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We investigate the transfer of energy from large scales to small scales in fully developed forced three-
dimensional magnetohydrodynamics �MHD� turbulence by analyzing the results of direct numerical simula-
tions in the absence of an externally imposed uniform magnetic field. Our results show that the transfer of
kinetic energy from large scales to kinetic energy at smaller scales and the transfer of magnetic energy from
large scales to magnetic energy at smaller scales are local, as is also found in the case of neutral fluids and in
a way that is compatible with the Kolmogorov theory of turbulence. However, the transfer of energy from the
velocity field to the magnetic field is a highly nonlocal process in Fourier space. Energy from the velocity field
at large scales can be transferred directly into small-scale magnetic fields without the participation of interme-
diate scales. Some implications of our results to MHD turbulence modeling are also discussed.
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I. INTRODUCTION

Most astrophysical and planetary systems—e.g., solar and
stellar winds, accretion disks, and interstellar medium—are
in a turbulent state and coupled to magnetic fields. Under-
standing and quantifying the statistical properties of magne-
tohydrodynamical �MHD� turbulence is crucial to explain
many physical processes in the cosmos and in industrial
flows as well �1�. Although the phenomenology of hydrody-
namical �HD� turbulence is understood to some extent and
the theory has been able to make predictions like Kolmogor-
ov’s 4 /5 law and the functional form of the energy spectrum
in the inertial range, which have been well verified in experi-
ments and numerical simulations, a similar statement cannot
be made for MHD turbulence at the same level. In MHD
flows, the two fields �velocity and magnetic� and two asso-
ciated energies involved in the dynamical processes allow for
many possibilities for the energy to transfer between smaller
or larger scales, making the dynamics more complex to ad-
dress in both theory and modeling.

We briefly describe some phenomenological aspects of
HD turbulence to point out some of the difficulties usually
encountered when the formulation of HD turbulence is ap-
plied in the MHD case. To follow the Kolmogorov theory �2�
�hereafter, K41�, we need to assume a statistically isotropic
and homogeneous flow in steady state in which the energy is
cascading from eddies of scale l to smaller eddies and so on
until the energy reaches dissipation scales. Since we are con-
sidering a statistically steady state, the flux of energy to
smaller scales has to be constant. We can further assume that
the flux at some scale can depend only on the scale l and the
amplitude of the velocity field �ul� at this scale. This assump-
tion is justified by the argument that larger eddies will only
advect smaller eddies without significantly altering their
scale and only when eddies of similar size interact do they

produce a cascade. Therefore, only “local” interactions
among the different scales control the cascade. Here we use
the term “local” in terms of the different scales involved �i.e.,
scales of similar size� and not as locality in physical space.
With these assumptions we obtain that the energy �ul�2 at the
scale l will cascade to smaller scales in a time l / �ul�, and
since the energy cascade rate � is constant, we obtain �
��ul�3 / l, which implies �ul�� l1/3, which finally leads to the
well-verified K41 spectrum dE /dk�k−5/3 to within small in-
termittency corrections.

The assumptions of the HD theory of turbulence have
been tested in the literature. Reference �3� first tested the
assumption of locality using direct numerical simulations
�DNS’s� of 643 grid points. Their work has been followed by
a number of authors with higher-resolution simulations
�4–10�. References �8,11,12� have also investigated the ef-
fect of long-range interactions and anisotropy induced by an
anisotropic large-scale flow. Although some issues still re-
main regarding the effect of long-range interactions, the lo-
cality of the energy transfer has been confirmed.

However, there are two important assumptions used in the
HD case that are not necessarily true for the MHD case.
First, the assumption of isotropy breaks down if an imposed
uniform magnetic field is considered. We will not investigate
such effects in the present work and will only consider flows
with �bdx3=0. The second assumption, that of the locality of
interactions among the different scales, is what motivates our
work. Unlike the HD case where the effect of larger eddies
on smaller ones is the advection of the latter ones �an effect
that can be taken away by a Galilean transformation�, in
MHD the effect of a large-scale fluctuation of the magnetic
field cannot be so eliminated. Therefore, in MHD it is pos-
sible for small scales to interact directly with large scales. If
this is the case, we cannot consider a “contiguous” transfer
of energy in wave number space and cannot a priori follow
the same arguments Kolmogorov used for HD turbulence.
Therefore knowledge of the energy transfer among different
scales is important for the construction of any phenomeno-
logical models of MHD turbulence.

Present phenomenological models follow Kolmogorov-
like arguments that take into account the effect of the mag-
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netic field. Iroshnikov �13� and Kraichnan �14� �IK� pro-
posed the first models to describe isotropic-MHD turbulence,
predicting a spectrum of k−3/2. Goldreich and Shridar �15�
proposed a new model for anisotropic MHD turbulence that
takes into account the anisotropy introduced by a uniform
magnetic field B0, predicting a spectrum of k�

−5/3, where k�

refers to the direction perpendicular to B0. Several models
have been proposed that combine the two spectra �see, e.g.,
�16–18��, suggesting that the index of the energy spectrum is
sensitive to the presence and intensity of B0. Some aspects of
nonlocality of interactions are taken into account in the
aforementioned models by considering that large-scale fluc-
tuations of the magnetic field act as a uniform magnetic field
to the smaller scales, and as a result they speed up or slow
down the rate at which the energy is cascading. However, in
these models, although nonlocal interactions are taken into
account, the energy is transferred locally from one scale to a
slightly smaller scale, like in Kolmogorov’s HD turbulence
model.

The locality of the interactions and the energy transfer in
MHD turbulence has been investigated through various clo-
sure models. The energy transfer has been studied within the
EDQNM �Eddy Damping Quasi Normal Markovian� closure
model by �19� and more recently by �20� where nonlocal
interactions have been noted. Using field-theoretical calcula-
tions the transfer of energy has been estimated by �21–23�.
As far as we know, the locality of the energy transfer in
MHD has been investigated through three-dimensional
DNS’s only very recently �24� �see also �25� for the two-
dimensional case�. These authors measured the transfer of
energy between different scales and fields using free-
decaying MHD turbulence simulations with 5123 grid points.
Their results showed that there is local transfer of energy
between the same fields, while the transfers involving the
two different fields showed a less local behavior, in the sense
that a wider range of scales was involved in the interactions.

In our work we use the results of the DNS’s of mechani-
cally forced MHD turbulence �unlike the free-decaying case
studied in �24�� to study the locality of the energy transfer
between different scales and fields. In all the cases studied
we consider a mechanical external forcing that generates a
well-defined large-scale flow and small-scale turbulent fluc-
tuations. This is a regime of interest for several astrophysical
and geophysical flows where magnetic fields are believed to
be sustained against Ohmic dissipation by a dynamo process
�26� and the only external source of energy driving the sys-
tem is mechanical �e.g., convection and rotation�. There is an
important difference between the case studied in �24� and the
case considered in our work. In our case energy is forced
through the velocity field and the system reaches a steady
state with equipartition between the two fields. For this to
happen there must be a nonzero flux for all times from the
velocity field to the magnetic field. This is not necessarily
true for the case of decaying turbulence, and as our results
show this significantly modifies the energy transfers from the
velocity field to the magnetic field.

In Sec. II we introduce the definitions of the transfer
terms for MHD, and in Sec. III we present the code we use
for the numerical simulations as well as the results of the
analysis. Finally, in Sec. IV we summarize the main results
of our work.

II. THEORY AND DEFINITIONS

The equations that describe the dynamics of an incom-
pressible conducting fluid coupled to a magnetic field in the
MHD approximation are given by

�tu + u · �u = − �p + b · �b + ��2u + f , �1�

�tb + u · �b = b · �u + ��2b , �2�

� · u = 0, � · b = 0, �3�

where u is the velocity field and b is the magnetic field. p
is the �total� pressure, and � and � are the viscosity and
magnetic diffusivity, respectively. Here, f is the external
force that drives the turbulence and the dynamo. The largest
wave number of the Fourier transform of f is going to be
denoted as kF, and we are going to refer to �kF�−1 as the
forced scale. We are also going to define the viscous dissi-
pation scale as k�

−1= �� /�3�−1/4 and resistive dissipation scale
as k�

−1= �� /�3�−1/4 where � is the energy dissipation rate.
A large separation between the two scales ��kF�−1

�max��k�
−1 ,k�

−1	� is required for the flow to reach a turbulent
state.

To investigate the transfer of energy among different
scales of turbulence we use the Fourier transforms of the
fields:

u�x� = 

k

ũ�k�eik·x, ũ�k� =
1

�2��3 � u�x�e−ik·xdx3

and

b�x� = 

k

b̃�k�eik·x, b̃�k� =
1

�2��3 � b�x�e−ik·xdx3,

where the domain is taken to be a triply periodic cube of size
L=2�. We can now introduce the shell filter decomposition

u�x� = 

K

uK�x�, b�x� = 

K

bK�x� ,

where

uK�x� = 

K��k��K+1

ũ�k�eik·x,

and similarly for the field b,

bK�x� = 

K��k��K+1

b̃�k�eik·x.

The fields uK and bK are therefore defined as the part of the
velocity and magnetic field, respectively, whose Fourier
transform contains only wave numbers in the shell �K ,K
+1� �hereafter called shell K� and represent “eddies” of scale
K−1. The evolution of the kinetic energy in a shell K,
Eu�K�=�uK

2 /2dx3 is given by

�tEu�K� =� 

Q

�− uK · �u · �� · uQ + uK · �b · �� · bQ�

− ���uK�2 + f · uKdx3, �4�

and for the magnetic energy Eb�K�=�bK
2 /2dx3 we obtain
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�tEb�K� =� 

Q

�− bK · �u · �� · bQ + bK · �b · �� · uQ�

− ���bK�2dx3. �5�

The above equations can be written in the more compact
form

�tEu�K� = 

Q

�Tuu�Q,K� + Tbu�Q,K�� − �Du�K� + F�K� ,

�6�

�tEb�K� = 

Q

�Tub�Q,K� + Tbb�Q,K�� − �Db�K� . �7�

Here we have introduced the functions Tuu�Q ,K�, Tub�Q ,K�,
Tbb�Q ,K�, and Tbu�Q ,K�, which express the energy transfer
between different fields and shells.

Tuu�Q ,K� expresses the transfer rate of kinetic energy ly-
ing in shell Q to kinetic energy lying in shell K through the
velocity advection term and is defined as

Tuu�Q,K� � −� uK�u · ��uQdx3. �8�

We similarly define

Tbb�Q,K� � −� bK�u · ��bQdx3, �9�

which expresses the rate of energy transfer of magnetic en-
ergy lying in shell Q to magnetic energy lying in shell K
through the magnetic advection term. The Lorentz force is
responsible for the transfer of energy from the magnetic field
to the velocity field. The resulting transfer rate is defined as

Tbu�Q,K� � � uK�b · ��bQdx3. �10�

Finally the term responsible for the stretching of the mag-
netic field lines results in the transfer from kinetic energy to
magnetic energy, given by

Tub�Q,K� � � bK�b · ��uQdx3. �11�

In summary, the functions Tvw�Q ,K� �for arbitrary fields v
and w� represent the rate of transfer of energy from the field
v �first index� in shell Q �first argument� into energy of the
field w �second index� in shell K �second argument�. If
Tvw�Q ,K�	0, then a positive amount of v energy is trans-
ferred from shell Q to w energy in shell K. If Tvw�Q ,K�
�0, then a negative amount of v energy is transferred from
shell Q to w energy in shell K, or in other words, energy is
transferred backwards from shell K to shell Q.

In Eqs. �6� and �7� we have also introduced two dissipa-
tion functions: the kinetic energy dissipation rate

�Du�K� � �� ��uK�2dx3 �12�

and the magnetic energy dissipation rate

�Db�K� � �� ��bK�2dx3. �13�

Finally,

F�K� � � f · uKdx3 �14�

is the energy injection rate to the velocity field through the
forcing term.

Before presenting the results from numerical simulations,
let us discuss some of the properties of the transfer functions.
If Tvw�Q ,K� �where v ,w can be either u or b� is expressing
the rate of energy transfer from field v in shell Q to field w in
shell K, then the following identity should hold:

Tvw�Q,K� = − Twv�K,Q� . �15�

The interpretation of Eq. �15� is that the rate at which shell Q
is giving energy to shell K must be equal to rate shell K is
receiving energy from shell Q. Equation �15� can be easily
shown to hold for all transfer functions we defined �Eqs.
�8�–�11��. It is this property that allows us to interpret the
functions Tuu, Tbu, Tub, and Tbb as the energy transfer be-
tween different scales and fields.

For a turbulent flow in a statistically steady state, Eqs. �6�
and �7� imply that



Q

Tuu�Q,K� + Tbu�Q,K�� = Du�K�� − F�K�� �16�

and



Q

Tub�Q,K� + Tbb�Q,K�� = Db�K�� , �17�

where ·� stands for a time average or an ensemble average.
For fixed K outside the forcing band and in the limit of
� ,�→0, we have that



Q

Tuu�Q,K� + Tbu�Q,K�� = 0 �18�

and



Q

Tub�Q,K� + Tbb�Q,K�� = 0. �19�

However, limited resolution will allow us to be in the regime
where these last two equations hold only for a small range of
wave numbers.

Finally we need to comment on the definitions of the vari-
ous transfer functions we are using in this paper and the
connection to the triad of wave numbers �k ,p ,q� that satisfy
the relation k+p+q=0 �because of the convolution term re-
sulting from the quadratic nonlinearities of the primitive
equations�; such a triad is the basis for mode-to-mode inter-
actions �see, e.g., �27��. Our approach is equivalent to con-
sidering all triad interactions with the one wave number k
�K and q�Q and summing over all p satisfying k+p+q
=0 in all shells, where p is the wave number of the advecting
field and k and q are the wave numbers of the modes energy
is transferred to and from. Although the approach we are
using gives us information on whether the energy is trans-
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ferred locally or not, it cannot give definite conclusions on
whether the interactions themselves are local. For example,
even if energy is transferred locally from a wave number k to
a wave number q�k, the wave number p that is responsible
for the transfer is not necessarily of the same order of mag-
nitude as �k� and �q�. Ideally, one would investigate transfer
terms of the form Tuu�K�P�Q���uK�uP ·��uQdx3, which
contain information about the third wave number involved in
the interactions taking place. However, the difficulty of ma-
nipulating data from high-resolution runs and the difficulty
of interpreting the results of transfer functions that depend on
three arguments restricts us, for the present time, to examine
just the locality of the energy transfer.

III. RESULTS

To study the transfer of energy in MHD turbulence we use
the turbulent steady state of several mechanically forced
three-dimensional MHD direct numerical simulations. The
simulations and details of the code can be found in �28,29�.
The runs were performed in a triply periodic domain with a
resolution of 2563 grid points using a pseudospectral scheme
with the 2/3 rule for dealiasing. The equations were evolved
in time using a second-order Runge-Kutta method.

Turbulence was generated by two different types of forc-
ing. In the first case a nonhelical Taylor-Green �TG� force
was used, fTG�k0�= (sin�k0x�cos�k0y�cos�k0z� ,−cos�k0x�

sin�k0y�cos�k0z� ,0) with k0=2 �28�. In the second case
a helical ABC force was used, fABC�k0�= (B cos�k0y�
+C sin�k0z� ,C cos�k0z�+A sin�k0x� ,A cos�k0x�+B sin�k0y�)
with k0=2 �29�. All simulations were done with constant-in-
time external force. First a hydrodynamic simulation was
carried using each force to reach a turbulent steady state.
Both external forces generate a well-defined large-scale flow
at �KF��3 and small-scale turbulent fluctuations following to
a good approximation a 5/3 Kolmogorov law. Then MHD
simulations were carried, and a small magnetic field was
amplified and sustained to equipartition by a dynamo pro-
cess. The results in this paper are based on the saturated
stage of the dynamo, which we will refer in the following as
the MHD turbulent steady state.

The transfers were calculated based on the definitions
�8�–�11�. The transfer of energy during the early stages of the
MHD simulations, when the magnetic energy is small and
the velocity field is not modified by the Lorentz force �often
referred to as the kinematic dynamo regime�, is examined in
a companion paper �30� �hereafter referred as paper II�. Table
I gives several relevant parameters for each run, and Fig. 1

shows the resulting energy spectra.
Both simulations display a large-scale magnetic field, al-

though the spectrum of magnetic energy in the ABC simula-
tion shows a stronger peak at k=1. This peak is related to the
dynamo � effect and the inverse cascade of magnetic helic-
ity. Details of this process will be discussed in paper II.
However, it is important to note that in the ABC simulation
the large-scale magnetic field is strongly helical, while in the
TG simulation the magnetic helicity is negligible. This large-
scale magnetic field is self-sustained by the turbulence. In
both simulations, the net cross helicity �correlation between
the velocity and magnetic field� is small and can be ne-
glected.

A. Hydrodynamic turbulence

The locality of interactions in hydrodynamic turbulence
has been investigated before in the literature �4–10�. Al-
though some open issues still remain �8,11,12�, it has been
shown that energy is transferred mostly locally. Here, for
reasons of comparison we show the transfer Tuu�Q ,K� from
hydrodynamical simulations using the same external forces
and parameters used in the MHD simulations. The results are
in good agreement with previous works.

In Fig. 2 we show the energy transfer for a few modes for
the TG flow and in Fig. 3 the energy transfer for the ABC
flow. In both cases the transfer of energy is direct and local:
all the curves �with the exception of the forced mode Q=3�
are negative for K smaller than Q and positive for K larger
than Q. As a result, all inertial-range modes receive energy

TABLE I. Simulations. L is the integral length scale of the flow, defined as L=�Eu�k�dk /�Eu�k�k−1dk, �
the kinematic viscosity, and � the magnetic diffusivity. The kinetic and magnetic Reynolds numbers Re and
RM are based on L and the rms velocity, while the ratio of magnetic to kinetic energy, Eb /Eu, is the average
in the turbulent steady state.

Forcing L � � Re RM Eb /Eu

ABC 1.64 2
10−3 2
10−3 820 820 0.84

TG 1.35 2
10−3 5
10−3 675 270 0.72

FIG. 1. Spectra of kinetic energy �solid line� and magnetic en-
ergy �dashed line� of the ABC and Taylor-Green runs, where the
Taylor-Green spectra have been shifted down by a factor of 20 for
clarity. The Kolmogorov slope is showed as a reference. Note that
the magnetic Prandtl number PM �� /� differs for the two runs.
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from modes with slightly smaller wave numbers �negative
Tuu� and give energy to modes with slightly larger wave
numbers �positive Tuu�. The locality of the transfer is ex-
pressed from the fact that the transfer of energy from the
modes in shell Q to modes in shells K with K�Q or K
�Q is very small and decreases fast with the separation of
the two wave numbers. Finally, as the shell wave number K
and Q is increased, there is a drop in the amplitude of the
transfer. If the transfer functions were self-similar, then an
increase of the wave numbers K and Q to K and Q would
imply Tuu�Q ,K�=−2Tuu�Q ,K� �27�. This scaling could
explain this drop of amplitude. However, the inertial range in
our DNS’s is too small to test self-similarity and a large part
of the drop is due to the presence of viscosity.

The forced mode has a slightly different behavior. The
transfer rate from the forced wave number to its nearby
shells has a considerably larger amplitude. Also, for both
flows there is some backscattering from the forced wave
number to shells with smaller wave number. This is clearer
in the helical �ABC� flow.

B. Magnetohydrodynamic turbulence

We are now ready to examine results from the energy
transfer for MHD turbulence. First we examine the transfer

of kinetic energy from large scales to kinetic energy in small
scales through the term Tuu�Q ,K� and magnetic energy from
large scales to magnetic energy in small scales through the
term Tbb�Q ,K�. These two transfer functions bare some sig-
nificant similarities with the hydrodynamic case.

In Figs. 4 and 5 we show Tuu �top panel� and Tbb �bottom
panel� for the nonhelical TG flow and the helical ABC flow.
The velocity-to-velocity transfer has not changed drastically
�other than a decrease in amplitude� from the pure hydrody-
namic case. As in Sec. III A, the transfer implies a local
direct cascade. All curves are negative for K smaller than Q
and positive for K larger than Q. Each mode is therefore
receiving energy from the larger scales �negative transfer�
and giving energy to the smaller scales �positive transfer�.
The decrease in amplitude �when compared with the hydro-
dynamic case� is partly because the magnitude of the veloc-
ity field is decreased when the magnetic field comes to eq-
uipartition and partly because now there is a net transfer of

FIG. 2. The transfer of energy Tuu�Q ,K� for the Taylor-Green
run. The figure shows the rate that energy is transferred from modes
Q=3,10,20,30 to all other modes K.

FIG. 3. The transfer of energy Tuu�Q ,K� for the ABC run. The
figure shows the rate that energy is transferred from modes Q
=3,10,20,30 to all other modes K.

FIG. 4. Top panel: the transfer of energy Tuu�Q ,K� for the
Taylor-Green run. The figure shows the rate that kinetic energy is
transferred from modes Q=3,10,20,30 to kinetic energy to all
other modes K. Bottom panel: the transfer of energy Tbb�Q ,K� for
the same flow. The figure shows the rate that magnetic energy is
transferred from modes Q=3,10,20,30 to magnetic energy to all
other modes K.

FIG. 5. Same as Fig. 4 for the ABC run.
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energy from the velocity field to the magnetic field, making
the available energy to cascade to small velocity scales
smaller.

The transfer of magnetic energy to magnetic energy
Tbb�Q ,K� seems to follow the same behavior as the velocity
field transfer. The results show a direct cascade with local
transfer of energy from large scales to small scales. We note
that for the helical case the transfer of magnetic energy is
larger than the transfer of kinetic energy. The likely reason
for this behavior is that in the ABC flow the magnetic energy
at large scales and intermediate scales saturates at higher
values than in the TG flow, due to the presence of helicity or
the dynamo � effect. This process will be discussed in more
detail in paper II.

Next we investigate the transfer of energy from one field
to the other by examining the terms Tub and Tbu. Because of
the antisymmetric property Tub�Q ,K�=−Tbu�K ,Q�, it is suf-
ficient to just study the transfer of energy from the velocity
field to the magnetic field. However, we need to remark that
unlike the Tuu�Q ,K� ,Tbb�Q ,K� terms that their dependence
on K and Q is the same up to a minus sign, the behavior of
Tub�Q ,K� as we vary K is not the same as if we vary Q.
Therefore the two behaviors need to be studied separately
�i.e., the transfer of energy from a velocity mode to two
different magnetic modes is different from the transfer of
energy from two different velocity modes to a magnetic
mode�. In Figs. 6 �TG� and 7 �ABC�, we show the transfer of
kinetic energy from velocity modes Q=3, 4, 5, 15, 17, and
20 to all examined magnetic modes K.

A few things should be noted. First, in both runs �ABC
and TG� the modes associated with the large-scale flow �Q
=3� seem to play a dominant role in the transfer of energy
from the velocity field to the magnetic field. Note also that
there is a wider range of magnetic field modes into which the
forced velocity field modes input energy.

This is more apparent for the helical flow, which seems
better at stretching and folding the magnetic field. The cas-
cade in the modes inside the inertial range is direct in both
cases but with a small difference. In both cases the large-
scale velocity field is transferring energy to a smaller-scale

magnetic field and receiving energy from a larger-scale mag-
netic field. However, for the Taylor-Green case there is a
very small transfer from one field to the other in the same
shell. On the other hand, in the ABC flow the peak of the
transfer from the magnetic field to the velocity field �the
negative peaks in Fig. 7� is for the same shell. Note also that
for K shells larger than Q, the transfer for all Q follows the
same curve. This implies that all small-scale velocity modes
give energy to the magnetic field modes at the same rate.
This is clearer when we examine the dependence with Q.

In Figs. 8 and 9 we show the same transfer function
Tub�Q ,K� for three values of K=10,20,30. The energy cas-
cade is also direct �energy going from large scales to small
scales�; however, it is clear from these figures that the trans-
fer from the velocity field to the magnetic field is a highly
nonlocal process. Each magnetic field mode Q is receiving
energy �positive Tub� from all the velocity modes with wave
number K smaller than Q, with the same rate. The only ex-

FIG. 6. The transfer of kinetic energy to magnetic energy
Tub�Q ,K� for the Taylor-Green run. The figure shows the rate that
kinetic energy is transferred from modes Q=3,4 ,5 �inset modes
Q=15,17,20� to magnetic energy in modes K.

FIG. 7. The transfer of kinetic energy to magnetic energy
Tub�Q ,K� for the ABC run. The figure shows the rate that kinetic
energy is transferred from modes Q=3,4 ,5 �inset modes Q
=15,17,20� to magnetic energy in modes K.

FIG. 8. The transfer of kinetic energy to magnetic energy
Tub�Q ,K , � for the Taylor-Green run. The figure shows the rate that
kinetic energy is transferred from modes Q �x axis� to magnetic
energy in modes Q=10 �top panel�, Q=20 �middle panel�, and Q
=30 �bottom panel�.
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ception is the mechanically sustained large-scale velocity
field, which gives even more energy �observe the peak at k
=3�. In fact, most of the energy that is transferred from the
velocity field to the magnetic field originates from the veloc-
ity field modes at Q=3 �around 60% for the TG run and 75%
for the ABC run�. Similar behavior has been observed in
two-dimensional MHD flows �25�. This energy turns into
magnetic energy at several wave numbers K which locally
cascades to smaller scales through the Tbb term. This bigger
contribution of the large-scale flow to Tub �compared with
the contribution of the turbulent components� is in good
agreement with the suppression of small-scale velocity fluc-
tuations by the large-scale magnetic field, as observed in
�28�. However, we need to note that the fraction of energy
input from the large-scale flow might be a function of the
Reynolds number. As the scale of the magnetic field becomes
smaller, there is more energy input from the turbulent com-
ponents of the velocity field than from the large-scale
�forced� flow. This just follows from the fact that for K large
enough, the area below the curve with constant Tub is larger
than the peak at Q=3. It is possible therefore that in the limit
of large inertial range the effect of the forced velocity scales
in small magnetic scales will not be as strong. Finally we
note that this mechanism described above is different in a
kinematic dynamo regime, as is shown in paper II.

In summary, the existence of the long plateau with con-
stant Tub�Q ,K� at each fixed value of K and the fact that all
magnetic wave numbers K receive energy from the large-
scale flow at Q=3 points out that interactions between the
velocity field and magnetic field are nonlocal in Fourier
space.

This nonlocal behavior of energy transfer from the veloc-
ity field to the magnetic field seems to be absent from the
decaying MHD turbulence case studied by �24�. In that case,
although the Tub and Tbu were more nonlocal than the Tbb
and Tuu terms �since energy was transferred from the former
ones in a wider range of shells than the latter ones�, eventu-
ally at large separation of wave numbers the transfer goes to

zero. This is very different from the plateau behavior we
observe in the forced turbulence runs. We suspect that this
difference is due to the fact that in the mechanically forced
turbulence there is a net flux of energy from the velocity field
to the magnetic field that is responsible for the formation of
the plateau which does not exist in the decaying turbulence
case.

C. Comparison between the transfers

In the previous section we showed that the transfer of
energy from velocity field to velocity field and from mag-
netic field to magnetic field exhibits a local behavior similar
to the transfer in hydrodynamic turbulence, and the transfer
from one field to the other is exhibiting a nonlocal behavior.
In order to draw conclusions we need to compare the mag-
nitude of these transfers. Figures 10 and 11 show a compari-
son of the transfers Tuu�Q ,K�, Tbb�Q ,K�, Tub�Q ,K�, and
Tbu�Q ,K� with Q=15 for the TG and ABC runs, respectively.
The local transfers u to u and b to b appear to be of larger
magnitude than the nonlocal transfers u to b and b to u. In
the case of the ABC flow the magnitude of the b-to-b transfer
seems to be twice the magnitude of the u-to-u transfer. This

FIG. 9. The transfer of kinetic energy to magnetic energy
Tub�Q ,K , � for the ABC run. The figure shows the rate that kinetic
energy is transferred from modes Q �x axis� to magnetic energy in
modes Q=10 �top panel�, Q=20 �middle panel�, and Q=30 �bottom
panel�.

FIG. 10. A comparison of the transfers Tuu�Q ,K�, Tbb�Q ,K�,
Tub�Q ,K�, and Tbu�Q ,K� for Q=15 for the Taylor-Green flow.

FIG. 11. A comparison of the transfers Tuu�Q ,K�, Tbb�Q ,K�,
Tub�Q ,K�, and Tbu�Q ,K� for Q=15 for the ABC flow.
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is due to the fact that the magnetic energy in this run is larger
than in the TG run at large and intermediate scales.

Figure 12 illustrates the transfer functions Tuu�Q ,K�,
Tbb�Q ,K�, and Tub�Q ,K� as in Fig. 10 �TG flow�, but we
focus here on the large-K tail of the transfer and we consider
Q=10. The fastest drop is for the transfer Tuu�Q ,K�, making
it the most “local” one, next comes the Tbb�Q ,K� transfer,
and finally Tub�Q ,K� has the slowest drop. The same result
was obtained for the ABC flow �not shown here�.

Figures 10–12 �as well as a comparison of the nonlocal
transfers shown in Figs. 8 and 9 with the local transfers in
Figs. 4 and 5, respectively� show that local interactions be-
tween the same fields are much stronger than nonlocal inter-
actions between different fields. However, nonlocal interac-
tions spread over several shells, and the magnetic field at a
given scale K can receive �give� energy from �to� several
velocity field Q wave numbers �instead of mostly the nearest
neighbors as is the case for local interactions�. Figure 13
shows the ratio

NL

L
�K� = 


Q=1

K

Tub�Q,K�� 

Q=1

K

Tbb�Q,K� . �20�

This is the ratio of the total energy that the magnetic field at
shell K receives from the velocity field through nonlocal

transfer to the total magnetic energy received at the same
scale through the local direct cascade of �magnetic� energy.
Although in individual shells the local interactions are one
order of magnitude larger than the nonlocal transfer, the net
amount of energy received at a given scale K by the two
processes is comparable �this ratio is different in a kinematic
dynamo regime, as will be shown in paper II�. At small
scales, the ratio seems to settle to a value close to 0.2, indi-
cating that 20% of the energy received by these scales is
through the nonlocal transfer Tub. We note that this ratio can
possibly depend on the Reynolds number since local terms
are more sensitive to viscosity.

IV. CONCLUSIONS

In this paper we examined the transfer of energy in forced
MHD turbulence between the different scales and fields in-
volved using the results from numerical simulations in a tur-
bulent steady state sustained by a mechanical external force.
No qualitative differences in the transfer of kinetic-to-kinetic
�or magnetic-to-magnetic� energy has been observed when
compared against the transfer of energy in a hydrodynamic
simulation. These transfers were found to be always local
and direct. However, all kinetic energy modes have been
observed to give energy to magnetic modes nonlocally, in the
sense that a small-scale magnetic field receives the same
amount of energy from all larger scales of the velocity field
in the inertial range. Also each magnetic mode was found to
receive a significant amount of energy from the large-scale
flow at �kF��3 �the scale of the forcing�, an effect that seems
to become smaller as we move to smaller scales in the iner-
tial range. We note that it is the nonlocal interactions that
actually sustain the magnetic field against Ohmic dissipation.
No qualitative difference in the transfers was observed be-
tween the different forcing runs, suggesting that the nonlo-
cality of the energy transfer is a general feature of mechani-
cally forced MHD turbulence. A summary of our results is
sketched in Fig. 14.

We have already noted that a different behavior for the
nonlocal transfers Tub and Tbu was obtained for the mechani-
cally forced turbulence investigated in this work when com-
pared with the decaying turbulence case studied by �24�.
Compared with incompressible hydrodynamic turbulence,

FIG. 12. A comparison of the large K tails of transfers
Tuu�Q ,K�, Tbb�Q ,K�, and Tub�Q ,K� in a log-linear plot for Q=10
for the Taylor-Green flow flow.

FIG. 13. The ratio NL /L of energy received through the nonlo-
cal transfer Tub to local Tbb for the ABC and TG simulations. The
small scales receive 20% of their energy through the nonlocal trans-
fer Tub.

FIG. 14. A sketch of the energy transfer between different scales
and different fields. The thickness of the lines is an indication of the
magnitude of the transfers. The figure illustrates how energy is
transferred to magnetic modes with wave number k=q in the iner-
tial range. The transfer between same fields is always local and
direct. Each magnetic mode receives energy from all larger-scale
velocity modes and gives to slightly smaller-scale velocity modes.
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involving only one field and one transfer function, MHD
turbulence is richer and more complex. It involves two inter-
acting fields and several transfer functions, and as a result the
energy injected at large scales can travel to small scales
through several channels. Also the number of quadratic ideal
invariants is larger, and inverse cascades �not present in
three-dimensional hydrodynamics� can take place. This sug-
gests that in MHD flows the particular way the system is set
up �e.g., mechanically or magnetically forced, free-decaying
cases without external forces�, or even the scale at which the
energy is injected �compared with the length of the box�,
might have a direct effect in the evolution of the flow and
lead to different transfers.

We would also like to comment on the implications of our
results to the different models of magnetohydrodynamic tur-
bulence. In the present phenomenological models of MHD
turbulence �13–17�, locality of the energy transfer is as-
sumed. That is to say, these models are derived assuming that
scales of different magnitude do not strongly interact. While
this assumption seems to be valid for HD turbulence, this is
not necessarily true for MHD. As we have shown nonlocal
interactions are present in MHD turbulence and control the
u-to-b transfers of energy. However, these nonlocal interac-
tions are smaller in amplitude and most of the input of en-
ergy to the magnetic field comes from the large-scale flow
and then cascades to smaller scales, making the assumption
of locality justified to some extent. However, nonlocal
u-to-b transfers need to be considered to have a proper de-
scription of the energy cascade. To illustrate this we show in
Fig. 15 the energy transfer in terms of the Elsässer variables
z±=u±b, often used in turbulence models, and we compare
it with the contributions from u to u, b to b, b to u, and u to
b. In the figure we plot Tz+z+ �−�z+

Kz−�z+
Qdx and compare

it with the energy transfer due to the local transfer terms
Tuu+Tbb and the nonlocal transfer terms Tub+Tbu. The local
transfer terms appear to be dominant, except in the tails
where the transfer of Elsässer variables is dominated by the
nonlocal transfers between the magnetic and kinetic energies.
This tails, although with small amplitude, cannot be com-
pletely neglected, as shown by the NL /L ratio of Fig. 13. The

nonlocal tail in the transfer gives a net contribution of energy
at magnetic small scales of roughly 1/5 when compared with
the local transfer.

Finally, we would like to say that our results were based
on numerical simulations of moderate Reynolds number
much smaller than what is observed in most physical phe-
nomena. We already noted that due to the small inertial
range, we cannot test self-similarity, which would require
one to compare the transfers �i.e., Tuu�Q ,K1�, Tuu�Q ,K2�� to
wave numbers that are both significantly away from each
other �K1�K2� and away from the forced and dissipative
scales �KF�K1 and K2�k��. We plan to address this issue
with higher-resolution runs in our future work.
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