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The effect of rotation is considered to become important when the Rossby number is sufficiently
small, as is the case in many geophysical and astrophysical flows. Here we present direct numerical
simulations to study the effect of rotation in flows with moderate Rossby numbers (down to Ro ≈
0.07) but at Reynolds numbers large enough to observe the beginning of a turbulent scaling at
scales smaller than the energy injection scale. We use coherent forcing at intermediate scales,
leaving enough room in the spectral space for an inverse cascade of energy to also develop. We
analyze the spectral behavior of the simulations, the shell-to-shell energy transfer, scaling laws and
intermittency, as well as the geometry and the anisotropy of the structures in the flow. At late times,
the direct transfer of energy at small scales is mediated by interactions with the largest scale in the
system, the energy containing eddies with k⊥ ≈ 1, where ⊥ refers to wavevectors perpendicular the
axis of rotation. The transfer between modes with wavevector parallel to the rotation is strongly
quenched. The inverse cascade of energy at scales larger than the energy injection scale is non-local,
and energy is transferred directly from small scales to the largest available scale. We observe both
a direct and inverse cascade of energy at high rotation rate, indicative that these cascades can
take place simultaneously. Also, as time evolves and the energy piles up at the large scales, the
intermittency of the direct cascade of energy is preserved while corrections due to intermittency are
found to be the same (within error bars) as in homogeneous non-rotating turbulence.

I. INTRODUCTION

Strong rotation is present in many geophysical and as-
trophysical flows. Its effect is considered to become im-
portant when the Rossby number (the ratio of the con-
vective to the Coriolis acceleration, or the ratio of the
rotation period to the eddy turn over time) is sufficiently
small. The large scales of atmospheric and oceanic flows
for example are affected by the rotation of the Earth.
The Rossby number for mid-latitude synoptic scales in
the atmosphere is Ro ≈ 0.1 [46]. In the Sun, the typical
Rossby number in the convective zone is Ro ≈ 0.1 − 1
[35]. Furthermore, the Reynolds number (Re, the ratio
of the convective to the viscous acceleration) in these sys-
tems is also very large, and the flows are in a turbulent
state.

Many studies have considered solely the effect of rota-
tion in a turbulent flow, as a first step to gain better un-
derstanding of the fluid dynamics of geophysical systems,
for which, e.g., stratification also plays an important role.
For rapid rotation (very small Rossby numbers), signifi-
cant progress has been made by applying resonant wave
theory [26, 57], two-point spectral closures [15, 16], and
weak turbulence theory [25]. In these approaches, the
flow is considered as a superposition of inertial waves
with a short period, and the evolution of the system for
long times is derived considering the effect of resonant
triad interactions.

Recently, resonant wave theory has been shown to cor-
respond to an asymptotic limit for a general class of geo-
physical flows with wave dynamics [7, 23]. Also, the con-

nection between resonant wave theory and two-point clo-
sures based on helical modes [15, 57] was shown in Ref.
[10]. This approach sheds light on the mechanism that
drives the flow to be quasi-two dimensional at large scales
[15, 57]: energy in three dimensional modes is transferred
by a subset of the resonant interactions to modes with
smaller vertical wavenumber. It also explains successfully
the observed enhanced transfer of energy from the small
to the large scales [52].

In fact, it is well known that the theory of weak tur-
bulence is only valid when the wave period (the rotation
period here) is much shorter than the eddy turnover time
at all scales. For large Reynolds numbers, small scales
are excited with a characteristic timescale proportional
to the eddy turnover time, that decreases as the scales
become smaller. Therefore the approximations made in
such theories can break down at sufficiently small scales,
provided that the Reynolds number is large enough for
these scales to be excited. How the results of resonant
wave theory extend to the case of only moderate Rossby
numbers but very large Reynolds numbers is still un-
clear. Two-point spectral closures [15, 16] can be used
to match the two regimes using the same theoretical tool
(see e.g., [10]). This shows that the energy transfer is
anisotropic even at moderate Rossby numbers because of
linear phase-mixing, and that resonant triads are selected
in the limit of small Rossby number (see also [54, 56]).

Another approach for understanding rotating flows
at large Reynolds numbers is to develop phenomeno-
logical models based on scaling arguments and self-
similarity. Initial phenomenological investigations con-
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sidered isotropic energy spectra E(k) [60, 61] that sug-
gested the power-law behavior E(k) ∼ k−2 provided that
the examined wavenumbers were smaller than a critical
wave number kΩ ∼

√
Ω3/ε, where ε is the energy dissi-

pation rate. For larger wavenumbers, the energy spec-
trum transitioned to the isotropic Kolmogorov energy
spectrum E(k) ∼ k−5/3. Anisotropy was taken into ac-
count in phenomenological models in [17], where it was
recognized that a considerable amount of the energy will
be confined in “quasi-2D” modes. An anisotropic energy
spectrum E(k) ∼ k−2

⊥ (where k⊥ denotes the wavevec-
tors perpendicular to Ω) with a non-self-similar behavior
along the axis parallel to the rotation has been suggested
in [45] on the basis of numerical results.

In numerical simulations, the study of rotating turbu-
lent flows is constrained by the computational cost of
properly resolving the inertial waves and the resonant
triadic interactions, together with the cost of resolving
the small scale fluctuations when the Reynolds number
is large. Inverse cascades were shown to develop and
anisotropies to appear in low resolution (323 and 643 grid
points) simulations [8, 9, 27], either solving the equations
of motion directly or using a subgrid model. Small aspect
ratio boxes were considered in [51, 53] allowing for an
increase in resolution. Simulations at higher resolution
were done later in [59], studying in particular the behav-
ior of the shell-to-shell energy transfer. Recently, sim-
ulations with large Reynolds number and small Rossby
number were performed using 1283 grids and 8th-order
hyperviscosity [19], thus confirming the dominant role of
resonant triads for rapid rotation at large Re, although
the results also suggest that resonant wave theory can
be valid only for a finite interval of time ; this has been
argued by a number of authors in the general context of
wave turbulence because of the non uniformity in scale of
the method, as already discussed earlier. Also note that
all these simulations give different results for the scaling
of the energy spectrum at scales larger than the forcing
scale; it was shown in [52], using a truncated model, that
this can be the result of how all the relevant timescales
are resolved.

In this paper, we study the effect of rotation in a tur-
bulent flow using high resolution direct numerical simu-
lations with up to 5123 grid points. Simulations at this
resolution were also performed recently in [45] with an
injection of energy at the largest scale available; the fo-
cus was solely on the scaling of small-scale fluctuations,
showing depletion of the energy cascade and reduced in-
termittency. Our main objective, on the other hand, is to
study the statistical properties of the fluctuations in flows
with moderate Rossby numbers (down to Ro ≈ 0.07) but
at Reynolds numbers large enough to observe the be-
ginning of a turbulent scaling at scales smaller than the
energy injection scale.

To this end, we use coherent forcing at intermediate
scales, leaving enough room in the spectral space for an
inverse cascade of energy to develop when the Rossby
number is small enough. We also use the largest value

of the Reynolds number allowed by our grid to observe a
direct transfer of energy at small scales. After describing
the simulations, we study its spectral behavior, the shell-
to-shell energy transfer, scaling laws and intermittency,
the geometry of the structures and finally the degree of
anisotropy of the resulting flow.

II. NUMERICAL SIMULATIONS

We solve numerically the equations for an incompress-
ible rotating fluid with constant mass density,

∂u
∂t

+ ω × u + 2Ω× u = −∇P + ν∇2u + F, (1)

and

∇ · u = 0, (2)

where u is the velocity field, ω = ∇ × u is the vortic-
ity, P is the total pressure (modified by the centrifugal
term) divided by the mass density, and ν is the kine-
matic viscosity. Here, F is an external force that drives
the turbulence, and we chose the rotation axis to be in
the z direction: Ω = Ωẑ, with Ω the rotation frequency.

The mechanical forcing F is given by the Taylor-Green
(TG) flow [55]

F = F0 [sin(k0x) cos(k0y) cos(k0z)x̂−
− cos(k0x) sin(k0y) cos(k0z)ŷ] , (3)

where F0 is the forcing amplitude. The forcing injects
energy directly only into the x and y components of the
velocity, but with a three-dimensional dependence. How-
ever, in the absence of rotation (Ω = 0), the resulting
flow is fully three-dimensional even in the absence of in-
stabilities (turbulence) because pressure gradients excite
the z component of the velocity [43, 55]. The TG flow
has a small spectral anisotropy with slightly more energy
in the z direction (see section VI form more details), an
effect that is the opposite of the tendency towards two-
dimensionalization due to rotation when Ω is non-zero).
The flow has no net helicity, although locally regions
with strong positive and negative helicity develop. It
is also worth noting that this forcing injects zero energy
in the kz = 0 mode, whose amplification observed in the
strongly rotating cases (see below) is thus only due to a
cascade process.

The TG flow is important in hydrodynamics for the in-
sights it provides. It was originally motivated as an initial
condition which, though highly symmetric, would lead to
the rapid development of small spatial scales [55], and as
a result proposed as a paradigm of the direct cascade of
energy in turbulence. It also mimics the von Kármán
flows between two counter-rotating disks used in several
turbulence experiments, including experiments of rotat-
ing turbulence [50] and recent experiments to reproduce
generation of magnetic fields by dynamo action [42].
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TABLE I: Parameters used in the simulations. N is the linear
grid resolution, k0 the wavenumber used in the forcing, ν the
kinematic viscosity, Ω the rotation rate, tmax the maximum
number of turnover times computed; Re, Ro, and Ek are re-
spectively the Reynolds, Rossby and Ekman numbers. Note
that runs A and B1 all start from a fluid at rest, whereas
runs B2,3 start from the steady state reached by run B1 (see
text).

Run N k0 ν Ω tmax Re Ro Ek

A1 256 2 2× 10−3 0.08 45 900 4.50 5× 10−3

A2 256 2 2× 10−3 0.40 45 900 0.70 8× 10−4

A3 256 2 2× 10−3 0.80 45 900 0.35 4× 10−4

A4 256 2 2× 10−3 1.60 45 900 0.17 2× 10−4

A5 256 2 2× 10−3 3.20 150 900 0.09 1× 10−4

A6 256 2 2× 10−3 8.00 185 900 0.03 3× 10−5

B1 512 4 8× 10−4 0.40 17 1100 1.40 1× 10−3

B2 512 4 8× 10−4 1.60 25 1100 0.35 3× 10−4

B3 512 4 8× 10−4 8.00 40 1100 0.07 6× 10−5

Two sets of runs were done at resolutions of 2563 (set
A) and 5123 grid points (set B). The parameters for all
the runs are listed in Table I. With Taylor-Green forc-
ing, the spherical shell in Fourier space where energy is
injected has wavenumber kF =

√
3k0, or equivalently, at

a scale LF = 2π/kF . For the runs in set A, kF ≈ 3.5,
and for the runs in set B, kF ≈ 6.9; as a result, there
is more room in spectral space for an inverse cascade to
take place in the B runs; the B runs also have a slightly
higher Reynolds number.

All the runs in set A were started from a fluid at rest.
At t = 0, the rotation and the external forcing were
switched on, until reaching a turbulent steady state, or
until an inverse cascade was well developed in the case
of large rotation rates. The runs in set B were done as
follows. Run B1 was started from a fluid at rest and af-
ter turning on the rotation and external forcing, the run
was continued to reach a turbulent steady state. Runs
B2 and B3 were started from a snapshot of the veloc-
ity field from the steady state of run B1, and both runs
were continued until a new steady state was reached, or
an inverse cascade developed. This latter method proved
useful in saving computing time, as no differences were
observed when comparing the late time evolution of the
runs in the two sets. In order to measure the extent
of the transient regime in each case (see Sec. III), and
make sure the energy transfer and other relevant quan-
tities were measured in the developed turbulent regime.
To this end, all simulations were extended for very long
times; Table I gives the characteristics of the runs; note
that times are expressed in units of the turn-over time
τNL = Urms/LF ∼ 1/LF (see below). Finally, in all
simulations, a dissipative range was properly resolved,
and the time step was much smaller than all the relevant
timescales.

We define the integral and Taylor scales of the flow

FIG. 1: Time history of the energy for set A: A1 (solid), A2
(dash-dot), A3 (dash-triple dot), A4 (long dash), A5 (dash),
and A6 (dot); Rossby numbers range from 4.50 to 0.03. The
inset shows a detail of the evolution at early times: at high
rotation rates (runs A5 and A6), waves prevail and the energy
of the system is lower than when little rotation is present.
Note the transition to a high energy regime at later times as
Ro decreases, because of an inverse energy cascade setting in.

respectively as

L = 2π

∫
E(k)k−1dk∫

E(k)dk
, (4)

and

λ = 2π

( ∫
E(k)dk∫

E(k)k2dk

)1/2

, (5)

where E(k) is the energy spectrum. Since for large Ω an
inverse cascade develops, these two scales are useful to
describe the evolution of characteristic scales in the flow
with time. However, to avoid a time dependence of the
Reynolds and Rossby numbers (time dependent Rossby
numbers based on inertial-range scales are discussed in
Secs. V and VI), we define for each run the Reynolds
number as

Re =
LF U

ν
, (6)

and the Rossby number as

Ro =
U

2ΩLF
. (7)

We also define the Ekman number as

Ek =
Ro

Re
=

ν

2ΩL2
F

. (8)

The turnover time at the forcing scale is then defined as
T = LF /U where U =

√
〈u2〉 is the r.m.s. velocity mea-

sured in the turbulent steady state, or when the inverse
cascade starts. The amplitude of the forcing F0 in the
simulations is increased as Ω is increased in order to have
U ≈ 1 in all the runs.
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FIG. 2: Time history of the energy dissipation rate (labels
as in Fig. 1); the inset again shows the evolution at early
times. Note that after transients with little dissipation (and
thus little turbulence), runs A3 to A6 reach approximately
half the level of turbulence activity of the non rotating flows,
as measured by their dissipation rate.

III. TIME EVOLUTION AND SPECTRA

Figure 1 shows the time history of the energy in the
runs in set A. Runs A1-A4 show a similar evolution, but
runs A5 and A6 evolve differently. As the Rossby num-
ber decreases, a transient develops in which the total
energy oscillates with a frequency that increases with
Ω. Examining the inset, the period of oscillation of
the total energy in that first phase decreases monoton-
ically from run A3 to run A6; for the dissipation (see
below), this oscillation is only clearly seen at the lowest
Rossby number in run A6. The transition time between
this wave-dominated regime to another regime grows as
Ω increases, for sufficiently large Ω. Then, the energy
increases suddenly and a fully turbulent regime finally
develops, including at the lowest Rossby number. An
inverse cascade of energy is observed in run A6 after
t ≈ 120. The increase in the energy observed after this
time is also accompanied by a monotonous increase with
time of the flow integral scale L. Even in the runs in set
B, that are restarted from a pre-existing turbulent steady
state, long runs are needed to reach another turbulent
state after turning on the rotation. As an example, in
run B3 it takes ≈ 20 turnover times for the transient to
decay and for an inverse cascade of energy to develop.

The energy dissipation rate 2νΩν ≡ ν
∫

ω2dV as a
function of time is shown in Fig. 2. As the Rossby num-
ber decreases, the peak of the dissipation rate is reached
at later times, and then it saturates. Note that during
the early transient in runs A5 and A6, the dissipation is
almost negligible (corresponding likely to a wave turbu-
lence regime with substantially reduced nonlinear inter-
actions), while in the saturated state the mean dissipa-
tion rate decreases slowly with decreasing Rossby num-
ber.

The shape of the energy spectrum evolves with time,
specially after the transient as turbulence sets in, and

FIG. 3: Spectral index α as a function of time in run A6,
in the isotropic energy spectrum E(k) (solid), in the E(k⊥)
spectrum (dot), and in the E(k‖) spectrum (dash). Note that
the energy distribution, as measured by α, is dominated by
the orthogonal modes.

later again as the spectrum becomes dominated by the
contribution from the largest scales when the Rossby
number is small enough for an inverse cascade to de-
velop. Figure 3 shows the time evolution of the spec-
tral index α (the exponent in the region of the spectrum
with k > kF that follows a power law ∼ kα) in run A6.
Three curves are shown, which correspond respectively
to the spectral index computed on the isotropic energy
spectrum E(k), on the perpendicular energy spectrum
E(k⊥) (where k⊥ denotes the wavevectors perpendicular
to Ω), and the parallel spectrum E(k‖) (where k‖ de-
notes the wavevectors parallel to Ω). Here and in the
following, the isotropic energy spectrum E(k) is defined
by averaging in Fourier space over spherical shells, and
the reduced energy spectra E(k⊥) and E(k‖) are defined
averaging in Fourier space respectively over cylinders and
over planes; a detailed definition of these averages can be
found in Sec. IV, Eqs. (10-12).

Before t ≈ 80, we cannot recognize a power law in the
energy spectra. After t ≈ 80, the spectral indices in E(k)
and E(k⊥) grow monotonically from a value of −7 until
reaching a plateau with α ≈ −3 at t ≈ 110. The energy
spectra E(k), E(k⊥), and E(k‖) show wide and steep
power law behavior from t ≈ 80 to t ≈ 120. During this
transient, the energy flux is almost zero, as can also be
expected from the small value of the energy dissipation in
run A6 before t ≈ 110 (Fig. 2). The end of the transient
at t ≈ 110 and the plateau in α correspond respectively to
the increase in the energy and in the energy dissipation
rate showed in Figs. 1 and 2. The spectral index in
E(k‖) also has a plateau with α ≈ −4.5. However, as
the inverse cascade sets in and the energy piles up at the
largest available scale in the system, the spectral index
changes again and seem to slowly evolve towards α ≈
−2 in both E(k) and E(k⊥). E(k‖) evolves towards a
steeper spectrum with a strong peak at k‖ = 0.

Note that the inverse cascade only starts after ≈ 10
turnover times after the turbulent state is reached at t ≈
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FIG. 4: Isotropic energy spectra at late times in runs B1
(solid, t ≈ 16), B2 (dot, t ≈ 24), and B3 (dash, t ≈ 40) at
low Ro. Two slopes are given as a reference. The inset shows
the isotropic energy flux for the same runs. Note that B1 and
B2 are almost undistinguishable, and that an inverse cascade
develops only for B3.

FIG. 5: E(k⊥) and Π(k⊥) (inset) at late times in runs B1,
B2, and B3. Labels are as in Fig. 4.

110. This can be understood as follows. The energy
spectrum observed before t ≈ 110 has almost no flux.
Nonlinear transfer of energy is required for the flow to
become two-dimensional under the effect of rotation [16,
53, 57], and the nonlinear transfer is negligible until t ≈
110. Then, after a few turnover times, the flow undergoes
a transition and the inverse cascade sets in.

The long transient is only observed in the runs in set
A, since the runs in set B are started from a turbulent
steady state. However, after the transient, the spectral
evolution of the runs in set A and B is similar. Since runs
in set B have more scale separation for an inverse cascade
to develop when Ro is small enough, we focus now on this
set of runs. We show in Fig. 4 the isotropic energy spec-
trum at late times in runs B1-B3. While runs B1 and
B2 show no growth of energy at scales larger than the
mechanical forcing, except for some backscattering with
a ∼ k2 spectrum, run B3 at late times is dominated by
the energy in the k = 1 shell. At scales smaller than the
forcing scale, the spectrum of run B3 is steeper than that

FIG. 6: Π(k⊥)/


u2
�

at late times in runs B1, B2, and B3.
Labels are as in Fig. 4.

of runs B1 and B2, and compatible with a ∼ k−2 scaling.
The inset in Fig. 4 shows the isotropic energy flux in the
same runs. Note that in run B3, the flux at scales larger
than the forcing scale is negative and approximately con-
stant, indicating the development of an inverse cascade
of energy for small Ro, although at a lower intensity than
the direct cascade. At smaller scales, the energy flux is
positive. We thus conclude that in rotating flows, both
the direct and inverse energy cascades can cohabit.

The energy spectrum E(k⊥) is shown in Fig. 5, to-
gether with the energy flux Π(k⊥). The spectrum and
flux are similar to the isotropic ones (indicating that most
of the energy is in these modes), and Π(k⊥) confirms
the development of an inverse cascade of energy in k⊥ at
scales larger than the forcing scale in run B3, and a direct
cascade at smaller scales with a ∼ k−2

⊥ scaling. Figure
6 shows the energy flux Π(k⊥) normalized by the r.m.s.
velocity in each run. Note that the increase of the flux
observed in the inset of Fig. 5 is only due to the increase
in the energy of the system as the inverse cascade piles
up energy at the largest available scale. As Fig. 6 in-
dicates, the actual transfer of energy is slowed down by
the rotation, and run B3 shows a smaller normalized flux
than the other two runs at scales smaller than the forcing
scale.

On the other hand, there is no clear scaling in the small
scales in E(k‖), nor an inverse cascade at large scales (see
Figure 7). The E(k‖) spectrum in run B3 is steeper than
the E(k⊥) spectrum, consistent with the results shown
in Fig. 3 for run A6 at late times. Slopes ∼ k−5/3 and
∼ k−2 are shown in Fig. 7 only as a reference.

Before proceeding to the computation of the transfer
function and other high-order statistics, it is worth point-
ing out that the long transient observed in runs in set A,
as well as a shorter transient observed at early times in
the runs in set B, make computation of long runs cru-
cial for the following analysis. In run A6, which was
started from a fluid initially at rest, the inverse cascade
only starts after t ≈ 120. But even in run B3, which was
started from a previous turbulent steady state, a tran-
sient with oscillations in the energy and the enstrophy
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FIG. 7: E(k‖) at late times in runs B1, B2, and B3. Labels
are as in Fig. 4.

FIG. 8: Shell-to-shell transfer function T (Q, K) at Q = 40 for
runs B1 (solid), B2 (dot), and B3 (dash) at late times.

is observed at early times, which are damped only after
≈ 10 turnover times.

IV. ENERGY TRANSFER

In this section we study the scale interactions and en-
ergy transfer in rotating turbulent flows. A study of the
energy transfer in this context, albeit at lower resolution
and earlier times, was done before by [59]. We will focus
on runs B1, B2, and B3, that have enough scale sepa-
ration for direct and inverse cascades to develop when
Ro is small enough. Similar results were obtained in the
analysis of the runs in set A.

To investigate the transfer of energy among different
scales we consider the shell filter decomposition of the
velocity field,

u(x) =
∑

K

ũK(x), (9)

where K denotes a foliation of Fourier space in shells,

that for our purposes can be taken as spheres [2, 3, 37, 38]

uK(x) =
∑

K≤|k|≤K+1

ũkeik·x, (10)

cylinders [1]

uK⊥(x) =
∑

K≤|k⊥|≤K+1

ũkeik·x, (11)

or planes [1]

uK‖(x) =
∑

K≤|k‖|≤K+1

ũkeik·x. (12)

Then, we can define the shell-to-shell transfer between
these shells as

T (Q,K) = −
∫

uK(u · ∇)uQ dx3. (13)

This function expresses the transfer rate of energy lying
in the shell Q to energy lying in the shell K. It sat-
isfies the symmetry property T (Q,K) = −T (K, Q) [3],
and the numbers labeling the shells Q and K can cor-
respond to any of the foliations of Fourier space listed
above [1]. In particular, we will study the cases T (Q,K),
T (Q⊥,K⊥), and T (Q‖,K‖). The energy fluxes discussed
in the previous section can be reobtained in terms of the
shell-to-shell transfer function as

Π(k) = −
k∑

K=0

∑

Q

T (Q,K), (14)

where again the wavenumbers k, K, and Q can corre-
spond to different foliations of Fourier space depending
on the subindex.

Note that for the definition of the shells a linear bin-
ning is used. Alternatively, the shells can be defined
by a logarithmic binning of spectral space with intervals
(γnK0, γ

n+1K0] for some positive γ > 1 and for integer n.
However, logarithmic binning cannot distinguish transfer
between linearly spaced neighbor shells (from the shell K
to the shell K +1) from the transfer between logarithmic
neighbor shells (from K to γK). If the cascade is the
result of interactions with the large-scale flow (e.g., with
modes with wavenumber kF associated to the external
forcing), the energy in a shell K will be transferred to the
shell K + kF . Logarithmic binning does not distinguish
this transfer from the transfer due to local triadic inter-
actions that transfer the energy from K to γK. For this
reason we use linear binning, but we note that care needs
to be taken when using the word “scale” that implies in
general a logarithmic division of the spectral space. The
transfer among logarithmic shells can be reconstructed
at any time later by summing over the linearly spaced
shells.

Figure 8 shows the shell-to-shell transfer T (Q,K) at
K = 40 for runs B1, B2, and B3 at late times. The neg-
ative peak to the left indicates energy is transferred from
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FIG. 9: Shell-to-shell transfer function T (Q⊥, K⊥) at Q⊥ =
40 for runs B1, B2, and B3. Labels are as in Fig. 8.

FIG. 10: Shell-to-shell transfer function T (Q‖, K‖) at Q‖ =
40 for runs B1, B2, and B3. Labels are as in Fig. 8. Notice
these transfers are roughly 5 times weaker than in the ⊥ case.

these K-shells to the shell Q = 40, while the positive peak
to the right indicates energy goes from the Q = 40 shell
to those K-shells. In runs B1 and B2 the shell-to-shell
transfer peaks at |Q−K| ≈ kF . This was observed before
in simulations of homogeneous turbulence [2, 21, 22, 38],
and indicates that the energy transfer is local (the energy
goes from a shell Q to a nearby shell K, although the step
in the energy cascade is independent of that scale and re-
lated to the forcing scale). In the context of the present
study, it is worth mentioning that this is not a peculiarity
of the TG forcing, and this transfer in non-rotating tur-
bulence has been observed for other forcing functions, in-
cluding isotropic delta-correlated in time forcing [22, 38].
It is the result of individually strong triadic interaction
involving the energy containing scale. As more triads
are summed in order to obtain the shell-to-shell transfer
and the energy flux, the functions become more local; at
the Reynolds number studied here, it can be shown that
≈ 60% of the energy flux in the non-rotating case is due
to local interactions [41].

The shell-to-shell transfer in run B3 is markedly differ-
ent and strongly peaks at |Q−K| ≈ 1. The same effect is
observed in T (Q⊥,K⊥) shown in Fig. 9. This indicates

that at late times in run B3, the direct transfer of en-
ergy at small scales is mediated by interactions with the
largest scale in the system, the energy containing eddies
with k⊥ ≈ 1 (see Fig. 5). As a result, the timescale asso-
ciated with the direct cascade of energy in k⊥ increases
(and its flux reduces, see Fig. 6), since the energy is
transferred in smaller steps in Fourier space than in the
case of the B1 and B2 runs.

The shell-to-shell transfer T (Q‖, K‖) at Q‖ = 40 for
the same runs is shown in Fig. 10. The dependence with
the Rossby number of this transfer function is less dras-
tic. In all runs, the transfer function T (Q‖,K‖) peaks at
|Q‖−K‖| ≈ kF . Although, there is considerable amount
of energy in the shell k‖ = 0, the modes in this shell
(that correspond to a pure 2-D flow) do not cascade the
energy in the k‖ axis since they are unable to stretch
eddies in the z-direction. As a result, the cascade in
this direction is only due to modes with k‖ > 0 and the
modes with k‖ = kF dominate. Note also that there is
a drop in the amplitude of the transfer in run B3 for all
shells except the ones satisfying |Q‖ − K‖| = kF . As a
result, for small Rossby number the transfer of energy
between shells with Q‖ and K‖ is quenched except for
the direct interactions with the external forcing. Most
of the interactions responsible for the transfer of energy
to small scales between different k‖ shells at small Ro
are then interactions with the forcing. This is consistent
with previous results showing that rotation reduces the
turbulent energy transfer along the parallel direction.

Figure 11 shows the transfer functions T (Q⊥,K⊥) and
T (Q‖,K‖) in runs B1 and B3 for all values of K and
Q up to 40. In all cases, the white and black bands
near K ≈ kF and Q ≈ kF indicate a small amount of
energy injected by the external forcing that is directly
transferred to all wavenumbers up to ≈ 30. For K and
Q larger than kF , the figures confirm the results of the
direct cascade of energy presented in Figs. 9 and 10. For
wavevectors perpendicular to Ω, as the Rossby number
is decreased, the peaks in T (Q⊥, K⊥) move closer to the
diagonal K⊥ = Q⊥ [Figs. 11(a) and (b)], indicating the
direct cascade in the perpendicular direction takes place
in smaller k-steps given by the largest scale of the system.
For all wavevectors, the energy in the parallel direction
[see T (Q‖, K‖) in Figs. 11(c) and (d)] is transferred to
smaller scales, and the cascade step does not depend on
the Rossby number. However, all transfer except the
transfer with |Q‖−K‖| = kF is strongly quenched in run
B3.

The development of a non-local inverse transfer can be
observed in Fig. 11(b) for K⊥ < kf and Q⊥ < kf . The
transfer is inverse, since below the diagonal Q⊥ = K⊥
regions with negative (dark gray and black) T (Q⊥,K⊥)
can be observed. This means that energy is taken from
e.g., K⊥ = 20 and transferred to shells with Q⊥ < kF .
The transfer is also non-local, since this inverse trans-
ference takes place between disparate scales. The non-
local transfer of energy in rotating turbulence shares sim-
ilarities with the inverse cascade of magnetic helicity in
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FIG. 11: Shell-to-shell energy transfer functions T (Q⊥, K⊥) (a,b) and T (Q‖, K‖) (c,d) at late times in runs B1 (a,c) and B3
(b,d). Notice the quenching of the transfer in case (d), except for the interactions with the forcing scale.

FIG. 12: Second order longitudinal structure function S2(`⊥)
(where `⊥ denotes increments were taken in the direction per-
pendicular to Ω) for runs B1 (solid), B2 (dot), and B3 (dash).

magnetohydrodynamics (MHD) [4, 5]. Near the diago-
nal Q⊥ = K⊥ the transfer is more complex. The inverse

transfer superposes with a (smaller in net amplitude) di-
rect local transfer (dark spots below and near the diag-
onal, and light spots above and near it, for K⊥ and Q⊥
smaller than kF ). This small direct transfer of energy
at large scales is the result of a reflection of energy at
K = 1, and was also observed in studies of the inverse
cascade of magnetic helicity in MHD [4]. The reflection of
energy in Fourier space when it reaches the largest scale
in the box suggests that the late time evolution can be
dependent on the boundary conditions, a property that
was already observed in simulations of two dimensional
turbulence [6, 11, 14, 33, 34]. In our case, the simulations
do not contain a large-scale dissipation mechanism (such
as a hypo-viscosity), and therefore energy piles up at the
largest available scale until its growth is stopped by the
(small-scale) dissipation.
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FIG. 13: Scaling exponents ζp for the steady state of runs B1
(+), B2 (∗), and for run B3 at different times: t ≈ 20 (♦), t ≈
25 (×), t ≈ 30 (¤), and t ≈ 40 (4). The solid line corresponds
to the scaling exponents given by the She-Lévêque model [48],
the dash line is the Kolmogorov prediction ζp = p/3, and the
dotted line is ζp = p/2. Note that in run B3, as time evolves,
the exponents approach the p/2 scaling (see text).

V. SCALING LAWS AND INTERMITTENCY

In this section, we consider the anisotropic inertial
range scaling of the runs in Table I as described by the
longitudinal velocity increments in the direction perpen-
dicular to rotation,

δu(x, `⊥) = r̂ · [u(x + `r̂)− u(x)] , (15)

where r̂ is a unit vector perpendicular to Ω. The lon-
gitudinal structure functions Sp(`⊥) (with displacements
along `⊥) can then be defined as

Sp(`⊥) = 〈δu(x, `⊥)p〉 , (16)

where the brackets denote spatial averaging. If the flow
is self-similar, we expect Sp(`⊥) ∼ `⊥

ζp , where ζp are the
scaling exponents. In isotropic and homogeneous hydro-
dynamic turbulence, the Kármán-Howarth theorem im-
plies S3(`) ∼ `, and the Kolmogorov energy spectrum fol-
lows from the assumption Sp(`) ∼ `p/3 [24]. In practice,
the spontaneous development of strong gradients in the
small scales of a turbulent flow gives rise to corrections to
this scaling, a phenomenon referred to as intermittency.

From dimensional analysis, if the energy spectrum at
small scales in rotating turbulence is E ∼ k−2

⊥ , we ex-
pect S2 ∼ `⊥. Figure 12 shows the second order struc-
ture function for runs B1, B2, and B3 at late times out-
side the wave regime when the turbulence has developed.
At small scales for all runs, S2 ∼ `2⊥, consistent with a
smooth field in the dissipative range. At large scales, S2

is larger for run B3 than for runs B1 and B2, a signature
of the inverse cascade of energy and of the development
of large scale structures in the flow. The scaling of runs
B1 and B2 at intermediate scales is compatible with the
Kolmogorov spectrum, while the scaling in run B3 is con-
sistent with the ∼ k−2

⊥ energy spectrum. Note that such

FIG. 14: Pdf of the longitudinal velocity increments (`⊥ = 3η)
for run B3 at different times: t ≈ 20 (solid), t ≈ 25 (dot),
t ≈ 30 (dash), and t ≈ 40 (dash-dot); η is the Kolmogorov
dissipative length and σ is the root mean square deviation of
the velocity increments.

TABLE II: Characteristic scales and dimensionless numbers
of the runs in set B. t is the time, L‖ and L⊥ are the integral
scales using respectively the E(k‖) and E(k⊥) spectra, λ is
the isotropic Taylor scale, Roλ is the micro-Rossby number
based on the Taylor scale, and µ = 2ζ3 − ζ6.

Run t L‖ L⊥ λ Roλ µ
B1 16 1.5 0.9 0.29 3.70 0.23± 0.01
B2 24 1.6 0.9 0.31 0.91 0.24± 0.01
B3 20 2.6 1.2 0.50 0.12 0.19± 0.02
B3 25 2.4 1.5 0.55 0.11 0.26± 0.02
B3 30 2.1 1.7 0.59 0.12 0.26± 0.05
B3 40 1.9 2.8 0.53 0.33 0.24± 0.02

a scaling can be understood as a slow-down in the energy
transfer rate because of interactions between waves and
eddies (see e.g., [40, 45, 61]); such a slow-down is consis-
tent with the results of the transfer function presented
in the previous section. Considering that the energy flux
in the inertial range ε is slowed down by waves (see e.g.,
[28, 30] for the MHD case)

ε ∼ δu2
`⊥τΩ/τ2

`⊥ , (17)

where τΩ ∼ 1/Ω, and τ`⊥ ∼ `⊥/δu`⊥ is the turnover time
of eddies in the plane perpendicular to Ω; the scaling

δu2
`⊥ ∼ `⊥ (18)

follows.
Figure 13 shows the scaling exponents ζp up to order 6

computed in runs B1, B2, and B3. The scaling exponents
are defined as the exponents in

Sp(`⊥) ∼ `
ζp

⊥ (19)

in the inertial range associated to the direct cascade of en-
ergy (i.e., for `⊥ < LF ). Runs B1 and B2 behave as non-
rotating turbulence, with Kolmogorov scaling (ζ2 ≈ 2/3)
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and intermittency corrections (the prediction ζp = p/3 of
Kolmogorov, and the model of intermittency in homoge-
neous and isotropic turbulence of She and Lévêque [48]
are shown in Fig. 13 as a reference). However, run B3
has a distinct behavior, with ζ2 ≈ 1. As time evolves
in this run, and the energy piles up at k⊥ ≈ 1, the sec-
ond order scaling exponent slowly converges to this value.
Low order moments follow the curve ζp = p/2, but high
order moments deviate from the straight line.

Similar results were found in an experimental study of
a turbulent flow between two co-rotating disks [50] (see
also [47]). The resulting experimental flow shares simi-
larities with the TG flow studied here. In the experiment,
a transition from isotropic and homogeneous turbulence
scaling to a ζp = p/2 scaling was observed as measure-
ments were made closer to the intense large-scale vortex
formed in the gap between the two disks.

The level of intermittency in the flow in all these runs
can be measured in terms of µ = 2ζ3− ζ6. This quantity,
together with the integral scales of the flow (based on the
parallel and perpendicular energy spectra), the Taylor
scale, and the micro-Rossby number (based on the Taylor
scale of the flow),

Roλ =
U

2Ωλ
, (20)

are given in Table II for the runs in set B at different
times. The value of the micro-Rossby number plays a
central role in the determination of the velocity deriva-
tive skewness and the inhibition of the energy cascade
in rotating turbulence, as discussed in Ref. [16]. In ad-
dition, its value is also important in the development
of anisotropies through non-linear interactions, as is dis-
cussed in more detail in the next section.

It can be seen that at late times run B3 evolves towards
an anisotropic state in the large scales, with L⊥/L‖ ≈ 1.5
(see Sec. VI for more details). However, at small scales
the flow seems more isotropic and at late times (t ≈ 40)
in this run λ⊥/λ‖ ≈ 0.8. The micro-Rossby number in
runs B1, B2, and B3 takes different values, in the range
0.11–3.7. However, the value of µ is, within error bars,
approximately the same for all the runs. As a result, the
intermittency in the direct cascade of energy in a rotating
flow seems to be independent of the Rossby number Ro
and of the micro-Rossby number Roλ (in the range of
Rossby numbers studied).

Finally, Figure 14 shows the time evolution of the prob-
ability density function (pdf) of the longitudinal velocity
increments in run B3. Increments in the direction per-
pendicular to Ω were computed, and the increment was
taken equal to three times the Kolmogorov dissipation
scale η in each run. The velocity increments in each run
were normalized by their corresponding root mean square
deviation σ. In agreement with the level of intermittency
observed in the scaling exponents, the pdfs show expo-
nential tails indicating a larger than Gaussian probability
of large gradients to occur in the small scales. The am-
plitude of the tails of the pdfs as a function of δu/σ does

FIG. 15: (Color online) Three dimensional rendering of the
vorticity intensity in a subvolume of 256 × 512 × 512 grid
points for run B2. The top view shows the subvolume in
the direction of the axis of rotation; in the bottom view, the
red and blue arrows indicate respectively the x and z axis.
Note the large-scale columns made up of smaller-scale intense
vortices typical of three-dimensional turbulence.

not change significantly with time. Moreover, the root
mean square deviation σ of the velocity increments δu
increases with time. So if the pdfs are plotted versus δu
(instead of versus δu/σ), the pdfs actually become wider
at later times. This effect can be understood considering
that once the inverse cascade of energy sets in, the total
energy in the flow as a function of time increases.

VI. STRUCTURES AND ANISOTROPY

The intermittency reported in the previous section in
the scaling exponents and the pdfs of velocity increments
indicates that even after the inverse cascade sets in, the
flow develops strong velocity gradients in the small scales.
In this section, we present visualizations of the flow and
consider the structures that emerge.
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FIG. 16: (Color online) Rendering of relative helicity in the
same subvolume as in Fig. 15 and with the same viewpoints.
Blue corresponds to positive helicity, and red to regions with
negative helicity. Only regions with |ω · u|/(|ω||u|) > 0.95
are shown, i.e. for strong alignment between the velocity and
vorticity, which appears ubiquitous and not confined to strong
vorticity regions as in the non rotating case.

Figure 15 shows a three dimensional rendering of the
vorticity intensity in half of the computational domain
(256×512×512 grid points) at late times. The top view
corresponds to the subvolume in the direction of the axis
of rotation. Only regions with strong vorticity are shown.
Note that the flow is anisotropic and quasi-2D, as it is
clear from the top view. In the bottom view, the develop-
ment in the flow of large scale column-like structures can
be seen. However, the columns display small scale struc-
tures with thin vortex filaments. These filaments seem
to be ordered according to the large scale pattern. The
presence of regions with strong vorticity even when the
Rossby number is small enough for the inverse cascade
of energy to develop can be expected from the results
shown in Figs. 13 and 14, linked to the intermittency of
the flow.

The development of anisotropies in the runs with small

TABLE III: Different measures of anisotropy in all runs at dif-
ferent times. t is the time, Roω is the micro-Rossby number
based on the r.m.s. vorticity, L⊥/L‖ is the ratio of perpen-

dicular to parallel integral scales, tan2 θ is the square tangent
of the Shebalin angle, and E(k‖ = 0)/E is the ratio of energy
in all modes with k‖ = 0 to the total energy.

Run t Roω L⊥/L‖ tan2 θ E(k‖ = 0)/E
A1 45 65.2 0.7 1.74 0.05
A2 45 12.7 0.7 1.78 0.07
A3 45 5.89 0.7 1.98 0.13
A4 45 3.18 0.6 2.55 0.19
A5 150 1.23 0.5 4.01 0.23
A6 110 0.22 0.4 12.3 0.15
A6 150 0.48 1.5 7.65 0.82
A6 185 1.12 1.9 3.80 0.88
B1 16 22.4 0.6 1.77 0.03
B2 24 5.61 0.6 2.04 0.11
B3 20 0.77 0.5 6.22 0.36
B3 25 0.67 0.6 6.58 0.55
B3 30 0.76 0.8 5.87 0.62
B3 40 1.35 1.5 3.82 0.66

Rossby number is apparent from Fig. 15. Table III gives
a list of different measures of anisotropy commonly used
in the literature, for all runs at different times. According
to [16, 29], anisotropies develop in rotating flows through
non-linear interactions when the Rossby number Ro <
1 and when the micro-Rossby number Roω > 1. The
micro-Rossby number Roω is the ratio of r.m.s. vorticity
to background vorticity (rotation),

Roω =
ω

2Ω
, (21)

and scales as Roλ except for prefactors. If the macro-
Rossby number Ro is too large, no inverse cascade is ob-
served in the simulations. If the micro-Rossby number is
too small, non-linear interactions are completely damped
and no transition develops. It is worth noting that the
actual values for the transition to occur can depend on
the particular flow studied.

The development of anisotropies in rotating turbu-
lence has been quantified in [9, 15, 16] using the paral-
lel and perpendicular integral scales. The ratio of these
two length scales is given in Table III. For Ro . 0.35,
L⊥/L‖ ≈ 0.7 (runs A1-A3, B1, and B2); in the absence
of rotation the flow under TG forcing develops a slightly
larger integral scale in the z direction. However, in runs
A4-A6 and B3, the ratio L⊥/L‖ increases and becomes
larger than 1 as Ro is decreased. In runs A6 and B3,
this ratio is observed first to decrease (just before the
inverse cascade starts) to finally increase monotonically,
reaching L⊥/L‖ ≈ 1.9 in run A6 at t ≈ 185.

The integral scale ratio measures anisotropy in the en-
ergy containing scale. To quantify small-scale anisotropy,
the so-called Shebalin angles were introduced in MHD
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turbulence [36, 49],

tan2(θ) = 2 lim
`→0

S2(`⊥)
S2(`‖)

= 2

∑
k⊥ k2

⊥E(k⊥)∑
k‖

k2
‖E(k‖)

, (22)

where `‖ denotes displacements along Ω. The angle
θ measures the spectral anisotropy level, and the case
tan2(θ) = 2 corresponds to an isotropic flow. Values of
tan2(θ) for all runs are listed in Table III. Runs A1 and
B1 have tan2(θ) ≈ 1.7, a value close to isotropy and with
a small anisotropy in the z direction. As the Rossby num-
ber is decreased, this tendency is reverted and tan2(θ)
becomes larger than 2. For runs A6 and B3 the value
of tan2(θ) is given for different times. As time evolves
in these runs, the anisotropy is maximum just before the
inverse cascade starts, and then tan2(θ) decreases slowly
to saturate near ≈ 3.8.

The spectral anisotropy has also been studied through
the axisymmetric energy spectrum e(k‖, k⊥) (as well as
other second order quantities; see e.g. [15, 16, 44, 58]).
For a two dimensional flow,

e(k‖, k⊥) =
E(k⊥)
2πk⊥

δ(k‖). (23)

In rotating turbulence, a pure two-dimensional state is
never reached [10]; however, a strong anisotropy develops
with a steeper spectrum in the parallel direction [10, 25,
32] consistent with an integrable singularity at k‖ = 0.
As an indication of this tendency, in Table III we give
the ratio of energy in all modes with k‖ = 0 to the total
energy E(k‖ = 0)/E; in the purely two-dimensional case
this ratio is equal to one. Runs A1 and B1 have small
E(k‖ = 0)/E, and the ratio increases as Ro is decreased,
reaching E(k‖ = 0)/E ≈ 0.88 at late times in run A6
(Ro ≈ 0.03) and E(k‖ = 0)/E ≈ 0.66 in run B3 (Ro ≈
0.07).

As the energy, the helicity is conserved in ideal rotat-
ing flows. However, the distribution of helicity seems to
be more isotropic and homogeneous than the other quan-
tities studied. As an example, the local relative helicity
ω · u/(|ω||u|) is shown in Fig. 16, for the same subvol-
ume as in Fig. 15. Unlike in isotropic and homogeneous
turbulence, regions of strong vorticity are not correlated
with regions of strong relative helicity. This is because
while in isotropic and homogeneous turbulence quenching
of nonlinear interactions occurs through alignment of ve-
locity and vorticity, in rotating turbulence it results from
phase-mixing and it is not necessarily linked to regions of
strong helicity. The net helicity over the entire box aver-
ages to zero, and local regions with positive and negative
helicity fluctuations, although ubiquitously strong, show
a more isotropic and homogeneous distribution than the
vorticity and velocity intensities (see e.g., Fig. 15). The
study of the reasons for this behavior are left for a future
work.

VII. CONCLUSIONS

In this work, we presented results of the study of
the turbulent scaling laws and energy transfer in direct
numerical simulations of rotating flows in periodic do-
mains. Spatial resolutions of 2563 (set A) and of 5123

grid points (set B) were used, while moderate Rossby
numbers (down to Ro ≈ 0.07) and large Reynolds num-
bers (up to Re ≈ 1100) were considered, with enough
scale separation to observe both a direct and an inverse
cascade of energy when the rotation was strong enough.
Runs in set A were started from a fluid at rest, while runs
in set B were restarted from a previous state of homo-
geneous turbulence. In the former case, for Ro ≈ 0.1, a
long transient was found in which the energy dissipation
is small, as well as the energy flux to smaller scales. Dur-
ing this transient, the energy spectrum has a wide but
steep spectrum, and its slope monotonously increases as
a function of time. After turbulence sets in and the in-
verse cascade of energy develops, the energy spectrum
evolves towards a E ∼ k−2

⊥ scaling at scales smaller than
the forcing scale. This late time evolution is observed in
both sets of runs.

At late times, the energy flux in runs A5, A6, and
B3 corresponding to strong rotation indicates an inverse
cascade of energy in k⊥ at scales larger than the forc-
ing scale, together with a direct cascade of energy at
smaller scales. The net flux to small scales decreases
as the Rossby number decreases, while the amplitude of
the flux to large scales increases. No inverse cascade is
observed in k‖. This is consistent with the explanation
of the observed tendency towards two-dimensionalization
through resonant interactions [15, 57] and not through an
inverse cascade in k‖. These cascades were confirmed by
the study of the shell-to-shell energy transfer. The direct
transfer of energy at scales smaller than the forcing is lo-
cal, although in the runs with small Rossby number the
transfer in k⊥ is significantly slowed down. In this di-
rection, the energy is transferred between shells K⊥ and
Q⊥ with small steps given by |Q⊥ −K⊥| ≈ 1. As a re-
sult, the direct transfer of energy in k⊥ at small scales
is mediated by interactions with the largest scale in the
system, the energy containing eddies with k⊥ ≈ 1. The
timescale associated to the direct cascade in k⊥ then in-
creases, and its flux reduces. In k‖ the transfer is direct
at all scales, and a larger component than in the case of
non-rotating turbulence is due to interactions with the
forcing scale. These results are in good agreement with
phenomenological derivations of the energy spectrum in
rotating turbulence that consider a slow down in the en-
ergy transfer rate because of interactions between waves
and eddies [45, 61]. The non-local interactions also lead
to the development of anisotropies in the flow [15, 57].

The inverse cascade of energy that develops at scales
larger than the forcing scale, in runs A5, A6, and B3
is non-local, in the sense that the transfer of energy as-
sociated to this cascade takes place between disparate
shells in Fourier space. At late times, the inverse trans-
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fer superposes with a (smaller in amplitude) direct local
transfer of energy.

This small direct transfer of energy at large scales is
the result of a reflection at k⊥ = 1, when the peak of en-
ergy reaches the largest scale in the box. Consequently,
the late time evolution of simulations of rotating turbu-
lence may depend on the boundary conditions used, a
property already observed in simulations of non-rotating
two dimensional turbulence [6, 11, 14, 33, 34], and on the
use or not of a friction term or dissipative term at large
scale.

The study of structure functions in the direct cascade
range shows that the second order scaling exponent for
increments perpendicular to the rotation in runs with
small Ro is ζ2 ≈ 1, in agreement with the evaluation of
the energy spectrum spectral index. Low order moments
follow the curve ζp = p/2 but high order moments de-
viate from this law, an indication of intermittency. The
level of intermittency in the direct cascade of energy, as
measured by the exponent µ = 2ζ3 − ζ6, is the same for
runs with and without rotation. The spontaneous for-
mation of strong gradients in the small scales is further
confirmed by pdfs of the velocity increments and by vi-
sualization of regions of strong vorticity in the flow.

More separation of scales is needed to study the in-
termittency in the inverse cascade of energy. Because of
its relation to small scale gradients, intermittency is be-
lieved to be associated only with the forward cascade of
energy. The intermittency phenomenon is not observed
in the velocity field in two dimensional turbulence for

which the conservation of vorticity leads to an inverse
energy cascade to the large scales [12, 13], although in-
termittency in the vorticity (which cascades directly to
small scales) is observed. It is unclear how the dual cas-
cade of energy (towards both small and large scales) in
rotating turbulence affects the intermittency in the in-
verse cascade range. While intermittency is associated
with small scale events, in many cases the strong events
can affect the dynamics of the large scales, specially in
systems close to criticality; as an example, intermittency
is a possible explanation for the occurrence of extended
minima in solar activity [18, 39]; it is also known to af-
fect the transport of momentum in atmospheric surface
layers [31].
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