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Inviscid invariants of flow equations are crucial in determining the direction of the turbulent energy
cascade. In this work we investigate a variant of the three-dimensional Navier-Stokes equations that
shares exactly the same ideal invariants (energy and helicity) and the same symmetries (under rotations,
reflections, and scale transforms) as the original equations. It is demonstrated that the examined system
displays a change in the direction of the energy cascade when varying the value of a free parameter
which controls the relative weights of the triadic interactions between different helical Fourier modes.
The transition from a forward to inverse cascade is shown to occur at a critical point in a discontinuous
manner with diverging fluctuations close to criticality. Our work thus supports the observation that purely
isotropic and three-dimensional flow configurations can support inverse energy transfer when interactions
are altered and that inside all turbulent flows there is a competition among forward and backward transfer
mechanisms which might lead to multiple energy-containing turbulent states.
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In turbulence the energy cascade direction determines
the macroscopic properties of the flow, leading to a finite
energy dissipation rate in the case of a forward cascade
(from large to small scales) or to the formation of a
condensate in the case of an inverse cascade (from small
to large scales) [1]. It has been long thought that the cascade
direction is determined by the dimensionality and by the
ideal invariants of the flow. Two-dimensional turbulence
possesses two sign definite invariants, the energy and the
enstrophy. Energy is transferred backward to larger scales
while enstrophy is transferred forward to the small scales.
In 3D turbulence, energy is sign definite, while the second
invariant, the helicity, is sign indefinite. As a result, helicity
does not impose any local or global constraints and it is an
empirical fact that in 3D turbulent flows both energy and
helicity are transferred to small scales [2,3].
Other systems develop a more complex phenomenology;

e.g., flows in thin layers, in a stratified medium, in the
presence of rotation or of magnetic field show a quasi-2D
behavior [4–13] and display a bidirectional split energy
cascade: part of the energy goes towards small scales (as in
3D) and part to the large scales (as in pure 2D flows). This
phenomenon has also been observed in recent experiments
[14–16] and in atmospheric measurements [17]. The reason
for the appearance of an inverse energy flux is ascribed to
the presence of (resonant) waves or of geometric confine-
ment that favor the enhancement of quasi-2D Fourier
interactions over the 3D background.
In this work we study a model system for which the

interactions in the Navier-Stokes equations (NSE) are
enhanced or suppressed in a controlledwaywithout reducing

the number of degrees of freedom, altering the inviscid
invariants, or breaking any of the symmetries of the NSE.
Our study is based on the helical decomposition [18–21] of
the velocity field u, that in terms of its Fourier modes ~uk is
written as ~uk ¼ ~uþkh

þ
k þ ~u−kh

−
k, where h

�
k are the eigenvec-

tors of the curl operator ik × h�
k ¼ �kh�

k . In real space the
velocity field is written as u ¼ uþ þ u−, where u� is the
velocity field whose Fourier transform is projected to the h�
base. It is easy to realize that, in terms of the helical
decomposition, the nonlinear term of the 3D NSE is split
in 4 (8 by considering the obvious symmetry that changes the
sign of all helical modes) possible classes of helical inter-
actions, corresponding to triads of helical Fourier modes
ð ~u�k ; ~u�q ; ~u�p Þ, as depicted by the four triadic families inFig. 1.
In our simulations we change the relative weight among
homochiral triads (class I) and all the others by introducing a
factor 0 ≤ λ ≤ 1 in the nonlinear evolution. We show that by
using thisweightingprotocol the turbulent evolutiondisplays
a sharp transition, for a critical value λc, from forward to
backward energy transfer but still keeping the dynamics fully
three dimensional, isotropic, and parity invariant. It was
shown in Ref. [21] that a generic single homochiral triad
(from class I in Fig. 1) always leads to an excess of energy
transfer to large scales. The transfer direction of triads of
class II depends on the geometry of the three interacting
modes while classes III and IV always transfer energy
forward. In Refs. [22,23] it was shown that if the NSE is
restricted to all homochiral interactions (class I), it displays a
fully isotropic 3D inverse energy cascade. In Ref. [24], a
system that transitioned from the NSE to that of homochiral
triads [22,23] was investigated by introducing a random
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decimation of modes with negative helicity with a varying
probability, 0 ≤ α ≤ 1 (α ¼ 0 being the original NSE and
α ¼ 1 being the system of homochiral triads). In that study,
the transition from forward to inverse energy cascade
happens in a quasisingular way such that the inverse cascade
exists only at α ∼ 1, demonstrating that even if only a small
set of interactions among helical waves of both sign are
present (classes II, III, and IV), the energy transfer is always
forward. Similar conclusions were reached in Ref. [25],
where the amplitude of the negative helical modes was
controlled by a dynamical forcing.
In this work we investigate a variant of the original

NSE obtained by introducing different weighting of the 4
helical-Fourier classes, such as to smoothly interpolate
from the full NSE to the reduced version [22,23] where
interactions among the uþ and the u− are forbidden, but
without removing any modes. In particular, we evolve the
following system:

∂tu ¼ P½N � − νΔ4u − μΔ−2uþ F; ð1Þ

where ν is the coefficient of the hyperviscosity term and μ is
the coefficient of the energy sink at large scale needed to
arrest the inverse cascade of energy (if any).P is a projection
operator to incompressible fields. The nonlinearity N is
defined as N ¼ λðu × wÞ þ ð1 − λÞ½Pþðuþ × wþÞ þ
P−ðu− × w−Þ�, where w ¼ ∇ × u is the vorticity, and P�
stands for the projection operator to the incompressible
helical base, with u� ¼ P�½u� and P ¼ Pþ þ P−. This
model, proposed in Ref. [26], is graphically summarized in
Fig. 1. For any value of λ the inviscid system conserves
the same quantities as the 3D NSE, namely, the energy
E ¼ 1

2
hu2i and the helicity H ¼ 1

2
hu · wi (where the angle

brackets stand for spatial average), and has the same
rotation, reflection, and dilatation symmetries. For λ ¼ 1,
N reduces to the nonlinearity of the NSE and energy
cascades forward. For λ ¼ 0 the two fields u� decouple
and Eq. (1) becomes the equation examined in Refs. [22,23].
It conserves two energies E� ¼ 1

2
hðu�Þ2i and two sign

definite helicities H� ¼ 1
2
hu� · w�i independently and

cascades energy inversely. We thus expect that as λ is varied
continuously from λ ¼ 1 to λ ¼ 0 there will be a change in
the direction of energy cascade from forward to inverse. The

purpose of this work is to investigate how this transition takes
place as the parameter λ is varied. We perform a systematic
series of high resolution numerical simulations of Eq. (1) in
a box of size L ¼ 2π. Energy is injected at intermediate
wave numbers kf by a Gaussian white-in-time forcing with a
fixed injection rate εinj. We use a pseudospectral code, fully
dealiased and with second order Adams-Bashforth time
advancing schemewith exact integration of the viscous term.
Table I lists the parameters for all simulations.
Figure 2 shows the energy spectra measured at the steady

state for different values of the parameter λ obtained from
simulations N2K1. Clearly, for large values of λ there is no
significant energy in the large scales, while small scales
display a spectrum compatible with k−5=3. For small values
of λ, the energy is peaked at large scales forming a spectrum
close to k−5=3, while a steeper spectrum closer to k−7=3 is
observed in the small scales. The two behaviors suggest a
change from a forward to an inverse cascade, which is best
demonstrated by looking at the energy fluxes depicted in
Fig. 3. The energy flux is defined as ΠðkÞ ¼ −hu<

k ·N i,
where u<

k expresses the velocity field u filtered so that its

FIG. 1. Sketch of the four classes of the helical-Fourier
decomposition of NSE. Green (red) lines describe the backward
(forward) energy transfer from the most unstable mode [21]. The
thicker line corresponds to the dominant term.

TABLE I. Values of the parameters used in the DNS. N, spatial
resolution; kf, forcing range; ν, viscosity; Re ¼ ε1=3inj =ðνk22=3f Þ is
the Reynolds number. The large-scale friction μ is applied for
only k < kμ ¼ 2.

Run N kf ν μ Re

N1K1 256 [10, 12] 10−14 0.5 6 × 106

N2K1 512 [10, 12] 10−16 0.5 6 × 108

N3K1 1024 [10, 12] 10−18 0.5 6 × 1010

N2K2 512 [20, 22] 10−16 0.5 5 × 106
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FIG. 2. Log-log plot of energy spectra at changing λ and for
fixed forcing range (runs N2K1 in Table I). The gray area denotes
the forcing window. The two straight lines correspond to the
scaling predicted in the presence of an energy cascade and for the
helicity cascade. For λ > λc ∼ 0.3, there is no inverse energy
cascade and EðkÞ ∝ k−5=3. For λ < λc, we have an inverse energy
transfer and a forward helicity transfer, EðkÞ ∝ k−7=3.
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Fourier transform contains only wave numbers k satisfying
jkj ≤ k, and expresses that the rate energy is transferred
out of the set of wave numbers jkj ≤ k to larger k. ΠðkÞ is
constant in the inertial ranges kμ ≪ k ≪ kf and kf ≪
k ≪ kν (where kμ ∼ 1 is the hypoviscous wave number and
kν ∼ N=3 the viscous wave number). It is positive if the
cascade is direct and negative if the cascade is inverse.
As λ is varied the direction of cascade is changing.

For λ ≥ 0.3 the flux is almost zero for k < kf, while it is
positive and constant for kf < k < kν. For λ ≤ 0.2 the
opposite picture holds. For k < kf the flux is negative and
constant, while for k > kf the flux is positive but weak.
For values of λ in the range 0.2 < λ < 0.3, we observe a
bidirectional cascade: the coexistence of a forward and
inverse transfer. Let us notice that the transition happens
close to λ ¼ 1=3 that corresponds to the case where the
weight of homochiral triads equals the cumulative weight
of all heterochiral ones.
The bidirectional cascade is, however, a finite size effect

and this behavior does not survive the large Reynolds
number and the large box-size limits, as shown in Fig. 4.
The inverse flux (measured at thewave number k ¼ kf=2) as
a function of λ for different values of the Reynolds numbers
(grid sizes) and different box sizes is shown in Fig. 4(a),
while the forward energy flux (measured at thewave number
k ¼ 2kf) is shown in Fig. 4(b). Both fluxes are normalized
by the total injection rate εinj. The different symbols
correspond to an increase of Re keeping kf fixed (runs
N1K1 → N2K1 → N3K1) or to an increase of kf keeping
Re approximately fixed (runs N1K1 → N2K2). For run
N1K1 the transition from forward to inverse cascade is
smooth, displaying a bidirectional cascade for values of λ in
the range 0 < λ < λc ≃ 0.3, while a pure forward cascade
[jΠðkf=2Þj=εinj ¼ 0 and Πð2kfÞ=εinj ¼ 1] is observed for
vales λ > λc.WhenRe and kf are increased, the amplitude of

the inverse cascade for the points in the range 0 < λ < λc is
increasing approaching the value jΠðkf=2Þj=εinj ¼ 1, while
the forward cascade is decreasing approaching the value
Πð2kfÞ=εinj ¼ 0. The latter finding suggests that at infinite
Re andkf the cascade is unidirectional and inverse for λ < λc,
while it is unidirectional and forward for λ > λc. The
transition is thus discontinuous. This is at difference with
what observed in quasi-2D systems where the transition
occurs in a continuous manner (by a bidirectional cascade)
similar to a second order phase transition, and at difference
with what was observed in Ref. [24] where the transition
occurred at a singular value of their model parameter, α ∼ 1.
This abrupt transition can be justified by realizing that

in a bidirectional cascade the two inertial ranges
(kμ ≪ k ≪ kf and kf ≪ k ≪ kν) must have different
physical properties to sustain different directions of cas-
cade. This is possible when a new dimensional length scale
l� is introduced (e.g., l� is the layer thickness in thin layer
turbulence, or the Zeeman scale in rotating flows) that
determines the properties of the flow due to the external
mechanism. The amplitude of the inverse or forward
cascade then depends on the “distance" of the forcing
scale lf from the critical length scale l�. In our case, no
particular scale l� is introduced by the parameter λ. On the
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FIG. 3. Energy flux for different values of λ. The gray band
shows the forced range of wave numbers. The arrows mark the
wave numbers at which we measure the fluctuations in the flux
(see insets of Fig. 4).
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FIG. 4. Normalized energy flux at a scale larger (top) and
smaller (bottom) than the forcing range versus λ. Insets show the
fluctuations around the mean values. A guiding curve through
data points is shown for N1K1.
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contrary, the inertial ranges are scale invariant for all values
of λ. Thus, both ranges, l > lf and l < lf, effectively
share the same properties and have to develop either a
forward or a backward cascade, because the flow cannot
distinguish the large from the small scales.
Not surprisingly, the system displays interesting behav-

ior close to the critical value λc. In Fig. 5 we plot EðkfÞ, the
intensity of the spectrum at the forcing wave numbers
versus λ and for different Reynolds numbers. The response
of the system is critical, showing a tendency for EðkfÞ to
diverge as λ → λc. This divergence is also reflected in
the amplitude of the flux fluctuationsΔΠ shown in the inset
of Fig. 4 (where ΔΠ of run N2K2 is multiplied by 23=2 to
account for the 23 more interactions involved). The
existence of multiple phases for the physics of the energy
containing eddies is an important remark that finds support
also in recent experimental empirical findings where
turbulent realizations with multiple states have been
observed in swirling and in Taylor-Couette flows [27,28].
The direction of the energy transfer can also be studied

by looking at the behavior of the structure functions
SnðrÞ ¼ h(δu∥ðrÞ)ni, where δu∥ðrÞ ¼ (uðxþ rÞ − uðxÞ)·
r=r, that have the advantage of being easily measured in
experiments. In particular, for the original NSE, the von
Kármán–Howarth equation states that the third order
structure function is related to the direction of the cascade
and it is negative for a forward transfer and positive for
a backward transfer. In the form of the NSE investigated
here [Eq. (1)], the von Kármán–Howarth equation is more
complicated (see, e.g., Appendix A. 1 of Ref. [23] for the
case with λ ¼ 0). Nevertheless, we show in Fig. 6 that even
a simple measurement based on S3ðrÞ is in good agreement
with the indication that for r > rf ¼ 2π=kf the sign does
change by crossing λc.
In this work we have demonstrated that by controlling

the amplitude of the interactions in the NSE the energy

cascade can change direction from forward to inverse and
vice versa. In the model used here, this change of direction
is not due to previously known mechanisms, e.g., a change
in the dimensionality, a change in the ideal invariants, or the
breaking of any symmetry of the original equations caused
by the introduction of external forcing as in the presence
of rotation or of a magnetic field, revealing that the fully
nonlinear dynamics of the 3D NSE is more complex than
what was told by the accepted phenomenology. In particu-
lar, we showed that the energy cascade is strongly sensitive
to the relative dynamical weight of homochiral to hetero-
chiral helical Fourier interactions, suggesting the search for
similar footprints of inverse energy transfer also in other
empirical turbulent realization.
The mechanisms revealed here could be relevant to

physical systems. In the case of rotation, the relevant
eigenmodes of the linear operator are in fact the helical
modes used here, with the different sign helical modes
having opposite direction of propagation. It is thus possible
(although it still needs to be shown) that opposite helicity
modes decorrelate faster and the relevant nonlinearities
quench faster than the same helicity modes. Similar
properties might be at play in magnetohydrodynamics
and in active fluids [29,30].
Our results indicate that the transition becomes discon-

tinuous in the large Re limit. This is the first time that such a
discontinuous transition has been reported for the cascade
direction. We have linked this discontinuity of the transition
with the preservation of scale similarity in our model;
thus, the same arguments can also be applied to other
out-of-equilibrium systems with scale similarity that do not
originate from the NSE.
The presence of a control parameter in the turbulence

model is key also to validate or benchmark the analytical
theory of turbulence, e.g., renormalization group approaches
or closures [31–34]. Our work thus points to a new direction
in which the NSE (for λ ¼ 1) can be viewed as a system
“close” to criticality (for which λ ¼ λc) that can lead to new
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theoretical investigations in strongly out-of-equilibrium
statistical mechanics.
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