind profile.
= | or 5
L CL unstable : 1 [ n
0.01 L M| L N | . C ]
0.1 1.0 10.0 100.0 o - i
K gt g
o [ ]
FIG. 6. Stability boundaries fai@) r=0.01, (b) r=0.1, and(c) C ]
r=0.5. -2 -
show the resulting solutions, namely, the dispersion relations
in Figs. 11a)—-11(c) and 12a)-12c). As expected tension E 1
decreases the growth rate and becomes important only t ¢ ., .~~~ | ]

large wave numbers. 0.0 0.2 0.4 0.6 0.8
An important result, which we have not previously seen '

derived, is that in the small density ratio limit, the real part of  FIG. 8. Slopes of the previous graph as a function #.g., the

C (to zeroth order irr) is Co=+G/K+TK, which has its dependence of the exponent in Eg.15 onr].

o
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minimum valueC,,;,=2(GT)¥* at K=/G/T. Thus, for vy 00 ]
the case of a bounded wind profilguch as the tanh profile W : ¢ 3
there is a minimum value df);, given by C,,,, so that a + : o .
L. . . P « F +to Af
critical layer can exist. We remind the reader that a similar § F Lte® T
minimum velocity bound also exists for the Kelvin- * | 589 © jant 4 E
. e . . F A N
Helmholtz instability, and is given by : V53 ant 3
o f
F +3° AAAAA oo DDDE‘DDDDDDE
2 S O AnA gobooao o o ]
U= g0~650 cm/sec 'faegbooo? E
"V p : §
. . . ] L s 3
where we have retained only terms of first order.ifror the 0 1 2 3

CL case, we have, instead,

go
2\/—=20 cm/sec,

FIG. 10. The dependence of the wave number of the fastest
growing mode onG (& logarithmic wind profile,(b) tanh wind

u= profile.
P2

i ; ; V2 )
which differs from the previous bound by a factor ¢f. K2=K?| 1- S _%P K.=G/C2
(The numerical values shown here are derived for the case of cz)’ S ap’ 9 s’
air blowing over watey.This illustrates the fact that for low-
wind conditions, the CL instability dominates the KH insta- Cs=cs/Uy
bility for driving water surface waves.

and
V. COMPRESSIBLE CASE
. . i . & KVes \/P/P|y=o+ .
Finally, we consider the compressible case. We will con- Vg=—————  with r=ply-o+/ply=0--

sider a compressible fluid in the upper layer with sound “

speedcg(y) and an incompressible fluid below. The dimen-
sionless equations we have to solve now are

We will assume for simplicity an adiabatic atmosphere,

~ o Po U(1-7)
KtK, 02V p=plyeol 1= (y—1)—>gy (5.3
Rp—| k1G22 29 B8y 0 (5. e 7P
P|y:0+ Ve Ve
2
Y S S P=Pl,_o| —| . 5.4
KC2=r[V3ly-0dyd—Valy-0tyValy-ol - G(1-1) =0, ly=ol 5 54

(5.2)

where

This assumption, which is commonly used in the atmospheri-
cal sciences to simplify the physics involved, has the advan-

026313-11



A. ALEXAKIS, Y. YOUNG, AND R. ROSNER PHYSICAL REVIEW EG65 026313

0.0010 T T T T T T T T T T T 0.0008 T T
0.0008 — i
L 4 0.0006 —
0.0006 — _
> 1 5
&E)/ i E 0.0004 —
0.0004 _ |
i 0.0002 -
0.0002 - F
r b 0.0000
0.0000 0
6
0.008 T T T T T
0.010 . . . , . . . , . . . I |
T=0 : L
o008 e T=0.1 _| L
_____ T—02 | 0.006
--------- T=0.3 _ r
0.006 — . r
i o
g i E’ 0.004—
£ | L
0.004 - i
1 0.002 -
0.002 -
] 0.000 s
0.000 0 2 4 6
0 2 4 6 K
K
0.08 T T
. L _
T=0 ] I
............... T=0.1 _ 0.06 —
————— T=0.2 ] F
————————— T=0.3 ] L
i s i
| 7_5/ 0.04—
1 0.02-
: 0.00
- 4 0
0 2 4 6 . . . .
K FIG. 12. Imaginary part ofc for a tanh wind profile withG
. L ' . =0.5 in the presence of surface tens{@hr =0.01,(b) r=0.1, and
FIG. 11. Imaginary part o€ for a logarithmic wind profile with (©) r=05 P en ®)

G=0.5 in the presence of surface tensi@h r=0.01, (b) r=0.1,
and(c) r=0.5.

with small values ofG, so that the pressure scale height is
tage thatk;+Ks=0, so our equation becomes by one orderlarge and the breakdown of the adiabatic assumption at val-
less singular, and therefore becomes easier to solve. ues ofy~K_* will not affect us either.

We will not deal here with supersonic flows, since in most  The dispersion relation for different values©{ and for a
astrophysical realms in which interfacial wave generatiortanh wind profile is given in Figs. 18 and 13b). Com-
plays an important roléviz., on white dwarf surfacesthe  pressibility, as it can be seen from the figures, decreases the
relevant flows are thought to be subsonic; for this reason, wgrowth rate. This is an expected result, since our system has
will consider only the tanh wind profile. We shall also deal now more degrees of freedofe.g., now the perturbation
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goeT T T T essary before the study of the nonlinear regime. An impor-
@ (G /U =int 1 tant result also derived from our analysis, allowing us to
Tt (G =so . make predictions on the importance of the instability and on

mmees (¢, /0" =30 1 the nonlinear development, is the scaling of the growth rate
004k = (¢, 70y =10 _ with the parameter& andr in Sec. Il D; our results show
—— = (R =S | that for (1-r)G>1, strong mixing is not expected. This

result has an interesting implication: although, as expected,
strong gravity(e.g.,G) inhibits mixing, one might still ex-
perience strong instability in the large case if the density
ratio of the interface is close to but not equal to unity. Fi-
nally, we investigated the effects of surface tension and com-
pressibility. With the inclusion of surface tension, we ob-
tained a lower bound obl ., for the instability to exist. We
ool o/ T— also found that for subsonic winds, the instability growth rate
0 1 2 3 weakly depends on the Mach number.
As we have shown, there are significant differences be-
o0 A T tween the CL and KH modes, both in the parameter ranges in
L ) T (Co/U)? =inf ] which the instability can occue.g., the stability boundarigs
o (/up=so 1 and in the magnitude of the growth rate; these differences

(Cs/U)2 =10 4 . . . .
— (Co ) =5 ] can be expected to result in different nonlinear evolution of
(Ca/V)2 =2 . the underlying physical system. For example, it is well

1 known that CL instability in the air-over-water case is re-
] sponsible for generating waves for winds of magnitude be-
— low the threshold for which Kelvin-Helmholtz instability
| exists|2].

An important aspect not discussed as yet is the case in
which the spatial density variation is smooth instead of dis-
continuous. In our simplified model of a sharp interface, the
distinction between the CL and KH modes emerges naturally
from our analysis, simply based on the existence or absence
of a critical layer. In the more realisti@strophysical case,

K however, sharp velocity and density gradients do not exist.
For this reason, we need to generalize our definitions for the
two kinds of modes. We proceed by considering the physical
mechanisms involved in the instabilities: In the KH case, as

mentioned above, the pressure perturbations are in phase
stores thermal energy as wellVe conclude, however, that yyith the gravity wave amplitude, and the wave becomes un-

the deviation from the incompressible case is not very largegiaple when pressure overcomes the restoring féece.,

~~~~~~~~~~~ (¢, /vy =2

Im{C}

0.02—

.15

0.05—

0.00

FIG. 13. IM{C} for r=0.1 for the compressible case) G
=0.1,(b) G=0.01.

even for relatively strongbut still subsonig winds. gravity). An immediate consequence of this is that when the
restoring force is overcome, it no longer plays a role in the
VI. DISCUSSION AND CONCLUSION wave propagation, and therefore, the real part @ inde-

pendent of the restoring force, i.e., independeng.ofhis

In this paper, we have explored the linear instability prop-argument can be confirmed by examining the results for the
erties of wind shear layers in the presence of gravitationastep-function wind profile, where we see precisely the pre-
stratification. Our principal aim was to explore the full pa- dicted behavior.
rameter space of the solutions, defined by the four param- In the CL case, it is instead the out-of-phase pressure
etersK (the perturbation wave numberG (related to the component that drives the wave unstable; in this case, the
Richardson number, and measuring the relative energy comlestabilizing pressure force does not strongly modify the re-
tributions of the gravitational stratification and the wind,  storing force(here, again, gravily Hence, the real part af
(the velocity discontinuity at the density interfacandr (the  is only weakly modified when the mode becomes unstable,
density ratig. and therefore, the wave continues to propagate with its

We have distinguished between the two different kinds of‘natural” speed while going unstable. These properties of
modes(Kelvin-Helmholtz modes and critical layer modes wave destabilization, which affect the dependence of the real
existing in our paper and constructed stability boundaries fopart of ¢ on the restoring force, can therefore be used to
those, as well as the dependence of these boundaries on ttiistinguish between the CL and KH modes. Thus, in the
given parameters. As we will discuss later, the nonlinear demore general case, we shall refer to the modes that become
velopment of the instabilityand therefore mixingwill cru- unstable due to an in-phase pressure component as KH
cially depend on the kind of modes that become unstablemodes; their propagation speed is independefbioat most,
therefore, an investigation of the stability boundaries is necweakly dependent gnthe restoring force. In contrast, we
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shall refer to the modes that become unstable due to an outie issues relevant to the nonlinear regime next.
of-phase pressure component as the “resonant mo@asie Finally, we comment on the possible nonlinear develop-
the name “critical layer” is not appropriate for the general ment of the two types of modes we have studied. The non-
case; their propagation speed depends strongly on the restolinear evolution of a KH mode is in fact well studied in the
ing force? literature[28—3Q and is known to lead to a mixed region of
By extrapolating our results to the smooth density varia-Width roughly equal to the wavelength of the mode; indeed,
tion case, we conclude that KH modes are likely to appear ifhixing proceeds in this case untitoughly speaking the
cases in which the inflection point of the wind profile, or the Richardson criterion holds throughout the flow. In the case of
region in space in whick) changes, is at the same height asthe CL modes, the nonlinear evolution is affected by thg fact
the region where the density changes. We note that the Kithat a length scale enters the problem, namely, the height of
instability, as defined in Sec. Il A, is a limiting case of such the critical layety, which can be substantially larger than the
wind profiles. In contrast, resonant modes are more likely tgnode wavelength. Thus, one might expect that mixing pro-
appear when the regions of velocity and density change arggeds until heights of ordey. are reached by the mixing
well separated, where the coupling between an existing graJayer, and therefore, we expect more extensive mixing.
ity wave and a critical layer above can lead to a “resonant"Clearly, the next steps in this study involve investigation of
behavior as described above. This expectation is supportéfe Weakly nonlinear regimggo examine supercriticality and
even further by the observation that in the case of a smoothIF_)OL“?S'ble saturation of the modesis well as the fully non-
stratified fluid, the stratification term becomes dominant inlinear regime(through numerical simulationg31]. A par-
the critical layer and the phase change is no lorigeibut ticularly mte.restlng guestion is to what extent the expected
depends on the Richardson number. wave breaking of the CL modesf. [22]) can lead to en-
We also note that, in the past literature on shear-flow in'@nced mixing at the shear-density interface.
stability, much attention is focused on the KH instability ac-
cording to our definition. For example, models witth ACKNOWLEDGMENTS
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From our results and the ranges of our physical param-

eters in Table I, we can estimate the growth rates of the ,

wind-driven waves as well as their typical wave length. For APPENDIX A: EXTENSION OF HOWARD'S SEMICIRCLE
the astrophysical problem we are interested in, we conclude THEOREM

that the growth rate can be as large as.G ! with typical We begin from

wave lengths of the order af 1; these results were obtained
using the empirical formula€3.15 and(3.9). For our moti- , . Vyy

vating astrophysical application, i.e., the nova mixing prob- byy—| K™+ V—C $=0, ¢’|y=0:1’ ¢|y=w:0*
lem, the results shown in Fig. 6 are especially important. (A1)
First, we note that the interface between the stellar surface

(at the typical density,=3800 g cm3) and the accreted and

envelope(at the typical densitp; =400 g cm ) is a ma- 5 ) ~

terial (gaseousboundary at which one would not expect any KC¢—r[(Vo=C)¢y— (Vo= C)Vy] -G =0,

free slip. Thus, we would expeét,=U,/U; [in, for ex- (A2)
ample Eq.(1.1)] to be very small, and essentially zero. Con- ~ . . ~ .
sider then panglb) of Fig. 6 (for whichr takes on the astro- whereG |s~the restoring forcgG=G(1—r) for the simplest
physical relevant valle we see that for smalV,, the casd, 0<G,0<K, and we assum&;#0. LetVg=V—-C,
interface instability is completely dominated by the reso-and lety=¢/Vg andD=4, . Note that

nantly driven modes; the classical KH instability only ap- 5

pears at very large wave numbers, e.g. very short wave- VGD¢_VG¢DVG:V3¢D¢'
lengths, and therefore is unlikely to matter in the novar
mixing problem. To go beyond this will require further in-
vestigation of the nonlinear evolution of the CL instability
and is currently under investigation; more information on the
astrophysical model is provided j22]. We discuss some of From Eq.(Al), we obtain

he boundary condition can then be written as

r'ViDy=KC?-G. (A3)

VD24 2DVgD y— VK2y=0; (A4)
“The words “weakly” and “strongly” are used here because it is
expected that there is a smooth transition from the one case to tH®ultiplying the last relation with/g¢* and integrating, we
other as we change our physical parameters. obtain
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Y*VeD?y+ ¢* DVED ¢ — VEK?[y]*=0, KICP+& (=,
0 —2=rf [VZ-|CllQdy  (A9)
so that Vgl 0
D[ #VE&D ] —V&|Dy|>— VEK?|y|?=0 and
and C2+C2<VZ,.,, (A10)

% which is the sought-for result.

~[y*VAD Yo~ | VALIDY|+ K7 yfIdy=0;

0 APPENDIX B: LOWER BOUND ON THE CL-UNSTABLE
using the normalization condition, and denoting Qyy) MODES

=[[Dy|+K?|y|*]=0, we then have Consider the wind profiley=1—e™Y; then Egs(3.3) and
(3.4 become

1 V2 Kcz_é fw(V )ZQd
< VG =T G Ys _
VE Vé 0 2 e _
byy—| K= " C $=0 (B1)
so that e
Kc2_é B - , . and
IAE —_rfo (V=C)"Qdy. (A5) C2—r[C2¢,+C]—G(1—r)=0. (B2)
Taking the imaginary part, we obtain We are interested in the value &f for which our system
becomes marginaly unstable. From the extension of
K(2C,C;) o Howard's semicircle theorem to our case we know that for
= J’ 2Ci(V—-C,)Qdy C, greater tharv,,, ., the system is stable, so the instability is
Vel 0 expected to start wheB@=V,,,,=1. Using this value folC
ke we obtain from Eq(B1)
r o0
|vG|2:rfo (V=CrQdy. (A6) Byy— (K2+1)$=0; (B3)
Therefore, therefore,p=e Y'K"*1 and from Eq.(B2) we then have
0<C,<Vax (A7) K=r[—VK?+1+1]-G(1-r)=0, (B4)

i.e., a wind cannot generate waves traveling faster than it¢/hich by solving gives us
maximum speed. Now, taking the real part, we obtain

_G(L=r)+r=r{[G(1-r)+r]*+(1-r?)

min—

K(C2-C?)-G Joc 1-r?
_— = V2—2VC,+C?—C?
|VG|2 r o [ +Cr—Ci]Qdy, (B5)
(A8) Numerical integration confirms this result.

or

APPENDIX C: KH MODES IN THE SMALL p,/p, LIMIT
2_ A2y & " "
K(Crlvcrz) G_ _r{f V2Qdy— Zcrf VQdy We begin with the Rayleigh Eq3.3) for largeK
G 0 0
\Y,
“ ¢yy_(K2+i (,25:0.
+(ci-ch | Qdy}, v=¢
0

Setz=Ky and e=1/K; we then have

or

V,A€z)
~ — 22277 | p=
K(C?-C? -G F C, Pz (1+6 V(ez)—C)¢ 0
— 0 =T V-Qdy—2C, >
|VG| 0 r|VG| or
e o] 2 _
+Crf0 Qdy} +(C5—Ci2)f0 Qdyl, ¢z [11€F(e2)]=0,

whereF (X) =V, Ax)/[V(x) — C]. Expanding¢ in powers of

so that €2,
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b= o+ 2P+ et ...,
we obtain, to first order,
po=€"7%
at the next order, we have

b1~ p1=F(€2) ¢y,

which has the solution

¢1=f G(|z=X)F(ex) o(x)dx+Ae ™%,

whereG=— e *~7 is the Green’s function andlis a con-
stant to be chosen so that will satisfy the boundary con-
dition at zero

11z
¢1(z)=—§f e 7 Xe *F(ex)dx
0
1 o0
—EJ e X" 2eXF(ex)dx+Ae?
z

1 z 1 ®
- —e*ZJ F(ex)dx——eZJ e 2F(ex)dx
2 0 2 z

1 ©
+ —f e ZF(ex)dx|e?

2Jo

1
= — —eiz

z * —2w
5 fOF(ex)dx+ fo e "F[e(w+2z)]dw

—f e 2F(ex)dx

0

(w

=X—2).

We are interested in the first derivative éfat zero, so we
can obtain

dey

dz

e 2Fle(w+z)]dw

+
© g

—f e 2F(ex)dx
0

z=0

=——g %

Foy+ 3
2 O+ 57

ezzf e 2F( ex)dx)
z

z=0

— 1 —Z

F(0)+2fxe2XF(ex)dx—F(0)}
0

z=0

PHYSICAL REVIEW EG65 026313

= —e‘zj e 2F(ex)dx|,—o

X i 21<X)2 "
F(0)+e5F'(0)+€25| 5| F(0)

Il
|
© 3
CD\
x
—

— ZR(0)- S R (0)+ 2 2F(0
== 5F(0)=7€eF (0)+ g eF"(0)+---.

Therefore the final result for the first derivative ¢éfat zero
is

1 V'
= — — -1
¢y|z=0 K=K 2 VO_C
E o VII/|O B V//|Ovl|o o
4 Vo—C  (v,—C)?

Applying the boundary conditio3.4) at the interface,

KC2=r[(Vo=C)?dylo— (Vo= C)V'[g] - G(1~T)=0,

we obtain

0

2__ | _ _ 2__ *ll _ "
KC2=r| =K (Vo= C)2=K 12(V,=C)V

4= (Vo—C)V'|o| - G(1—r1)=0.

ScalingK andC so thatk =k/r andC= \rc, and substitut-
ing we have

1
kc2+k(Vy—\re)2+ rzkflz(vo— Jre)V|o+r(V,

—Jre)V'|p—G+rG=0.

If we expandc in powers ofr /2,

C=Co+Cyar Y2+ cyr+cgpr 32+ -+,

we can obtain each term separately. Here, we give only the
first few terms

Coi  ke2+kV2=G=c,=G/k—V?;

Cqp- ZkCoCl/Z_ZkV0C0:02Cl/2: VO )

i KC3 ot 2kCoCq + ke — 2KVyCqppt kGi+ VoV o+ G=0

3 1
201:_500_ EVOV |O/C0'

026313-16



SHEAR INSTABILITY OF FLUID INTERFACES . .. PHYSICAL REVIEW E 65 026313

[1] S. ChandrasekhaHydrodynamicgDover, New York, 1962 [19] A. Kercek, W. Hillebrandt, and J.W. Truran, Appl. Acou387,

[2] J. Miles, J. Fluid Mech3, 185(1957. 379(1998.
[3] M.J. Lighthill, J. Fluid Mech.14, 385(1962. [20] A. Kercek, W. Hillebrandt, and J.W. Truran, Appl. Acou345s,
[4] J. Miles, J. Fluid Mech6, 568 (1959. 831 (1999.
[5] J. Miles, J. Fluid Mech6, 583 (1959. [21] R. Kippenhahn and H.-C. Thomas, Appl. Acou$B, 265
[6] J. Miles, J. Fluid Mech13, 433(1962. (1978.
[7] J. Miles J. Fluid Mech30, 163 (1967). [22] R. Rosner, A. Alexakis, Y. N. Young, J. W. Truran, and W.
[8] L.N. Howard, J. Fluid Mech10, 509 (1961). Hillebrandt, Astrophys. Jto be published
[9] J. Miles, J. Fluid Mech256, 427 (1993. [23] R. Rosner, Y.N. Young, A. Alexakis, L.J. Dursi, J.W. Truran,
[10] J. Miles, and G. lerley, J. Fluid. MecB57, 21 (1998. A.C. Calder, B. Fryxell, K. Olson, PIM. Ricker, F.X. Timmes,
[11] P.A. Davis, and W.R. Peltier, J. Atmos. S8B, 1287(1976. M. Zingale, and P. MacNeice, Behav. Bidl97, 8106(2000.
[12] S. Starrfield, W.M. Sparks, and J.W. Truran, Astrophy8).  [24] J. P. Cox, and T. R. GiuliStellar Structure(Gordon and
247 (1974). Breach, New York, 1968 Vol. 182.
[13] S. Starrfield, J. Truran, and W.M. Sparks, Astrophys225, [25] G. Chimonas, J. Fluid MecH3, 833(1970.
186(1978. [26] C. C. Lin, The Theory of Hydrodynamic Stabili(€ambridge
[14] S. Starrfield, J. Truran, W.M. Sparks, and G.G. Kutter, Astro- University Press, Cambridge, England, 1955
phys. J.176, 169(1978. [27] P. G. Drazin, and W. H. Reidilydrodynamic StabilitfCam-
[15] R.K. Wallace and S.E. Woosley, Astrophys43, 389 (1981J). bidge University Press, Cambridge, England, 1981
[16] S. E. Woosley, inNucleosynthesis and Chemical Evolution [28] G.M. Basset, and P.R. Woodward, Astrophys.44l1, 582
edited by B. Hauck, A. Maeder, and G. Magri€eneva Ob- (1995.
servatory, Sauverny, 1986 [29] G. Bodo, S. Massaglia, P. Rossi, R. Rosner, A. Malagoli, and
[17] A. Shankar, W.D. Arnett, and B.A. Fryxell, Astrophys.3R4, A. Ferrari, Appl. Acoust303 281(1995.
L13 (1992. [30] P.E. Hardee and M.L. Norman Astrophys.334, 70 (1988.
[18] A. Shankar and W.D. Arnett, Astrophys. 433 216 (1994. [31] Y. N. Young, A. Alexakis, and R. Rosnéunpublishegl

026313-17



