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We consider the generation of magnetic field by the flow of a fluid for which the electrical conductivity is
nonuniform. A new amplification mechanism is found which leads to dynamo action for flows much simpler
than those considered so far. In particular, the fluctuations of the electrical conductivity provide a way to
bypass anti-dynamo theorems. For astrophysical objects, we show through three-dimensional global numerical
simulations that the temperature-driven fluctuations of the electrical conductivity can amplify an otherwise
decaying large scale equatorial dipolar field. This effect could play a role for the generation of the unusually
tilted magnetic field of the iced giants Neptune and Uranus.
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The current explanation for the existence of magnetic field
in astrophysical objects was given in 1919 by Larmor [1]. The
motion of an electrically conducting fluid amplifies a seed of
magnetic field by induction: this is the dynamo instability.
Despite nearly hundred years of research, several questions
remain open. One of the reasons is that for a flow to be dy-
namo active, it has to be complex enough.

For instance, for a fluid with uniform physical properties,
planar flows cannot create magnetic fields [2]. This result to-
gether with other similar anti-dynamo theorems [3], severely
constrain the structure of the flows that can act as dynamos.
Broadly speaking, both the flow and the resulting magnetic
field must be complex enough.

In an astrophysical object, considering the electrical con-
ductivity σ as a constant is a very crude simplification. In
most natural situations (liquid core of planetary dynamos,
plasmas of stellar convection zones, galaxies), the tempera-
ture T , the chemical compositions Ci and the density of the
fluid ρ are expected to display large variations. As a result
the electrical conductivity of the fluid is unlikely to remain
uniform in the bulk of the flow. In other words, σ , that is de-
termined by ρ , T and Ci can be written as a function of space
and time σ(r, t) because ρ , T and Ci are functions of space
and time. The effect of a boundary of varying conductivity
close to a flow tangent to the boundary had been considered
to model inhomogeneities of the Earth mantle [4]. A dynamo
instability has been predicted but requires a flow with a huge
velocity [5]. In this article we describe how magnetic field
generation is affected by conductivity variations in the bulk of
the fluid.

To calculate this effect, we have to take into account that σ

depends on position in the equation for the magnetic field that
reads

∂B
∂ t

= ∇× (v×B)−∇×
(

1
σ

∇× (
B
µ0

)

)
(1)

Insight can be obtained using the approximation of scale sep-
aration. We assume that the velocity and conductivity fields
are periodic of period l. We note 〈·〉 the spatial average over
l. Let the magnetic diffusivity be η = (µ0σ)−1 = η0 + δη ,
where η0 is the mean of η and δη its variations. We write

B = 〈B〉+b and consider that 〈B〉 varies on a very large scale
compared to l. In this limit, 〈B〉 satisfies a mean-field (closed)
equation that reads

∂ 〈B〉
∂ t

= ∇× (α〈B〉)+η0∇
2〈B〉 . (2)

where α〈B〉 is the sum of two terms,

α〈B〉= 〈v×b〉−〈δη∇×b〉. (3)

Provided that δη and the small scale field are small compared
to respectively η0 and the large scale field, b is solution of

∂b
∂ t
−η0∇

2b = 〈B〉 ·∇v , (4)

such that by virtue of scale separation b can be calculated as
a function of the large scale field 〈B〉. Then α is obtained
which closes equation (2). The term 〈v×b〉 is the usual alpha-
effect [3] and writes 〈v× b〉 = αh〈B〉. The tensor αh can
be expressed using the Fourier transform of the velocity field
v̂ = (2π)−3/2 ∫ vexp(ikr)d3r where for simplicity we have set
l = 2π in all directions. We obtain

α
h
u, j = (2π)−3iΣk

k j

η0k2 (v̂(−k)× v̂(k))u . (5)

This is the usual result for the α-tensor in an homogeneous
fluid. The second term in Eq. 3 is new and reads

α
σ
u, j〈B j〉=−〈δη∇×b〉=(2π)−3

Σk
k.〈B〉
η0k2 δ̂η(−k)(k× v̂(k))u .

(6)
Introducing the vorticity Ω = ∇× v, the new part of the α-
tensor can be written

α
σ
u, j = −(2π)−3iΣk

k j

η0k2

(
δ̂η(−k)Ω̂u(k)

)
= (2π)−3

Σk
∂̂ jδη(−k)Ω̂u(k)

η0k2

= −(2π)−3
Σk

δ̂η(−k)∂̂ jΩu(k)
η0k2 (7)
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Large values of ασ thus require strong correlations between
diffusivity variations and gradients of the vorticity or, equiv-
alently, between gradients of diffusivity and vorticity. This
can be understood by considering a vortical flow in which
the vorticity is modulated in the φ -direction, a classical pic-
ture of convective flows in planetary cores, as sketched in fig.
(1). Assume that a large scale magnetic field is applied in the
φ -direction. Calculating v×B, we observe that currents of
opposite signs are induced in the vertical z-direction. Then,
the azimuthal variation of electrical conductivity strengthens
the current in one direction and reduces it in the opposite one.
This results in a total electric current flowing in the z-direction
as predicted by our calculation. This current can in turn am-
plify the magnetic field.

FIG. 1: Sketch of the different steps involved in the amplification
mechanism ασ for a typical geophysical flow. Top: Two adjacent
convective cells (grey cylinders) with axial vorticity ω are subject
to a transverse azimuthal magnetic field B (red). Middle: Both up-
ward and downward axial currents J ∝ (v×B) (blue) are induced
between the convective cells. Bottom: In presence of conductivity
gradients correlated to the vorticity (maximum gradient represented
by pink dashed lines), large (resp. low) conductivity increases (resp.
decreases) the induced current: the resulting net upward current J

′
is

parallel to the vorticity.

Having identified the pertinent properties of the veloc-
ity and conductivity fields, we now discuss one example.

Let the velocity be v = (Acos(ky)sin(kz),Bcos(kx)sin(kz),0)
and the diffusivity variation be δη/η0 = δ (cos(kz)(sin(ky)−
sin(kx))). The velocity field is a periodic array of counter-
rotating vortices located in the x-y planes. The ampli-
tude of the velocity field is simply modulated in the z-
direction. The ασ tensor reads 〈v×b〉= 0 and 〈−δη∇×b〉=
δ/8(BBx, ABy,−(A+B)Bz). We then calculate the growth
rate p for a large scale mode proportional to exp(pt + iKz)

and obtain p = |δK|
√

AB
8 −η0K2. Dynamo instability is possi-

ble provided Rm = |δ |
√

AB/(η0|K|) > 8. We point out that
for this flow, in the absence of conductivity variation, no dy-
namo would be possible.

The asymptotic results derived here were confirmed using
numerical simulations. To achieve large scale separation, we
used a code based on Floquet theory, allowing us to write the
solutions of Eq. (1) as B(x, t) = eiK·xb(x, t), where K is an ar-
bitrary wavenumber and b(x, t) is a space-periodic vector field
with the same period as v and η . The numerically calculated
growth rates for the flow are shown in figure 2 for Rm = 1 and
different values of K and δη , and show an excellent agree-
ment with the asymptotic results. Note that, because of scale
separation, even small values of the diffusivity variation δη

lead to a dynamo.

FIG. 2: The growth rates for the 2D flow considered in the text
as a function of K, for Rm = 1/6 and three different δη . Symbols
correspond to numerically evaluated growth rates and straight lines
to the analytical prediction.

This mechanism provides a simple way to bypass anti-
dynamo theorems and may thus play a role in the creation
of magnetic fields of astrophysical objects. As a first step to-
wards answering this question, we have considered the gen-
eration of magnetic field by the flow of a thermally convect-
ing Boussinesq fluid contained in a rotating spherical shell,
thus modeling stellar or planetary core configurations. Fixed
temperatures are imposed at both inner and outer boundaries,
no-slip boundary conditions are used for the velocity field,
and both boundaries are electrically insulating. The dimen-
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sionless parameters are the shell aspect ratio γ = ri/ro, the
magnetic Prandtl number Pm = ν/η0, the Ekman number
E = ν/ΩD2 and the Rayleigh number Ra = αg0∆T D/(νΩ),
where D = ro− ri is the gap and Ω, ν , η0, κ , α and g0 are,
respectively, the rotation rate, the kinematic viscosity, the spa-
tially averaged magnetic diffusivity, the thermal diffusivity,
the thermal expansion coefficient, and the gravity at the outer
sphere. Equations of magnetohydrodynamics for the velocity
v, magnetic field B and temperature T are solved with the help
of the code PaRoDy [6], which has been modified to take into
account the spatial variation of the electrical conductivity. As
a simple example, we assume here that the magnetic diffu-
sivity η depends on the temperature as η = η0 + k(T − T0),
where the proportionality coefficient k is kept as a control pa-
rameter. Several configurations have been considered: con-
ductivity depending only on the temperature fluctuations or
on both the temperature fluctuations and the background tem-
perature profile. In addition, different widths of the spherical
shell have been tested. Note that effects of radially varying
conductivity were studied in [7], in which it was shown that a
low-conductivity layer close to the core-mantle boundary may
explain Mercury’s weak observable magnetic field. Here, we
rather study the case of conductivity depending on the tem-
perature field that can fluctuate in all directions.

Although the parameter space is huge and further work is
required to fully characterize the effect of a varying conduc-
tivity, it can be identified that a transverse dipolar field ben-
efits from a modulation of electrical conductivity in typical
geodynamo simulations. Fig. 3 shows the growth rate of the
magnetic field as a function of the amplitude of the conduc-
tivity modulation for γ = 0.35, E = 6.10−4, Ra/Rac = 2.2
(Ra = 123) and Pm = 7.9. In the case of an homogeneous
conductivity (δη/η0 = 0) , an axial dipole is observed (black
curve), as usual for these parameters. As the coupling coef-
ficient k between the temperature and the conductivity is in-
creased, the growth rate of this dipole decreases until it be-
comes kinematically stable. In contrast, the growth rate of the
equatorial dipole mode (red curve) increases from negative to
positive values. As soon as δη/η0 reaches 5%, the modu-
lation of the electrical conductivity changes the structure of
the dynamo field, replacing the axial dipole by a transverse
one. For both modes, we observe a linear relation between the
growth rate and the conductivity modulation, as predicted by
our theory.

This effect of the conductivity modulation is observed in a
wide region of the parameter space. For instance, Fig. 4 dis-
plays the spatial structure of the dynamo magnetic field ob-
tained for E = 10−3, Ra/Rac = 2, Pm = 7 and δη/η0 = 0.4,
corresponding to an equatorial dipolar field. Note that for
these values of E and Ra, the conductivity fluctuations de-
crease the dynamo onset by roughly 20% compared to the ho-
mogeneous case.

To understand how such a temperature-dependent conduc-
tivity decreases the dynamo onset, it is important to note that
geophysical flows, strongly affected by Taylor-Proudman the-
orem, mainly consist of several columnar vortices arranged

along the azimuthal direction (the so-called Busse columns
[8]) with temperature gradient maximum at the center of the
vortices. This convective pattern is therefore characterized by
a strong correlation between the axial vorticity and the az-
imuthal gradient of temperature, as illustrated in Fig.5. The
component (∇×u)|z.∇φ (δη) is mainly localized in the equa-
torial plane, thus suggesting that this non-diagonal term of the
ασ -tensor is responsible for the generation of the field. Note
that this differs from the diagonal part of the usual α-effect,
which vanishes in the equatorial plane. The ασ -effect, being
strong in the equatorial plane, thus provides a possible expla-
nation for the equatorial dipolar component of the magnetic
field observed in Neptune and Uranus [9, 10].
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FIG. 3: Growth rate of the magnetic energy in the kinematic phase as
a function of the (temperature-driven) electrical conductivity mod-
ulation in a dynamo simulation, for E = 6.10−4, Pm = 7.9 and
Ra/Rac = 2.2, for axial (black) and equatorial (red) dipole modes.
Note that the axial dipole obtained at δη/η0 = 0 is replaced by a
transverse dipole in presence of conductivity modulation.

To discuss further the relevance of this effect, it is interest-
ing to compare its efficiency with the one of an α2-dynamo.
In scale separation, the onset for an α2 dynamo is given by
V
√

lL/η =C1 where C1 is a constant, V the amplitude of the
velocity, l the wavelength of the flow and L the size over which
the large scale field varies. For an ασ -dynamo, the onset is
δV L/η = C2 where C2 is a constant and δ the amplitude of
the relative variations of conductivity. Thus, for a flow that is
prone to both effects, the ασ -dynamo leads to a smaller onset

provided δ

√
L
l � 1, meaning that this new kind of dynamo is

expected when scale separation is large enough.
As the efficiency of the ασ -effect depends crucially on the

variations of the electrical conductivity, it is worth discussing
possible sources for these variations that are met in nature. In
a telluric planet such as the Earth, the time-averaged electrical
conductivity varies with the depth in the liquid core due to the
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FIG. 4: Structure of the saturated equatorial dipole generated for
E = 10−3, Pm = 7 , Ra/Rac = 2 and δη/η0 = 0.4. The colored
sphere indicates amplitude of the radial magnetic field at the surface
of the core-mantle boundary and magnetic field lines in the insulating
mantle are shown.

FIG. 5: Equatorial cut of the purely hydrodynamical state obtained
for E = 6.10−4 and Ra/Rac = 2.2. Colorplot displays the amplitude
of the azimuthal temperature gradient ∂φ T whereas black lines are
isocontours of the axial component of the vorticity (∇×u).ez. Note
the strong correlation between the two quantities.

increase of temperature and pressure [11]. However, one has
to consider the effect of the convective temperature fluctua-
tions which are quite smaller than the static radial variations.
These fluctuations are the sources of both the conductivity
variations and the velocity fluctuations, and simple estimates
of their intensities show that the efficiency of the ασ -effect is
larger than the one of the usual α-effect when scale-separation
is large enough. It is then worth noting that rapid rotation re-
sults in a drastic shortening of the characteristic length-scale
of convective pattern [12], so that this new kind of dynamo
should be relevant for rapidly rotating astrophysical objects.

In the case of the Sun, temperature differences of 200−
400K are measured at the surface between ascending and de-
scending plumes. For linear dependance of σ on T , this would
correspond to relative variations of σ of 3 to 7%, making the
dimensionless parameter δV L/η large enough for the ασ -
effect to play a role.

The magnetic field is known to play a role in the dynamics
of the Sun convective zone. This sheds light on another pos-
sible source for conductivity variations: Ohmic dissipation it-
self. On can imagine that the electric currents heat up locally
the fluid so that it modifies the conductivity and affects the
efficiency of the ασ -effect. This would result in a non-linear
mechanism that could act as a saturation mechanism if the ef-
ficiency of the effect is decreased by Joule heating or, if the
efficiency is increased, could be responsible for a non-linear
amplification. This effect thus provides a new scenario for a
subcritical dynamo instability.

In the laboratory, the ασ -effect can be used to build dynamo
flows simpler than those considered so far. Indeed, the pos-
sibility to use planar flow greatly simplifies the geometrical
constraints. Using liquid sodium which displays a decrease of
conductivity of more than 25% between 100 and 200 degrees,
a periodic array of counter-rotating vortices with proper con-
trol of temperature variations would generate a dynamo at a
magnetic Reynolds number achievable at the laboratory scale.

Finally, one may use the ασ -effect to modify the onset of
an existing laboratory dynamo set up. The Karlsruhe dynamo
[13] is the simplest configuration to analyze as it is made of a
periodic array of helical flows. By imposing conductivity vari-
ations between the different vortices, an ασ -effect is added to
the α-effect. A corresponding decrease of the critical mag-
netic Reynolds number proportional to δη/(V l) is expected,
leading to a possible threshold reduction of roughly 10%.
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