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While the saturated magnetic energy is independent of viscosity in dynamo experiments, it remains
viscosity dependent in state-of-the-art 3D direct numerical simulations (DNS). Extrapolating such viscous
scaling laws to realistic parameter values leads to an underestimation of themagnetic energyby several orders
of magnitude. The origin of this discrepancy is that fully 3D DNS cannot reach low enough values of the
magnetic Prandtl number Pm. To bypass this limitation and investigate dynamo saturation at very lowPm,we
focus on the vicinity of the dynamo threshold in a rapidly rotating flow: the velocity field then depends on two
spatial coordinates only, while the magnetic field consists of a single Fourier mode in the third direction. We
perform numerical simulations of the resulting set of reduced equations for Pm down to 2 × 10−5. This
parameter regime is currently out of reach to fully 3D DNS. We show that the magnetic energy transitions
from a high-Pm viscous scaling regime to a low-Pm turbulent scaling regime, the latter being independent of
viscosity. The transition to the turbulent saturation regime occurs at a low value of the magnetic Prandtl
number, Pm≃ 10−3, which explains why it has been overlooked by numerical studies so far.
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The magnetic field of most astrophysical objects is
believed to originate from the dynamo effect, an instability
that converts part of the fluid kinetic energy into magnetic
energy. The dynamo instability sets in when the flow is
sufficiently vigorous to amplify magnetic field perturba-
tions through electromagnetic induction and overcome
Ohmic diffusion. In dimensionless form, this happens above
a critical value Rmc of the magnetic Reynolds number
Rm ¼ Ul=η, where U and l are the typical velocity and
length scales of the flow and η ¼ 1=μ0σ is the magnetic
diffusivity, with σ the electrical conductivity of the fluid and
μ0 the magnetic permeability of vacuum. An immediate
difficulty arises from the low value of the magnetic Prandtl
number Pm ¼ ν=η, where ν is kinematic viscosity: values of
Pm of the order of 10−5 are typical of liquid metals and solar
system objects. As a consequence, when the flow reaches
theOð1Þ threshold value Rmc, the kinetic Reynolds number
Re ¼ Ul=ν is in the range 105 − 106 and the flow is fully
turbulent. This constitutes a challenge both experimentally
and numerically: because of the high power needed to
sustain a turbulent flow above Rmc, large experimental
facilities are needed, and only three such experiments have
succeeded in producing dynamo magnetic fields [1–3]. On
the numerical side, direct numerical simulations (DNS) of
the dynamo effect at realistic Pm values would require
gigantic computational resources to accurately resolve the
small scales of the fully turbulent flow. State-of-the-art
dynamo DNS are therefore restricted to moderately low
values of Pm, typically Pm ≥ 0.01 in triple periodic boxes
[4] and Pm ≥ 0.05 in spherical geometry [5–8].

Deriving and testing scaling laws that extrapolate
numerical results to the physically motivated values
of Pm is essential for relating DNS with observations
[5,8–10]. In this quest for scaling relations, probing the
dynamo effect at much lower Pm values is highly desirable,
because the turbulence of the background flow strongly
affects the magnetic energy produced above threshold.
Consider, for instance, the vicinity of a supercritical
dynamo bifurcation, a regime that is relevant to all dynamo
laboratory experiments and possibly some planets: close to
onset, one expects the magnetic energy to scale linearly
with the departure from threshold (Rm − Rmc), with a
dimensional prefactor that crucially depends on the value of
the magnetic Prandtl number. Indeed, high-Pm dynamos
and theoretical examples of laminar dynamo flows saturate
through a balance between the Lorentz force and the
viscous one. The magnetic energy above threshold then
follows the “viscous” scaling law [11]:

jBj2l2

ρμ0η
2
∝ PmðRm − RmcÞ: ð1Þ

By contrast, laboratory experiments indicate that this
saturation is achieved through a balance between the
Lorentz force and the nonlinear advective term of the
Navier-Stokes equation [12]. This leads to the “turbulent”
scaling law for the magnetic energy [11]:

jBj2l2

ρμ0η
2
∝ ðRm − RmcÞ; ð2Þ
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which corresponds to a much higher magnetic energy than
the viscous scaling law (1) by a factor Pm−1.
An interesting approach to test these theoretical predic-

tions is the one based on shell models of MHD turbulence.
Such phenomenological models are not meant to quanti-
tatively describe the flows, but rather to capture their
statistical properties at reasonable computational cost
[13]: they provide evidence for the scaling-law (2) when
the magnetic Prandtl number is low enough, Pm≲ 1 [14].
The natural next step towards quantitative numerical

dynamo models would be to reproduce the turbulent
scaling regime directly from numerical solutions of the
Navier-Stokes and induction equations, a task which
remains beyond reach of state-of-the-art fully 3D DNS.
Indeed, it has been recently shown that all spherical
dynamo simulations obey the viscous scaling law [8,10]:
because of the moderately low Pm, they are restricted to the
viscosity-dominated regime, which makes their extrapola-
tion to Earth-like parameters questionable. A central
question is, therefore, how much smaller need the magnetic
Prandtl number be to start observing the turbulent scaling
regime (2)?
We address this question by focusing on rapidly rotating

flows in the vicinity of the dynamo threshold. Global
rotation is a relevant ingredient of many planetary dyna-
mos, which strongly affects the dynamo characteristics
[15]. For rapid global rotation, we are able to reduce the full
MHD system to a set of quasi-2D equations governing the
interaction between a two-dimensional three-component
(2D3C) flow and a vertically dependent dynamo magnetic
field. This approach allows us to bypass the current
limitations of 3D DNS: we focus on the high-Reynolds-
number regime, where nonlinear advection strongly
dominates over viscous effects, in a quasi-2D system of
manageable computational cost.
Reduced equations.—We consider a flow driven by a

vertically invariant body force fðx; yÞ in a frame rotating at
a rate Ω around the vertical z axis. It was recently proven
that the corresponding 2D turbulent flow is stable to 3D
perturbations provided the Rossby number is sufficiently
low [16]. We focus on this parameter range, the turbulent
2D3C velocity field u ¼ (uðx; y; tÞ; vðx; y; tÞ; wðx; y; tÞ)
being the base flow of the present dynamo study. For
the kinematic dynamo problem, the invariance of the flow
along the vertical direction allows us to decompose the
magnetic field into vertical Fourier modes and to study their
evolution independently:

Bðx; y; z; tÞ ¼ bðx; y; tÞeikz þ c:c:; ð3Þ

where c.c. denotes the complex conjugate and k the vertical
wave number. Inserting such a Fourier mode into the
induction equation leads to the evolution equation for b:

∂tb ¼ ð∇⊥ þ ikezÞ × ðu × bÞ þ ηð∇2⊥ − k2Þb; ð4Þ

where ∇⊥ ¼ ð∂x; ∂y; 0Þ and ez is the unit vector along z
[17–19].
We focus on the weakly nonlinear regime in the vicinity

of the dynamo threshold, for which we can keep only the
first unstable magnetic mode of the form (3). The instability
saturates through the action of the Lorentz force. The
latter being quadratic in the magnetic field (3), it contains
two harmonics in z: (i) A z-independent component
(harmonic 0), through which the magnetic field directly
feeds back on to the z-invariant base flow. (ii) A second
harmonic component, with vertical dependence e�2ikz.
It forces a second harmonic in the velocity field, u2 ¼
û2ðx; y; tÞe2ikz þ c:c:, the amplitude of which results from a
balance between the Coriolis and Lorentz forces:

u2 ∼
B2

ρμ0lΩ
: ð5Þ

The vertical average of the Coriolis force being absorbed by
the pressure gradient, the z-independent flow follows the
equation

∂tuþ ðu ·∇⊥Þu ¼ −∇⊥p− γu⊥ þ ν∇2⊥uþ fðx; yÞ

þ 1

ρμ0
f½ð∇⊥ þ ikezÞ× b�× b� þ c:c:g;

ð6Þ
where u⊥ ¼ ðu; v; 0Þ, γ is a linear Ekman friction coef-
ficient [20], and the last term is the vertical average of the
Lorentz force. The latter induces a correction to the
turbulent 2D3C base flow of orderB2=ðρμ0UÞ. By contrast,
Eq. (5) indicates that u2 is smaller than this correction by a
factor equal to the Rossby number U=lΩ, which is
asymptotically small in the present study: we therefore
discard u2 in the following. The weakly nonlinear regime in
the vicinity of the dynamo threshold then corresponds to
the interaction between the first unstable vertical Fourier
mode of the magnetic field and the z-invariant 2D3C flow.
Their coupled evolution obeys the reduced system of
equations (4)–(6).
Numerical experiments.—We solve Eqs. (4)–(6) inside a

domain ðx; yÞ ∈ ½0; 2πL�2 using standard pseudospectral
methods [18,21]. The body force has the Roberts-flow
geometry,

fðx;yÞ¼F(cosðy=lÞ;sinðx=lÞ;cosðx=lÞþsinðy=lÞ); ð7Þ

where the scale of the forcing is l ¼ L=4. This value was
shown to be close to optimal for reducing the dynamo
threshold [22], which is desirable to reach the low-
magnetic-Prandtl-number regime.
The vertical wave number is set to k ¼ 0.2=L, which

corresponds to the lowest wave number inside a domain
of height 10πL. The influence of this parameter on the
dynamo threshold and magnetic field geometry was studied
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in detail in a previous publication [18], the phenomenology
being that of standard α2 dynamos [23,24].
We first solve the purely hydrodynamic problem until a

statistically steady state is reached. We denote as U the
root-mean-square velocity of this state that depends on F, ν,
γ. This flow is then used as the starting point of the MHD
simulations. We solve the MHD problem for increasing
values of F, i.e., for increasing values of the magnetic
Reynolds number Rm while keeping Pm fixed (ν, γ, and η
are fixed). Above the threshold value Rmc for dynamo
action, the dynamo instability sets in and magnetic pertur-
bations grow. As shown in Fig. 1, Rmc varies little with Pm,
with Rmc ∈ ½0.30; 0.42� over seven decades of Pm. Such a
constant value of Rmc at low Pm is rather generic and has
been reported for several other forcing geometries [25,26].
By contrast, the behavior of Rmc in the transitional region
of intermediate Pm strongly depends on the structure of the
forcing: for some fully 3D flows with weak scale separa-
tion, Rmc displays a twofold increase at intermediate Pm
[24]. The weak variation of Rmc with Pm in Fig. 1 is,
therefore, attributed to both the scale separation and the
2D3C nature of the flow [22,27].
After the initial growth phase, the magnetic field

saturates through the feedback of the Lorentz force onto
the 2D3C flow. In Fig. 2, we show snapshots of the velo-
city and magnetic fields in the saturated state, for
Pm ¼ 4.25 × 10−5. In agreement with standard α2-dynamo
theory [23], the vertical velocity and vorticity are concen-
trated at the forcing scale l while the dynamo magnetic
field is at large scale, with horizontal components more
energetic than the vertical one. We compute the space and
time averaged magnetic energy in the saturated state, to
produce bifurcation curves such as the ones shown in
Fig. 3. We repeat this procedure for various values of the
magnetic Prandtl number Pm, and from each bifurcation
curve we extract the slope SðPmÞ relating the magnetic
energy to the departure from onset:

hjBj2il2

ρμ0η
2

¼ SðPmÞ × ðRm − RmcÞ; ð8Þ

where the angular brackets denote 3D space and time
average. SðPmÞ is the central quantity of the present study.
From viscous to turbulent saturation.—In Fig. 4, we

show SðPmÞ over seven decades of Pm. For large Pm, the
flow is laminar and has a low Reynolds number near the
dynamo threshold. Accordingly, the dynamo saturation
obeys the viscous scaling-law (1), i.e., SðPmÞ ∼ Pm for
large Pm. The precise expression of SðPmÞ can be
determined analytically in the limit of scale separation
kl ≪ 1 and corresponds to the usual viscous alpha

FIG. 1. Threshold magnetic Reynolds number Rmc for dynamo
action as a function of Pm, for γl2=η ¼ 5.1 × 10−3.

FIG. 2. Snapshots of the saturated state for Pm ¼ 4.25 × 10−5,
γl2=η ¼ 5.1 × 10−3, and Rm ¼ 0.44. Top: vertical vorticity in
units of U=l. Middle: vertical velocity in units of U. Bottom:
dimensionless magnetic field Bl=

ffiffiffiffiffiffiffiffiffiffiffiffi
ρμ0η

2
p

in the plane z ¼ 0.
The arrows indicate the horizontal components while color codes
for the vertical one. These arrows correspond to a typical
magnitude 4 × 10−2 of the dimensionless horizontal magnetic
field. Their average direction rotates with z.
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quenching. For small friction γl2 ≪ ν, following the
standard weakly nonlinear approach [28,29] we obtain

SðPmÞ ¼
ffiffiffiffiffiffi
2

kl

r
Pm: ð9Þ

This analytical prediction is displayed in Fig. 4 with a
solid line and captures perfectly the high-Pm behavior
of SðPmÞ.
In contrast with such viscous dynamos, SðPmÞ reaches a

plateau at low Pm, with values orders of magnitude larger
than predicted by the laminar theory. This corresponds to
the turbulent scaling-law (2), for which SðPmÞ is indepen-
dent of Pm. More precisely, in this regime S is independent
of both ν and γ (see inset of Fig. 4) and the dominant
balance in the Navier-Stokes equation (6) is between the
Lorentz force and the nonlinear term. To our knowledge,
this study constitutes the first numerical observation of the
turbulent scaling regime of dynamo saturation in a solution
of the coupled Navier-Stokes and induction equations. This
is because extremely low values of Pm are needed to
observe such turbulent saturation: the plateau in figure 4
arises for Pm≲ 10−3, an order of magnitude below the
smallest values of Pm achieved in state-of-the-art fully
3D DNS.
Discussion.—We have reported the numerical observa-

tion of the turbulent scaling regime for dynamo saturation
in a solution of the MHD equations. Our work, therefore,
quantifies for the first time previous theoretical
estimates based on dimensional analysis [11] and shell
models [14]: in the present setup, the turbulent scaling
regime sets in for values of the magnetic Prandtl number
an order of magnitude lower than currently achieved by

state-of-the-art fully 3D DNS. This explains the mismatch
between spherical dynamo simulations, which obey the
viscous scaling law [10], and experimental dynamos, which
follow the turbulent one [12]. Because the turbulent scaling
regime is likely to be the generic situation for many natural
and experimental dynamos, this study paves the way for
quantitative numerical estimates of the magnetic field in
astrophysical objects and laboratory experiments.
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F. Pétrélis et al., Phys. Rev. Lett. 98, 044502 (2007).

[4] P. D. Mininni, Phys. Rev. E 76, 026316 (2007).

FIG. 3. Magnetic energy as a function of the departure from
onset, for several values of the magnetic Prandtl number. The
friction is γl2=η ¼ 5.1 × 10−3 and symbols are circle, Pm ¼
1.4 × 10−3; inverted triangle, Pm ¼ 7.0 × 10−3; star, Pm ¼
4.0 × 10−2; open diamond, Pm ¼ 8.9 × 10−2. The dashed linear
fits allow to extract the slope SðPmÞ of each bifurcation curve.

FIG. 4. Slope S of the magnetic energy above onset. High-Pm
solutions are time independent (blue circles) and obey the
quantitative prediction (9) from viscous alpha quenching (thick
solid line). For low Pm, the flow is time dependent (red triangles).
For Pm≲ 10−3, the dynamo saturation follows the turbulent
scaling-law (2), represented as a dashed eye guide. The main
figure corresponds to a friction coefficient γl2=η ¼ 5.1 × 10−3.
The inset highlights the independence of S on friction in the
turbulent saturation regime.

PRL 119, 204503 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

17 NOVEMBER 2017

204503-4

https://doi.org/10.1063/1.1331315
https://doi.org/10.1103/PhysRevLett.86.3024
https://doi.org/10.1103/PhysRevLett.98.044502
https://doi.org/10.1103/PhysRevE.76.026316


[5] U. R. Christensen and J. Aubert, Geophys. J. Intl. 166, 97
(2006).

[6] U. Christensen, Space Sci. Rev. 152, 565 (2010).
[7] C. A. Jones, Annu. Rev. Fluid Mech. 43, 583 (2011).
[8] E. King and B. Buffett, Earth Planetary Sci. Lett. 371, 156

(2013).
[9] P. Davidson, Geophys. J. Int. 195, 67 (2013).

[10] L. Oruba and E. Dormy, Geophys. J. Int. 198, 828
(2014).
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