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We present numerical evidence of a critical-like transition in an out-of-equilibrium mean-field
description of a quantum system. By numerically solving the Gross-Pitaevskii equation we show that
quantum turbulence displays an abrupt change between three-dimensional (3D) and two-dimensional
(2D) behavior. The transition is observed both in quasi-2D flows in cubic domains (controlled by
the amplitude of a 3D perturbation to the flow), as well as in flows in thin domains (controlled by
the domain aspect ratio) in a configuration that mimics systems realized in laboratory experiments.
In one regime the system displays a transfer of the energy towards smaller scales, while in the other
the system displays a transfer of the energy towards larger scales and a coherent self-organization
of the quantized vortices.

The phenomena of condensation and phase transitions
in statistical mechanics has traditionally been associ-
ated with equilibria. However, observations of turbu-
lence in experiments of gaseous Bose-Einstein conden-
sates (BECs) [1–3] and of superfluid 4He [4–6] have shown
that these out-of-equilibrium systems can also display
multiple phases. In particular, recent BEC experiments
close to a two-dimensional (2D) regime, instead of a
tendency towards disorder, display an intriguing out-of-
equilibrium self-organization and the nucleation of quan-
tized vortices [7–9] (see [10, 11] for numerical studies).

In classical turbulence, a reminiscent process can take
place when flows are 2D. Under certain conditions, the
kinetic energy can undergo an inverse cascade (moving
to larger scales), and eventually create a condensate [12].
This condensation is of a different nature than a BEC
as it involves the kinetic energy of the system instead
of its mass density. In classical three-dimensional (3D)
turbulence, recent developments indicate that this far-
from-equilibrium system can change its behavior as its
dimensionality is changed [13–16] (or, equivalently, as one
of its spatial dimensions is compactified, see [13], and
[17] for an example of a transition under compactification
in gravitational theories). In classical fluids, when the
flow is 3D energy undergoes a direct cascade (moving
to smaller scales), while as the domain that contains the
fluid is made thiner, the system becomes 2D and displays
an inverse cascade after a critical second-order transition.

Both classical and quantum turbulence involve non-
linear and complex spatio-temporal dynamics of fields,
and cascade-like solutions can develop in many different
cases. In this letter we address the following questions:
Is there a transition in the behavior of quantum turbu-
lence as its dimensionality is changed as reported in re-
cent quantum turbulence experiments [7–9]? And is this
transition associated with the emergence of different out-
of-equilibrium self-similar regimes (i.e., associated with a

change in the direction of the energy cascade)? To this
end, we study numerically 3D condensates in periodic
boundary conditions using the Gross-Pitaevskii equation
(GPE), exploring two configurations. In one, we solve
the equations in a cubic domain and perturb an initial
2D random array of quantized vortices with a 3D pertur-
bation, varying the amplitude of the perturbation as a
control parameter. In the other, we consider a quasi-2D
array of quantized vortices and vary the aspect ratio of
the domain, compactifying one of its dimensions. In both
cases we find evidence of an abrupt transition towards a
regime that displays two-dimensionalization, spatial ag-
gregation of quantized vortices, and inverse energy flux.

To describe the dynamics of weakly interacting bosons
of mass m at zero-temperature we solve numerically the
GPE [18], i~∂tψ = −~2∇2ψ/(2m) + g|ψ|2ψ, where ψ
is the condensate wave function and g is proportional
to the scattering length. The fluid density, velocity,
and quantized vortices can be obtained from ψ using
Madelung’s transformation (see [18]). The GPE is solved
using a parallel pseudospectral method [19, 20]. To
achieve the largest possible scale separation (at a fixed
spatial resolution), we resort to periodic boundary con-
ditions in a 3D domain of size Lx×Ly×Lz, with spatial
resolution Nx × Ny × Nz. The size of the domain is
Lx = Ly = L⊥ = 2π in dimensionless units in all cases,
and Lz = γL⊥ where γ is the domain aspect ratio. In
these domains, we prepared a set of randomly distributed
2D vortices with a small 3D perturbation of amplitude
Az, such that the wavefunction is a solution of the GPE,
and that the incompressible kinetic energy of the system
peaks at an intermediate wavenumber k0 ≈ 10 (i.e., the
correlation length of the flow is `0 ≈ L⊥/10; see [18] for
more details on the preparation of the initial conditions
and for the definition of the incompressible kinetic en-
ergy). This results on quantized vortices with a random
separation, and that are perfectly 2D for Az = 0 while
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FIG. 1. (a) Spectrum of the incompressible kinetic energy averaged between t = 1 and 10 for simulations in cubic domains

(Nx = Ny = Nz = 512) and different values of Az. Kolmogorov power laws ∼ k−5/3 are indicated as a reference by solid

black lines. The vertical dashed line indicates the inverse mean intervortex distance. Note the growth of energy and a ∼ k−5/3

scaling for k . 10 when Az is small. (b) Total energy fluxes for the same simulations. For small Az the flux becomes negative
for k . 10, and the positive flux for k > 10 decreases. References for the values of Az in (a) and (b) are provided in the inset.
(c) Same as in (a) for simulations in thin domains, for different values of γ. (d) Same as in (c) for simulations in thin domains;
the inset gives the values of γ. In all panels, dashed curves highlight simulations for which movies are available in [18].

they display stronger curvature in z for increasing Az.

As previously mentioned, we consider two ways to ob-
serve a transition between 2D and 3D flows using these
initial conditions. One of them consists on varying the
amplitude of the 3D perturbation Az between 0 and 1 in
a cubic domain. The other, is to vary the aspect ratio of
the domain for fixed Az (the 2D limit case being that in
which γ = Lz/L⊥ → 0, and the 3D case when γ = 1). In
each case, when varying the control parameters between
their two limits, classically we can expect an inverse cas-
cade of energy in the 2D regime, and the absence thereof
in the 3D case. To identify the direction of the cascades
we consider two quantities: the incompressible kinetic
energy spectrum Eik(k) (see [18, 21, 22] for a detailed de-
scription of energy components in the GPE) and the total
energy flux Π(k) = −dE<(k)/dt, where E<(k) is the to-
tal energy of the system integrated up to wavenumber k,

E<(k) =
∫ k
0
E(k′)dk′, and where E(k) is the total energy

spectrum [18]. A direct cascade of energy corresponds to
the development of a power law in Eik(k) for k > k0 and
with Π(k) > 0 constant in a range of wavenumbers, while
an inverse cascade of energy corresponds to a growth of
Eik(k) for k < k0 and with Π(k) < 0. As the system
has no external steering force (but no dissipation either),
an inverse cascade can only develop for a transient time
[23], and in the following we will focus on time averages
of these quantities between t = 1 and 10 flow turnover
times, as well as on their time evolution over the same
time span (with the turnover time defined as τ = `0/U ,
with U the r.m.s. initial flow velocity).

In cubic domains (γ = 1) we performed two sets of sim-
ulations, with spatial resolutions of Nx×Ny×Nz = 2563

and 5123 grid points, varying the amplitude of the 3D

perturbation Az. For large values of Az the flow quickly
evolves into a 3D regime, with quantized vortices rapidly
being deformed, while for small Az there is a long tran-
sient in which the flow remains quasi-2D (see the videos
in [18]). Figure 1(a) shows the time average of Eik(k) for
the simulations with 5123 grid points, and for different
values of Az. For large values of Az initial vertical gradi-
ents in the quantized vortices are large, and the spectrum
peaks at k ≈ k0 followed by a spectrum compatible with
a direct energy cascade and with the emission of Kelvin-
waves at wavenumbers smaller than the inverse mean in-
tervortex distance [20]. The energy fluxes in Fig. 1(b),
specially for Az = 1, are positive for all k and remain ap-
proximately constant for a range of wavenumbers k > k0.
But for small values of Az initial vertical gradients are
small, and the energy spectrum grows for k . k0, devel-
oping a power law compatible with Kolmogorov scaling,
and with negative total energy flux for k . k0 (albeit the
negative flux does not remain constant with k, as a result
of limited spatial resolution and of the inverse cascade be-
ing only transient in the absence of external forcing). In
spite of this, the system develops a strong inverse trans-
fer of energy, at least up to t = 10. For longer times
the flow eventually becomes unstable and 3D. However,
we verified that the 2D behavior is not simply due to an
absence of 3D motions for Az � 1. For t . 10, when the
systems display an inverse transfer of energy, the energy
in the 3D modes for all Az 6= 0 is significant enough to
nonlinearly act back to the 2D part of the flow and satu-
rate its initial exponential growth, but not strong enough
yet to suppress the inverse transfer.

Figures 1(c) and (d) show similar results for simula-
tions with a fixed value of Az = 0.1 (such that a 3D flow
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FIG. 2. Ratio of inverse energy flux to total energy flux as a
function of the normalized control parameter Z (either Az or
γ, normalized by their respective critical values Acz or γc, see
inset). For cubic domains two curves are shown, correspond-
ing to spatial resolutions of 2563 and 5123 grid points.

with a direct energy cascade is generated when γ = 1),
but with different aspect ratios γ, using a spatial res-
olution Nx = Ny = 512, and with Nz varied between
512 and 32 grid points to keep the vertical resolution ∆z
fixed or over-resolved as Lz is decreased, so that vertical
gradients in the flow are always correctly resolved. Al-
though the amplitude of the perturbation Az is fixed, by
decreasing γ we also increase the wavenumber of the ver-
tical perturbation (i.e., vertical variations of quantized
vortices increase as the domain becomes thiner). As in
the cubic domain, we observe an increase in Eik(k) for
k . k0 and a range of wavenumbers with Π(k) < 0 but
now for small values of γ, and a direct cascade of energy
for large values of γ. But, unlike the case of the cu-
bic domain, when γ is sufficiently small the flow remains
quasi-2D for very long times, and quantized vortices ag-
gregate in physical space creating larger structures (see
movies in [18]).

To quantify the transition between the direct and in-
verse cascade regimes, we need to use (as an order param-
eter) an observable that measures the relative strength
of the inverse energy cascade. To this end we first intro-
duce the mean inverse flux at small wavenumbers (which
is zero when the flux is positive), and the mean direct
flux at large wavenumbers, respectively defined as

Π< =

∣∣∣∣∣min

{
0,

1

k0

k0∑
k=0

Π(k)

}∣∣∣∣∣ , (1)

Π> =
1

kmax − (k0 + 1)

kmax∑
k=k0+1

Π(k), (2)

where kmax = Nx/3 is the maximum resolved wavenum-
ber in the simulations, and k0 is as before the wavenum-
ber where the incompressible kinetic energy is initially
concentrated. We can then compute the total energy
flux (in both directions) Πtot = Π< + Π>, and define
the normalized ratio of inverse energy flux to total en-
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FIG. 3. Time evolution of the incompressible kinetic energy
(a) in simulations in cubic domains with different perturba-
tion amplitudes Az (5123 runs), and (b) in simulations in do-
mains with different aspect ratios γ. The insets show the total
vortex length [18] as a function of time for each case. Refer-
ences are as in Fig. 1; a few labels are provided as guidelines.

ergy flux Π</Πtot. Figure 2 shows the behavior of this
quantity for all cases studied, as a function of the am-
plitude of the 3D perturbation normalized by its critical
value Az/A

c
z (for spatial resolutions of 2563 and 5123 grid

points), and as a function of the aspect ratio normalized
by its critical value γ/γc (for fixed Az). In all cases we
see an abrupt change as the control parameter is varied.
For Az/A

c
z or γ/γc > 1 there is no inverse energy flux,

while for Az/A
c
z or γ/γc < 1 it grows rapidly (albeit dif-

ferently in each case). In the thin domains, from Fig. 1
it can be seen that γc ≈ 0.1, corresponding to a domain
with Lz = L⊥/10 ≈ 11ξ (where ξ is the healing length of
the condensate, proportional to the vortex core radius).
This implies that the 2D behavior occurs when the height
of the domain is of the same order as the correlation of
the initial conditions, γc ' `0/L⊥, a similar condition for
the layer height and the forcing lengthscale found for the
compactified case in classical flows [13]. In other words,
a transition towards 2D behavior does not require 2D
domains or very slim films. Even moderate aspect ratios
are enough to trigger an inverse energy cascade.

Energy fluxes, although they give direct indication of
the presence of an inverse cascade, are not easily mea-
surable in laboratory experiments. There are however
other global quantities that are tractable experimentally
and can also give an indication of a transition from 3D
to 2D behavior in the flows as the control parameters are
varied. Figure 3 shows the incompressible kinetic energy
Einc in these flows as a function of time, both for 5123

simulations in cubic boxes with different Az as well as
for simulations in domains with different γ, and for each
case, also the total length of the vortices as a function of
time. In the simulations with large Az or γ, Einc decays
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in time after t ≈ 1, as the direct cascade of energy trans-
fers the incompressible kinetic energy to smaller scales
where it dissipates into phonons [20, 21, 24]. However,
for small Az or γ, Einc remains constant in time or decays
very slowly, indicating energy remains at large scales as
in classical 2D turbulence. The same behavior is seen in
the total vortex length [18, 21], which grows and reaches a
maximum in the 3D regime as a result of vortex stretch-
ing (later decaying as a result of vortex reconnection),
but which remains approximately constant for all times
in the cases of small Az or γ, pointing to the absence
of vortex stretching as expected in 2D flows. Vortex re-
connection also plays an important role at early times for
large Az or γ, to speed-up the three-dimensionalization of
the flow, after which vortex stretching can become more
efficient. Finally, it is also important to note that in
the simulations in cubic domains the total length of the
vortices remains approximately constant at early times in
all cases, and that the time when vortex stretching starts
increases as Az decreases. This is consistent with our pre-
vious observations: In the cubic box, for smaller values
of Az the flow remains quasi-2D for longer times, and the
observed transient inverse cascade delays the growth of
3D excitations in the flow.

Given the above we can consider various quantities
that can indicate the presence of a sharp transition. Here
we focus only on the thin layer case that is somehow
closer to what is experimentally realizable. Figure 4
shows the time to reach the maximum vortex stretch-
ing tmax, the maximum length of the vortices lmax, and
the flow integral scale L as a function of γ, which is ob-
tained from the incompressible kinetic energy spectrum
as L = 2π

∫
k−1Eik(k)dk/

∫
Eik(k)dk, and provides an

estimation of the flow energy containing scale. When
L ≈ Lx (the domain size), the flow has self-organized at

the largest available scale in the domain. These quanti-
ties display an abrupt change near the critical value γc

as γ is varied. The time tmax is larger when γ < γc,
while the maximum vortex length is larger when γ > γc.
Both behaviors are to be expected when the flow is 3D
and displays vortex stretching, or when the flow is 2D
and as a result does not. Finally, the flow integral scale
L becomes larger (and close to Lx) when γ < γc. This
indicates that the inverse transfer of energy leads to the
concentration of kinetic energy at large scales, and im-
plies the formation of large structures in the flow (e.g.,
resulting from spatial aggregation of vortices). In the
simulations varying Az, we also verified that the overall
shape of the quantities in the curves in Fig. 4 remain the
same when changing the spatial resolution of the simula-
tions, although the actual values (e.g., the time tmax or
the maximum vortex length lmax) depend on the resolu-
tion: at larger resolution the flow becomes more turbu-
lent and vortex stretching is more efficient.

The numerical results show the existence of a tran-
sition between 2D and 3D behavior in quantum turbu-
lence. This transition can be obtained by varying the
dimensionality of the flow (in a 3D cubic domain), or by
changing the aspect ratio of the domain and compacti-
fying one spatial dimension. Below critical values of the
controlling parameters the flows display an inverse trans-
fer of energy which results in the growth of the incom-
pressible kinetic energy at large-scales, and in the aggre-
gation of quantized vortices. For the quasi-2D regimes
the system suffers an interesting double condensation:
the BEC, and the out-of-equilibrium inverse energy cas-
cade which can result in a condensation of the kinetic
energy at the largest available scales in the system [12].
This behavior is compatible with critical transitions re-
ported in classical turbulence [13–16], and reminiscent of
recent observations in experiments of gaseous BECs [7–
9]. For the 3D cubic domain, the critical amplitude of
the 3D perturbation is Acz ≈ 10−2 (for the 5123 simula-
tions), while in the thin domains the critical aspect ratio
is γc ≈ 1/10. As our system is not forced, the inverse
energy cascade can only develop as a transient (see, e.g.,
[23] for a discussion of the equivalent configuration in
the classical case), a configuration which is comparable
to experiments of gaseous BECs where the flow is let to
freely decay after initially stirring it [1–3]. However, in
experiments of gaseous BECs the condensate is trapped
inside a potential, which we are not considering in our
simulations to increase the scale separation between the
domain size and the vortex radius as much as possible.
The study of the effect of trapping potentials in these
cascades is left for future work.

NPM and PDM acknowledge financial support from
grants UBACYT No. 20020170100508BA and PICT
No. 2015-3530.
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SUPPLEMENTAL MATERIAL: ABRUPT TRANSITION BETWEEN THREE AND
TWO-DIMENSIONAL QUANTUM TURBULENCE

THE GROSS-PITAEVSKII EQUATION

In this work we study a system of weakly interacting bosons of mass m at zero-temperature that is described by
the GPE

i~
∂ψ

∂t
= − ~2

2m
∇2ψ + g|ψ|2ψ, (3)

where ψ is the wave function of the condensate and g = ~c/(
√

2ρ0ξ) is proportional to the scattering length (with c
the speed of sound, ρ0 the mean mass density, and ξ the healing length); in terms of these variables m = ~/(

√
2cξ).

In dimensionless units, all simulations have ρ0 = 1, c = 2, and ξ such that the vortex cores are well resolved by the
spatial resolution considered. This results in ξ = (40

√
2)−1 in all simulations with Nx = Ny = 256 spatial grid points,

and ξ = (80
√

2)−1 in all simulations with Nx = Ny = 512 grid points so that ξkmax = 1.5 where kmax is the maximum
resolved wavenumber.

The total energy Etot is a conserved magnitude in the GPE, and can be decomposed into

Etot = Ek + Eint + Eq, (4)

where Ek is the kinetic energy, Eint is the internal energy, and Eq is the quantum energy, which are defined respectively
as

Ek =

∫
(
√
ρu)2

2
d3r, Eint =

∫
gρ2

2m2
d3r, Eq =

∫
~2

2m2
(∇√ρ)2d3r, (5)

where ρ is the fluid density and u the fluid velocity, obtained from Madelung’s transformation with ρ = |ψ|2 and
u = ~∇φ/m. In this description, quantized vortices correspond to lines with ρ = 0, with quantum of circulation
Γ = h/m. The Helmholtz decomposition

√
ρu = (

√
ρu)i + (

√
ρu)c can be applied to the kinetic energy to further

decompose it into incompressible Eik and compressible Eck kinetic energy components [20, 21]. As these energies are
quadratic, it is straightforward to construct power spectra from them as

Ei,ck (k) =

∫
1

2

∣∣∣ ̂(
√
ρu)i,c

∣∣∣2 k2dΩk, Eint(k) =

∫
g |ρ̂|2
2m2

k2dΩk, Eq(k) =

∫
~2

2m2

∣∣∣ ̂(∇√ρ)
∣∣∣2 k2dΩk, (6)

where the hat denotes the Fourier transform, and Ωk is the solid angle in Fourier space.
The GPE was evolved in time using a fourth-order Runge-Kutta method, and a pseudospectral method to compute

spatial derivatives and nonlinear terms [19]. Time steps were chosen to satisfy the CourantFriedrichsLewy condition,
and resulted in ∆t = 10−3 in dimensionles units in simulations with Nx = Ny = 256 grid points, and in ∆t = 5×10−4

in simulations with Nx = Ny = 512 grid points. With these choices, total energy is conserved in all simulations up to
the sixth significant digit at t = 10.

PREPARATION OF THE INITIAL CONDITIONS

An initial random two-dimensional (2D) flow with a three-dimensional (3D) perturbation is constructed using a
Clebsch representation of the incompressible velocity field u = λ∇µ −∇φ, [21], where the Clebsch potentials are a
superposition of modes

λ =
1

2kλ

2kλ∑
ki=1

cos

{
x

[
kλ cos

(
πki
2kλ

)]
+ y

[
kλ sin

(
πki
2kλ

)]
+ φki

}
×
{

1 +Az cos

(
2πz

Lz
+ ϕki

)}
, (7)

µ =
1

2kµ

2kµ∑
kj=1

cos

{
x

[
kµ cos

(
πkj
2kµ

)]
+ y

[
kµ sin

(
πkj
2kµ

)]}
, (8)

where φki and ϕki are random phases, the brackets [ . ] indicate the integer part of the argument (to satisfy periodicity of
each mode), and kz is the wavenumber of the perturbation in the z direction. The Clebsch potential φ is determined
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FIG. 5. Slices of the mass density in an xy plane for initial conditions with different values of kλ and kµ and with Az = 0.
Dark regions correspond to vortex cores. Note the random spatial distribution of vortices, and the change in their number and
mean separation as kµ is varied (similar results are obtained when kλ is changed).
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FIG. 6. Incompressible kinetic energy spectrum for the initial conditions in Fig. 5. The wavenumber corresponding to the
maximum of the kinetic energy spectral density changes with kλ and kµ.

by the condition ∇ · u = 0. The parameters kλ and kµ control the initial correlation length of the field, and Az
controls the amplitude of the 3D perturbation. The initial conditions are designed to generate a disordered flow with
quantized vortices that have a dominant 2D component, a 3D perturbation (when Az 6= 0), and a correlation length
at intermediate scales (or wavenumbers) such as both direct or inverse cascades can develop. As described in [20, 21],
with these potentials an associated initial wavefunction ψ(x, y, z) can be constructed as the product of wavefunctions
ψe(λ(x, y, z), µ(x, y, z)) where the ψe have zeros at the zeros of the Clebsch potentials (and thus quantized vortices in
the corresponding x, y, and z coordinates). To reduce the contribution of compressible modes and the initial emission
of phonons, before solving the GPE these initial conditions are integrated to convergence using the advective real
Ginzburg-Landau equation [20, 21], which is the imaginary-time propagation of the GPE Galilean transformed to
preserve the velocity field u. The final result is a wavefunction compatible with the flow u and with minimal sound
emission, and which is used as the actual initial condition of the GPE.

As examples of the resulting initial conditions, Fig. 5 shows slices in an xy plane of the mass density using 1283

spatial grid points, for kλ = 4 and different values of kµ (and with Az = 0, and thus 2D). Points with zero density
are defects that correspond to quantized vortices. As the number of excited modes increases (i.e., as kµ increases),
more vortices are generated, and the average distance between them decreases. Figure 6 shows the spectrum of the
incompressible kinetic energy for each of these initial conditions, and it can be seen that the maximum of the spectrum
takes place at a wavenumber that increases with kµ (i.e., the initial correlation of the flow changes as this quantity is
varied) in accordance with the relation k` ∼

√
Mk0kξ with M the Mach number and kξ ∼ 1/ξ, both of them fixed

values, and k` ∼ 1/` the wave number associated with the intervortex distance ` [21]. Similar results are obtained
when kλ is varied. To consider an initial flow with scale separation such that both direct and inverse energy cascades
can develop, all simulations in this study are done with kλ = 4 and kµ = 10, such that the initial energy peaks at
k0 ≈ 10.

The effect of varying Az is illustrated in Fig. 7, which shows slices in the xz plane of the mass density for initial
conditions with fixed kλ and kµ, and with different values of Az. For Az = 0 vortices are parallel and straight in the
z direction, and thus generate a purely 2D flow. As Az increases the vortices curve until in some cases they can even
close on themselves forming rings, generating an initially 3D flow. Videos of these initial conditions in cubic boxes
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FIG. 7. Slices of the mass density in an xz plane for initial conditions with different values of Az. Dark regions correspond to
vortex cores. The configuration is independent of z for Az = 0, while the vortex cores become more deformed in the vertical
direction as Az is increased.

and in thin domains, as well as of their time evolution under the GPE, can be seen as supplemental material.
For the study of the transition in cubic boxes, we considered in simulations with Nx ×Ny ×Nz = 5123 grid points

values of Az = 1, 0.4, 0.1, 5 × 10−2, 4 × 10−2, 3 × 10−2, 10−2, 8 × 10−3, 6 × 10−3, 10−3, 8 × 10−4, 7 × 10−4,
6× 10−4, 3× 10−4, 10−5, and 0 (even more values of Az, in the same range, were considered in the simulations with
Nx ×Ny ×Nz = 2563, for a total of 33 simulations at this resolution). In the thin domain case, the 3D perturbation
was fixed at Az = 0.1, and the aspect ratio was varied to take values γ = 1, 1/2, 1/4, 1/8, 1/10, 1/12.5, 1/16, 1/20,
1/32, and 1/64. As a result, a total of 59 simulations with different parameters was considered for the analysis.

ENERGY FLUXES

Under the GPE, the dynamics of the system conserves the total energy

dE

dt
= 0, (9)

which as a result implies that a detailed balance equation can be written in spectral space as

dE

dt
(k) = T (k), (10)

where T (k) is the transfer function [12, 15, 23]. In other words, the change of energy at any given wavenumber must
correspond to a transfer of this energy to or from this wavenumber to all other wavenumbers. By integrating this
equation up to some wavenumber, an energy flux can be defined as

Π(k) = −
k∫

0

T (k′)dk′ = − d

dt

k∫
0

E(k′)dk′ = −dE
<(k)

dt
. (11)

Using the decomposition of the energy in Eq. (4) and the Helmholtz decomposition, this flux can be further decomposed
as

Π(k) = Πi
k(k) + Πc

k(k) + Πint(k) + Πq(k), (12)

where each component of the flux corresponds to the different energy components. We verified that similar results
are obtained when the total energy flux Π(k) is used to measure the direction of the cascades, and when the flux of
incompressible kinetic energy Πi

k(k) is considered instead.

ESTIMATION OF VORTEX LENGTH

In a similar fashion as with the energy, one can define an incompressible momentum power spectrum. The high
wavenumber components of this spectrum can be approximated as the sum of the momenta of all the vortices present
in the flow, counted individually. This provides an easy way to estimate the total line length of the vortices in the
flow. The method is detailed in references [21, 22].
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MOVIES

The movies provided as supplemental material span the entire time evolution of the flow (from t = 0 to 10). The
3D renderings of quantized vortices in these movies provide examples of the behavior above and below the critical
parameter Acz or γc (or, in other words, 2D-like and 3D-like behavior), and correspond to the following cases:

• Files side 0003.mp4 and side 4.mp4 are two examples of vortex evolution in the 3D cubic domain (at 5123

resolution), respectively with Az = 0.0003 (Az < Acz) and with Az = 0.4 (Az > Acz). In the case with Az < Acz,
note the system remains quasi-2D for a long time, until eventually 3D perturbations grow and dominate the
dynamics.

• Files aniso 125.mp4 and aniso 03125.mp4 are two examples of vortex evolution in the thin domain, one with
γ = 0.125 (γ > γc) and the other with γ = 0.03125 (γ < γc). In the case with γ < γc the flow remains quasi-2D
at all times, showing no vortex reconnection and spatial aggregation of quantized vortices.
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