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We study the weakly nonlinear development of shear-driven gravity waves induced
by the physical mechanism first proposed by Miles, and furthermore investigate
the mixing properties of the finite-amplitude solutions. Linear theory predicts that
gravity waves are amplified by an influx of energy through the critical layer, where
the velocity of the wind equals the wave phase velocity. As the wave becomes of
finite amplitude nonlinearities have to be taken into account. In this paper we derive
asymptotic solutions of finite-amplitude waves for weak wind and strong gravitation
U 2 � gl, applicable to many astrophysical scenarios. Because of the presence of a
critical layer, ordinary weakly nonlinear methods fail; in this paper, we use rescaling
at the critical layer and matched asymptotics to derive the amplitude equations for the
most unstable wave, under the assumption that the physical domain is periodic. These
amplitude equations are compared with the equations derived by Reutov for the small-
density-ratio case (applicable to oceanography); and after numerically integrating
these equations, we also analytically derive their quasi-steady limit. As in other
analyses of critical layers in inviscid parallel flow, we find that the initial exponential
growth of the amplitude A transitions to an algebraic growth proportional to the
viscosity, A ∼ νt2/3. We also find that the weakly nonlinear flow allows superdiffusive
particle transport within the critical layer, with an exponent ∼3/2, consistent with
Venkataramani’s results.

1. Introduction
The generation of surface waves by wind has been a problem under study for well

over a century. Lord Kelvin and Helmholtz (KH) investigated the stability of fluid
interfaces using a simple model of a step function wind shear profile. However, they
found higher bounds on the maximum wind velocity for the instability to occur than
field measurements (Chandrasekhar 1961, § 101). This discrepancy was not resolved
until Miles (1957, 1959a,b, 1962, 1967) proposed a model in which gravity waves are
amplified through a ‘resonant’ interaction with the wind above the ocean surface.
Assuming a turbulent boundary-layer wind profile of the form log(y/y∗) (where y is
the height above sea level and y∗ is the stiffness parameter), Miles found that waves
with phase speed c =

√
g/k are amplified through resonance with the the wind at

height yc, where the wind velocity U (y) matches the wave speed, U (y = yc) = c (g and
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172 A. Alexakis, Y.-N. Young and R. Rosner

k are, as is customary, the gravitational acceleration and wavenumber, respectively). At
this critical layer, where the wind velocity equals the phase speed of the gravity wave,
the solution to the linear eigenvalue problem becomes singular as the x-component
of the perturbation velocity behaves as u ∼ log(y − yc). The singularity is removed
either because there is an imaginary component of c (i.e. unsteady critical layer) or
because viscosity becomes important in this thin layer (i.e. viscous critical layer). In
both cases, the final result is that there is an ‘−iπ phase change’ across the critical
layer such that the perturbation wave above the critical layer is not in phase with the
wave below. A direct result of this phase change is that the gravity wave will become
unstable because a component of the pressure perturbation will be in phase with the
slope of the wave (unlike the KH case, in which the pressure perturbation wave is
always in phase with the crest of the wave). Using the results from linear theory and
for small density ratios, Miles estimated the energy flux from the wind to the gravity
wave.

Our interest in this problem is motivated by an astrophysical puzzle, namely, the
mixing of carbon/oxygen (C/O) at the surface of a white dwarf with accreted material
(mostly hydrogen and helium, He/H) overlying the stellar surface (whose presumed
origin is from an accretion disk surrounding the compact star). For a variety of
reasons, it is thought that the accreted envelope is in differential rotation with respect
to the stellar surface, so that a ‘wind’ is expected at this surface (Rosner et al.
2001). In this stellar case, one has to generalize the earlier results to arbitrary density
ratios (between the ‘atmosphere’ and the ‘surface material’). We have already done
so for the linear problem (Alexakis, Young & Rosner 2002), deriving bounds on the
instability in the parameter space, and estimating the growth rates of the unstable
modes. However, linear theory gives no information about the ultimate fate of the
system, which is governed largely by nonlinear processes.

In this paper, we uncover the nonlinear evolution of wind-driven surface waves by
examining their finite-amplitude evolution using an asymptotic expansion. There are
a number of alternative ways to study the nonlinear behaviour of wind-driven surface
waves, such as for example turbulent modelling of the wind–wave coupling (Harris,
Belcher & Street 1996; Belcher, Harris & Street 1994; Jenkins 1992); our focus is
instead on weakly nonlinear theory because we seek a first-principles understanding of
the effects of nonlinearities as the wave amplitude emerges from the linear regime. We
further note here that the weakly nonlinear theory for the KH instability has already
been derived by Drazin (1970); and that a Ginzburg–Landau equation was also
derived for viscous flow by Blennerhassett (1980) and Akylas (1982) for cases where
viscous dissipation dominates in saturating the gravity wave amplitude. However,
classical finite-amplitude analysis in the weakly nonlinear limit cannot be applied
straightforwardly to our problem because of the presence of critical layers: due to
the singularity that appear in the linear theory at the point where the phase speed
of a surface wave matches the wind speed, higher-order terms in the expansion
become more singular and the expansion must ultimately fail. The fundamental
reason for this behaviour is that the flow becomes nonlinear first inside the critical
layer, even though the rest of the flow can still be considered as operating in the linear
regime. For this reason, a more refined treatment of the critical layer is required. The
necessary analytical ‘machinery’ fortunately already exists: thus, Benney & Bergeron
Jr. (1969), and later Benney & Maslowe (1975), showed that for small but finite
amplitudes the phase change at the critical layer does not necessarily have to be
−iπ; instead, they found that the phase change is zero if the nonlinear terms are
taken into account. Later Haberman (1972) showed numerically that there is a
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Wind-driven gravity waves 173

smooth increase of the phase change, from −iπ to 0, and introduced the function ΦH

that gives the phase change as a function of the amplitude; Churilov & Shukhman
(1987, 1996) and Shukhman & Churilov (1997) then derived an ordinary differential
equation to describe the evolution of the amplitude of the perturbation based on
ΦH and other similar functions defined for the appropriate critical layer problem.
A fundamental assumption in all this work is that the viscosity is dominant in the
critical layer; this leads to the derivation of an ordinary differential equation for
the wave amplitude. The full equations of the weakly nonlinear problem without the
previous assumption have then been derived and solved numerically for various cases
(Goldstein & Hultgren 1988; Warn & Warn 1978; Balmforth & Piccolo 2001).

In our case the treatment – although closely related to the earlier work – is
nevertheless different in some respects. The previously discussed cases were dealing
with a smooth neutral mode where the critical layer was formed at the inflection
point d2U/dy2 = 0. The problem at hand though, deals with neutral modes (gravity
waves) that are weakly coupled to a non-modal disturbance in the critical layer in
the upper layer. Unlike the previous cases the marginally unstable modes do not
form a critical layer at the inflection point since such an inflection point does not
exist. Instead gravity waves become weakly unstable if the coupling between the
upper fluid (wind) and the gravity modes of the lower fluid is weak. This can be
the result of a small coupling coefficient (small density ratio) or if the wind velocity
is close to but higher than the smallest phase velocity of the gravity waves. This
allows us to examine two special cases: small density ratio, and weak wind or strong
stratification; in both cases, the linear growth rate is small. The first case has been
examined by Reutov (1980) and applied to ocean waves. We will focus on the second
case, which is of particular interest to our astrophysical problem, since the instability
takes place on the surface of a white dwarf star, i.e. a star of solar mass, but
comparable in size to the Earth; this corresponds to the strongly stratified limit.
Another technical difference from the previous cases appears in the derivation of the
amplitude equations and lies in the fact that we have a sharp interface. Because of this,
our solvability condition will not be expressed in terms of integrals but rather in terms
of appropriate vector products of the values of the perturbation stream function at the
interface.

An interesting aspect we further examine, with direct applications to the relevant
astrophysical and geophysical systems, is the mixing properties of the finite-amplitude
equations. Although the weakly nonlinear results do not lead to wave breaking,
which is the main mechanism for mixing the ‘surface material’ with the ‘atmosphere’,
we study the mixing of tracers inside the critical layer as a first step to revealing
the mixing properties of the fully nonlinear problem. We measure the finite-time
Lyapunov exponents and the particle dispersion of the flow.

This paper is structured as follows. First we formulate our problem and describe
the non-dimensionalized form of the basic problem equations. In § 3 we briefly review
the linear theory developed earlier (Alexakis et al. 2002). The amplitude equations
are derived in § 4 for the strongly stratified case and generalize the results of Reutov
(1980). We summarize the conservation laws from the amplitude equations in § 5.1,
and we discuss the implications of the long-time behaviour of surface waves in § 5.2.
In § 5.3 we present the results from numerically simulating the amplitude equations.
In § 6 we investigate how the coupling between the wind and the surface wave affects
mixing properties of the finite-amplitude solution. A detailed examination of the
assumptions made in the analysis is provided in § 7, where we also draw conclusions
from our work.
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174 A. Alexakis, Y.-N. Young and R. Rosner

2. Formulation
We consider a two-layer system with constant fluid density ρ1 and ρ2 (ρ1 � ρ2) in

the upper and lower layers, respectively. The interface between the two layers is given
by y =h(x, t), where x is the horizontal and y is the vertical coordinate. In the upper
layer we assume a wind parallel to the originally flat interface y = h(x, t = 0) = 0.
The wind has a shear velocity profile U ≡ [U (y), 0], where U (y) varies only with
y. The lower layer is initially at rest; thus, we will not consider the more complex,
albeit more realistic, case of additional shear in the lower layer (Caponi et al. 1992).
Our aim is to study the dynamics and the weakly nonlinear development of small
sinusoidal perturbations of the horizontal interface.†

The fluid is assumed incompressible in both layers; we therefore work with
the stream function Ψ , which is connected to the velocity by the relation (u, v) =
(∂yΨ, −∂xΨ ). The stream function can be separated into its mean and its perturbation
components,

Ψtotal =

∫ y

0

U dy ′ + Ψ. (2.1)

The fluid within each layer is described by the Navier–Stokes equations (in terms of
the stream function Ψ ):

∇2Ψ,t + U∇2Ψ,x − U,yyΨ,x = Ψ,x∇2Ψ,y − Ψ,y∇2Ψ,x + ν∇2∇2Ψ, (2.2)

where ∇2 is the two-dimensional Laplacian and ν is the viscosity (which we will
consider to be small, and therefore negligible except for a narrow region within the
critical layer). Here we have used the standard notational device of comma-prefaced
subscripts to denote partial derivatives, e.g.

f,x ≡ ∂f/∂x.

The boundary conditions at the interface are the continuity of the component of the
velocity perpendicular to the interface

h,t + (U± + Ψ ±
,y )h,x + Ψ ±

,x = 0, (2.3)

and the continuity of pressure

�[ρi{Ψ,ty +(U +Ψ,y)Ψ,xy −Ψ,x(U,y +Ψ,yy)−h,x(Ψ,tx +(U +Ψ,y)Ψ,xx +Ψ,xΨ,xy)}]

= gh,x(ρ2 − ρ1), (2.4)

† As an aside, we note that the presence of a sharp interface boundary between the two fluids in
our system is really only a device to simplify the analysis, but in no way restricts our results. That
is, in a more general case there will be no sharp interface, but the density will change smoothly
from ρ2 to ρ1 in a layer of width δ1. We would then also expect U (y) to be a smooth function in y,
so that any flow discontinuity at the interface would be replaced by a smooth variation in U within
a thin viscous boundary layer of width δ2. One would then expect to see differences in behaviour
only for those modes with horizontal wavenumber k large enough so that the critical layer lies
inside these layers δ1, δ2. Such modes, however, are KH-modes which are not under study here; they
will obey a Richardson-type stability criterion, 1/4 < g�ρδ2

2/[ρ(�U )2δ1] (Chandrasekhar 1961). We
therefore expect our assumption of a sharp interface to be reasonable for horizontal wavenumbers
k−1 � max{δ1, δ2}. Since we are primarily interested in long-wavelength perturbations, we conclude
that, for our purposes, we have not disregarded any important physics.
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Wind-driven gravity waves 175

where h(x, t) is the elevation of the interface and all quantities above are evaluated
at y = h(x, t). The ± indices indicate values above and below the interface, and �[ ]
denotes the difference across y = h (e.g. �[f (y)] = f (h+) − f (h−)).

We non-dimensionalize lengths by the characteristic length l of the wind (a typical
length over which the wind strength changes), and the velocities by the asymptotic
value of the wind at y → +∞, Umax. An important parameter that emerges from
the scaling is G ≡ gl/U 2

max, which is a measure of the ratio of potential energy to
kinetic energy, or alternatively, a measure of the strength of the stratification. Other
dimensionless parameters are the Reynolds number, Re ≡ Umaxl/ν � 1, and the ratio
of densities, r ≡ ρ1/ρ2 � 1. In terms of the non-dimensional parameters, we focus on
the case where Re � 1 in each layer, and especially the limit G � 1 (accretion on
white dwarfs in astrophysics).

3. Linear theory
We linearize equations (2.2)–(2.4), and write the stream function perturbation Ψ

and surface elevation h as a travelling wave parallel to the wind (right travelling wave
in our setup)

Ψ ±(y, x, t) = φ±(y)eiK(x−Ct) + c.c.,

h = h̃eiK(x−Ct) + c.c.,

where c.c. denotes the complex conjugate, K = kl is the non-dimensional (horizontal)
wavenumber and C is the non-dimensional phase velocity. This leads us to the
well-studied Rayleigh equation (Drazin & Reid 1981)

φ±
,yy −

[
K2 +

U,yy

U − C

]
φ± = 0, (3.1)

where the inviscid limit Re → ∞ is taken. The boundary conditions become

(U± − C)h̃ + φ± = 0, (3.2)

�[ρi((U
± − C)φ±

,y − U±
,yφ

±)] − Gh̃(ρ2 − ρ1) = 0. (3.3)

Eliminating φ− and h̃ from the last two equations we obtain

KC2 − r[(U± − C)2φ+
,y − (U± − C)U,y] − G(1 − r) = 0, (3.4)

where we have used φ+|y =0 = 1 as a normalization condition.
To further simplify we assume that U+(0) = 0 (e.g. U is continuous) and omit the

KH-modes (of which the nonlinear evolution is not under study here, see Alexakis
et al. (2002) for more details). The linear growth rate (KIm(C)) has been numerically
calculated and summarized in Alexakis, Young & Rosner (2002) for cases of interests.
Here we briefly summarize some relevant results on stability boundaries for the wind
profile (in dimensional units U (y) = Umax(1 − e−y/l)):

U (y) = 1 − e−y. (3.5)

As shown in Alexakis et al. (2002), this wind profile allows an analytic expression
for the stability boundaries in the stability diagram. One can show that some general
features of the stability boundaries summarized here for the wind profile in equation
(3.5) also hold for other bounded wind profiles. The stability bound comes from the
modes that have phase velocity C =1, in which case the solution of equation (3.1)
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176 A. Alexakis, Y.-N. Young and R. Rosner

becomes φ =e−κy with κ =
√

1 + K2. Applying the boundary conditions, one obtains
the criterion on wavenumber K for the unstable modes:

K � Kmin =
G(1 − r) + r − r

√
(G(1 − r) + r)2 + (1 − r2)

1 − r2
. (3.6)

The unstable modes can be further restricted if we assume the presence of surface
tension or magnetic fields. This will lead to an additional term TK2 in equation (3.4),
where T = σ/(ρ2U

2
maxl) and σ is the surface tension‡. Then the unstable modes lie

in the region Kmin � K � Kmax, where Kmin and Kmax are given by the positive real
solutions of

K + r
√

1 + K2 − (G(1 − r) + r + T(K)K2) = 0. (3.7)

Furthermore, there is a value of T below which the above equation has no positive
real solutions, and therefore no unstable modes exist. The physics behind these bounds
is simple: in order for a mode to become unstable for the above wind profile, the phase
velocity of the wave must lie in the range 0 <c <Umax (Alexakis et al. 2002). With
the inclusion of surface tension, the phase velocity is not monotonically decreasing
with K but, rather, increases without bound for large K . This leaves only a finite
region in K-space with phase velocity smaller than Umax; moreover, if the surface
tension is large enough, the minimum phase velocity is larger than Umax, and therefore
no unstable mode exists. For large G � 1, we must have 4TG � (r + 1)2/(1 − r) for
instability from equation (3.7). In the limit r → 0 the condition for instability becomes
TG � 1/4 to zeroth order in r .

The analysis is simplified if we assume small density ratio r � 1, and expand all
quantities in r:

C = C0 + rC1 + · · · and φ = φ0 + rφ1 + · · · .

In that case the linear theory, to zero order, gives two gravity waves with phase
velocity C0 = ±

√
G/K but only the wave with positive C0 becomes amplified. At the

next order, one obtains at the boundary

2C0C1 =
[
C2

0φ0,y + U,y

]
− G, (3.8)

and therefore

Im{C1} = 1
2
CIm{φ0,y} (3.9)

where φ0 is such that

φ0,yy −
[
K2 +

U,yy

U − C0

]
φ0 = 0. (3.10)

A −iπ phase change at the critical level is assumed. Due to this phase change, φ0,y

is complex at the interface and thus C1 has an imaginary component, which is
responsible for the instability of the travelling waves.

For the arbitrary r case, the previous expansion does not hold, and one needs to
solve the full set of equations (3.1)–(3.4). Alexakis et al. (2002) show that the growth

‡ We note that a magnetic field whose direction is aligned with the interface will have the same
effect as surface tension, with σ (K)= B2/(2πµK) (Chandrasekhar 1961).
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Wind-driven gravity waves 177

rate exhibits an exponential dependence on the parameter G. In Appendix A, we
carry out an asymptotic analysis for large G, and derive this exponential dependence.
More specifically, the growth rate of the most unstable mode is found to be

max(K Im {C}) ∼ exp(−2qmAtG), (3.11)

where weaker algebraic dependences have been ignored here; At = (1 − r)/(r + 1) is
the Atwood number and qm � 2.45 . . . . The zeroth order of the real part of the phase
speed C is Re{C} =

√
AtG/K . The exact formula is given in the Appendix (A 31).

As is shown there, the stream function Ψ below the critical layer is composed
of an exponentially increasing and an exponentially decreasing component. Since
the boundary condition (equation (3.2)) must be satisfied, the exponentially large
component must be in phase with h, which leaves us with the exponentially small,
out-of-phase, component to drive the wave unstable. Further calculation then leads
to the result given above.

4. Weakly nonlinear theory
We are now ready to embark upon the weakly nonlinear theory. Formally this is

done by assuming that, for some parameter ranges of interests, our physical system
lies close to a marginally stable state so that an asymptotic expansion is allowed
near the centre manifold. For the problem at hand, however, and in the absence
of surface tension (T = 0), marginally stable states are possible only when r = 0 or
1/G = 0; the first one expresses the unphysical situation that there is no upper fluid,
and the latter corresponds to a situation where there is no wind in the upper fluid
(Umax ∼ 1/

√
G). Complication arises as we deviate from these neutrally stable states.

In ordinary dissipative systems, only a small number of modes near the centre mani-
fold become unstable and need to be considered. In our case though, once the density
ratio r or the parameter G is finite, an infinite number of modes become unstable if
surface tension T = 0. Ideally the interaction of all these modes needs to be taken into
account. Practically, this difficulty is removed by the combined effect of surface tension
T (or, equivalently, the presence of a magnetic field) and weak viscous damping. In
the presence of surface tension the stability boundary in the (r, G, T)-space is given
by the condition for positive solutions of (3.7) and by r = 0. Surface tension reduces
the number of unstable modes by neutralizing modes of wavenumbers above some
cut-off value. Furthermore, weak viscosity will damp out the neutrally stable modes of
high wavenumbers, rendering them asymptotically stable. By using a periodic domain,
we can fix the period so that only one mode becomes unstable; by doing this we omit
wave-packet effects (Maslowe, Benney & Mahoney 1994; Oikawa, Chow & Benney
1987) that would complicate the analysis, and we will therefore ignore them in this
first look at the problem. We can then derive the amplitude equation for this single
mode as usual.

We focus on situations where G � 1, corresponding to weak winds or strong
gravitation for arbitrary density ratio. As will be shown, the amplitude equations
are very similar to those obtained by Reutov (1980) for small density ratios
(r � 1).

In § 3 we showed that unstable modes for the large G case grow at a rate propor-
tional to exp{−2qmAtGt}. Inspired by this result, in the limit G � 1, we set the time
derivative ∂t = ε∂T − C∂x , where the small parameter ε (defined later) is such that
the linear growth rate (imaginary part of C) is O(ε). We expand the stream function
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above the interface as

Ψ + = ε2Ψ +
0 + ε3Ψ +

1 + · · · . (4.1)

The governing equation (2.2) for the upper fluid is then

ε∇2Ψ +
,T + U∇2Ψ +

,x − U,yyΨ
+
,x =Ψ +

,x ∇2Ψ +
,y − Ψ +

,y ∇2Ψ +
,x + ν∇2∇2Ψ + (4.2)

and for the lower fluid

ε∇2Ψ −
,T = Ψ −

,x ∇2Ψ −
,y − Ψ −

,y ∇2Ψ −
,x + ν∇2∇2Ψ −. (4.3)

The boundary conditions at the interface are given by

εh,T − Ch,x + Ψ +
,x =NLT, εh,T − Ch,x + Ψ −

,x = NLT, (4.4)

r[εΨ +
,T y − CΨ +

,xy − U+
,yΨ

+
,x ] − [εΨ −

,T y − CΨ −
,xy] − [G(1 − r)h − Th,xx] = NLT, (4.5)

where NLT are the nonlinear terms that are of higher order in ε. At the zeroth order
we have

(U − C)∇2Ψ +
0,x − U,yyΨ

+
0,x =0;

expanding in normal modes, Ψ0 = φ0(y)eiKx + c.c., we have

φ0,yy −
[
K2 − U,yy

U − C

]
φ0 = 0, (4.6)

where we have focused on the most unstable mode. Equation (4.6) is the Rayleigh
equation with a singular behaviour at the point yc where U (yc) = C. The solutions of
(4.6) around the critical layer can be expanded in series φ0 � A[1 − (U ′′

c /U ′
c)(y − yc) ×

ln(|y −yc|)+ · · ·]+B[(U ′′
c /U ′

c)(y −yc)+ · · ·]. Of course, the singularity is removed from
the real axis if the phase velocity is complex. Nonetheless if the imaginary part of C

is of order ε (as in the case we now examine), the vorticity perturbation becomes of
order ε−1ε2 = ε near the critical layer, reducing the nonlinear terms to the same order
in ε as the linear terms, and they have to be taken into account in the asymptotic
expansion in the critical layer.

Outside the critical layer the nonlinearity is at higher order (O(ε4)) and can
therefore be neglected. It is thus sufficient to use the results from the linear theory for
the outer scales. The outer solution (away from the critical layer) can be evaluated
numerically. In the case of large G we also have K � AtG � 1 according to (3.6);
thus we can express φ0 using the WKBJ approximation as an asymptotic expansion
in terms of 1/K . An analytic expression for the growth rate can also be obtained in
this expansion. We write φ0 as

φ0 =

{
A3φabove if y >yc

A1φ
+
below + B1φ

−
below if 0 <y <yc,

(4.7)

where φabove is the exponentially decreasing solution for y → +∞ and φ
±
below are

the two linearly independent (exponentially increasing and exponentially decreasing)
solutions of (4.6). The amplitude coefficients A1 and B1 are determined from the inner
scaling. In terms of the WKBJ expansion carried out in Appendix A, these solutions
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can be written at first order in 1/K (note K � 1), as

φ0 =




√
π

2
A3

1√
w

exp

(
−
∫ y

ya

w dy ′
)

, for y >ya

−
√

πA3 cos[I1]
1√
w

sin

(∫ y

yc

w dy ′ − π/4

)

+
√

πA3 sin[I1]
1√
w

cos

(∫ y

yc

w dy ′ − π/4

)
, for ya > y >yc

√
πA1 sin[I1]e

−I2
1√
w

exp

(
+

∫ y

0

w dy ′
)

+

√
π

2
B1 cos[I1]e

+I2
1√
w

exp

(
−
∫ y

0

w dy ′
)

, for yc > y,

(4.8)

where I1 and I2 are integrals determined from the linear solution and are defined in
Appendix A; w is defined in equation (A 6) and ya is the solution of w(y) = 0.

At second order Ψ1 = φ1e
iKx satisfies the inhomogeneous equation

φ1,yy −
[
K2 − U,yy

U − C

]
φ1 =

U,yy

iK(U − C)2
φ0,T (4.9)

which again can be solved numerically. Noting that the inhomogeneous term is of
order 1/K3 (in the rescaled units y → Ky) everywhere except inside the critical layer,
the solutions of (4.9) can be expressed as a WKBJ expansion. For further analysis, it
is sufficient to know that below and away from the critical layer, φ1 can be expressed
as

φ1 = A
(1)
1 e+I2

1√
w

exp

(
−
∫ y

0

w dy ′
)

+ B
(1)
1 e−I2

1√
w

exp

(
+

∫ y

0

w dy ′
)

.

In order to match the outer solution with the solution inside the critical layer we
need to know the asymptotic expansion of the outer solution as y → yc. Following
similar calculations as in the linear theory, above the critical layer we have

φ0 � A3[π cos[I1][ − z + · · · ] + sin[I1][1 − z ln(z) + · · · + (1 − 2γ )z + · · · ]] (4.10)

and

φ1 � U ′′
c sin[I1] A3,T

i2KU ′2
c

ln |z| + · · · (4.11)

where z = (y − yc)(−U ′′
c )/U ′

c, γ is the Euler Masceroni constant and the subscript c

means evaluated at the critical point. Below the critical layer the asymptotic expansion
gives

φ0 � A1 sin[I1][1 − z ln |z| + · · · +(1 − 2γ )z+ · · · ]+ πB1 cos[I1]e
−I2 (−z+ · · ·) (4.12)

and

φ1 � U ′′
c sin[I1] A1,T

i2KU ′2
c

ln|z| + · · · . (4.13)

Next we examine the dynamics of the inner scaling in the critical layer.
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4.1. Inner solution

To capture the dynamics of the critical layer, we use the scaling Ψ → ε2Ψ̃ , y−yc → εY

and 1/R → ε3ν. From equation (4.2) we obtain

Ψ̃ ,T YY + U ′
cY Ψ̃ ,xYY + Ψ̃ ,Y Ψ̃ ,YYx − Ψ̃ ,xΨ̃ ,YYY − νΨ̃ ,YYYY

= −ε
[

1
2
U ′′

c Y 2Ψ̃ ,YYx − U ′′
c Ψ̃ ,x

]
+ O(ε2). (4.14)

In order to match with the outer solution (4.10), (4.12) we expand Ψ̃ as

Ψ̃ = Ψ̃ 0 + ε ln(ε)Ψ̃ 1 + εΨ̃ 2 + ε2 ln(ε)Ψ̃ 3 + ε2Ψ̃ 4 + . . . . (4.15)

To first order, we then have

Ψ̃ 0,T YY + U ′
cY Ψ̃ 0,xYY + Ψ̃ 0,Y Ψ̃ 0,YYx − Ψ̃ 0,xΨ̃ 0,YYY − νΨ̃ 0,YYYY = 0.

Matching with the outer solution we obtain

Ψ̃ 0 = sin[I1](A1e
iKx + A∗

1e
−iKx), (4.16)

and therefore A1 = A3 ≡ A. To the next order (ε ln(ε)), we have

Ψ̃ 1,T YY + U ′
cY Ψ̃ 1,xYY − Ψ̃ 0,xΨ̃ 1,YYY − νΨ̃ 1,YYYY = 0.

Matching with the outer solution we obtain

Ψ̃ 1 =

[
A

U ′′
c

U ′
c

Y + ∂T A
U ′′

c

i2KU ′2
c

]
sin[I1]e

iKx + c.c. (4.17)

To third order (ε3), we have

Ψ̃ 2,YYT + U ′
cY Ψ̃ 2,YYx − Ψ̃ 0,xΨ̃ 2,YYY − νΨ̃ 2,YYYY = U ′′

c Ψ̃ 0,x . (4.18)

Denoting Z = Ψ̃ 2,YY , which is the vorticity inside the critical layer, we obtain

Z,T + U ′
cYZ,x − Ψ̃ 0,xZ,Y − νZ,YY = U ′′

c Ψ̃ 0,x . (4.19)

To match with the outer solution, we require the boundary conditions of Z,

lim
Y→+∞

Z =

[
A

U ′′
c

U ′
c

1

Y
− U ′′

c

2iKU ′2
c

1

Y 2
A,T

]
sin[I1]e

iKx + c.c.,

and similarly for Y → −∞ with A replaced by B1. Integrating Z along Y and using
the asymptotic behaviour of Ψ2 above and below the critical layer, we obtain∫ +∞

−∞
Z dY =[Ψ2,Y ]+∞

−∞ = π
U ′′

c

U ′
c

cos[I1][A − B1]e
iKx + c.c.,

where we have taken the limiting procedure limε→0

∫ 1/ε

−1/ε
Z dY . Defining

J ≡ K

2π sin[I1]

U ′
c

U ′′
c

∫ +π/K

−π/K

e−iKx

∫ +∞

−∞
Z dY dx. (4.20)

we obtain the following important result:

cos[I1]B1 = cos[I1]A − 1

π
sin[I1]J. (4.21)

Equation (4.21) implies that the phase change across the critical layer depends on
the detailed treatment of the vorticity dynamics inside the critical layer. In the linear

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

03
00

76
99

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 E

co
le

 n
or

m
al

e 
su

pe
ri

eu
re

, o
n 

03
 F

eb
 2

02
0 

at
 1

1:
04

:0
3,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/S0022112003007699
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Wind-driven gravity waves 181

case J =+iπA, but as the amplitude grows and the nonlinear term Ψ̃ 0,xZ,Y in equation
(4.19) becomes important, the phase change will decrease.

4.2. Boundary conditions and the amplitude equation

Combining the above results we find that the stream function at the interface is

Ψ0|0 =

√
π

2

[
A(2 sin(I1)e

−I2 + cos(I1)e
+I2 ) − 1

π
J sin(I1)e

+I2

]
eiK(x−Ct) + c.c., (4.22)

Ψ0,y |0 =

√
π

2
K

[
A
(
2 sin(I1)e

−I2 − cos(I1)e
+I2
)

+
1

π
J sin(I1)e

+I2

]
eiK(x−Ct) + c.c., (4.23)

Unlike the linear case, the phase change is now defined by J in equation (4.20). The
slow time scale mentioned before is defined by the value of Ci , which is exponentially
small and is given by equation (3.11). We therefore define ε ≡ e−2I2 ∼ e−2G, and
equations (4.22) and (4.23) can be re-written as

Ψ0|0 =

√
π

2

[
1√
ε
A cos(I1) − 1√

επ
J sin(I1) + 2

√
εA sin(I1)

]
eiKx + c.c. (4.24)

To match with the upper fluid we expand Ψ − and h as

Ψ − = ε3/2Ψ −
0 + ε5/2Ψ −

1 + · · · and h = ε3/2h0 + ε5/2h1 + · · · .
We write the zeroth-order stream function Ψ −

0 below the interface, and the surface
elevation h0 as Ψ −

0 = CHeiKx+Ky + c.c. and h0 =HeiKx + c.c., H being the amplitude
of the wave.

The first-order (ε3/2) boundary conditions give us M · V 0 = 0, where

M =


 −C 1 0

−C 0 1
−G̃(1 − r) rCK CK


 and V 0 =


 H

Φ

CH


 . (4.25)

Φ = (A cos(I1)− (1/π)J sin(I1)) is the amplitude of the stream function at the interface
and G̃= G + K2T/(1 − r) is the gravity term including the effect of surface tension.
Here we discard the U,y term since it is of order 1/K . For a non-trivial solution, we

must have det(M) = 0. This leads us to the relation C =
√

G̃At /K and HC = Φ.

At the next order, we have φ1 at the interface:

φ1|0 = A
(1)
1

1√
ε

+ B
(1)
1

√
ε and φ1,y |0 = −KA

(1)
1

1√
ε

+ KB
(1)
1

√
ε (4.26)

where the values of A
(1)
1 , B

(1)
1 depend on A,T , and can be obtained by matching

with the inner solution at the critical layer. The second term in equation (4.26) is
exponentially small (of order

√
ε) and can thus be neglected. The stream function of

the lower fluid Ψ −
1 and the elevation h1 at this order are Ψ −

1 = CH (1)eiKx+Ky +c.c. and
h1 = H (1)eiKx + c.c. The boundary conditions at the interface are

M · V 1 = − 1

iK
∂T W 1 + W 2 (4.27)

(where M was defined in equation (4.25)),

V 1 =




H (1)

Φ1A
(1)
1

CH (1)


 , W 1 =




H

H

−K(rΦ + CH )


 = H




1

1

−(r + 1)KC


 , (4.28)
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and

W 2 =


 −2 sin(I1)A

0
2rKC sin(I1)A


 . (4.29)

We define V T ≡ [−rCK, −CK, 1] where V T is such that V T · M = 0. Multiplying
equation (4.27) with V T , we obtain V T W 1 = − 2(1 + r)CKH and V T · W 2 =
4rCKH sin(I1). Hence, we arrive at the amplitude equation for large G:

1

iK
V T · W 1,T = V T · W 2 or H,T = −iK

2r

1 + r
sin(I1)A, (4.30)

with

CH = 2A cos(I1) − J
1

π
sin(I1). (4.31)

The amplitude evolution can now be determined from equations (4.30)–(4.31).
Equations (4.30)–(4.31) can be re-written in more familiar form

H,T = −iC1H + C2J , (4.32)

H = D1A + D2J , (4.33)

where C1, C2, D1, D2 are coefficients determined from the solutions of the linear
problem. Equations (4.32)–(4.33), along with the definition of J in equation (4.20),
were first found (in an equivalent form) by Reutov (1980) to describe the weakly
nonlinear evolution of a single wave coupled to the vorticity in an inviscid critical
layer, for small density ratio r ≡ ε � 1, with G of order one. If the viscosity is
included in his treatment by scaling viscosity ν → ε3ν, the same equation for vorticity
Z can be obtained, and his amplitude equations for r � 1 and unity G take exactly
the same form as our amplitude equations for the G � 1 case. We thus focus on the
general form of the amplitude equations in the next section, and present results from
solving equations (4.19), (4.20) and (4.32)–(4.33). We note here that Reutov pointed
out the fact that with the extra assumption D2 = 0 equations (4.32)–(4.33) are identical
with those describing electrostatic waves in a plasma, which have already been solved
numerically by Onishchenko et al. (1970). We investigate the properties of the full set
of equations without this assumption in the next section.

5. Results
5.1. Preliminaries

For both cases (weak wind and small density ratio), the amplitude equations can be
cast into the following more general form:

H,T + iC1H = iC2J , (5.1)

H = D1A + D2J , (5.2)

J =
K

2π

U ′
c

U ′′
c

∫ +π/K

−π/K

e−iKx

∫ +∞

−∞
Z dY dx ≡ 〈e−iKxZ〉, (5.3)

Z,T + U ′
cYZ,x − Ψ̃ 0,xZ,Y − νZ,YY = U ′′

c Ψ̃ 0,x, (5.4)

with

lim
Y→∞

Z =

[
A

U ′′
c

2U ′
c

1

Y
+

U ′′
c

2U ′2
c

1

Y 2
A,T

]
eiKx + c.c. (5.5)
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and

Ψ̃ 0 = (AeiKx + A∗e−iKx), (5.6)

where the coefficient sin[I1] from (4.16) has been absorbed in the amplitude A in
(5.6).

The above equations can be interpreted as follows. Equation (5.2) expresses the
continuity of the normal velocity at the interface: it imposes the constraint that the
phase and amplitude of the perturbation of the surface wave (given by H ) is the
same as the perturbation of the wind (given by D1A+ D2J ) including the component
that comes from the phase change at the interface. Equation (5.1) is Newton’s law,
or alternatively can be viewed as a statement about the continuity of pressure at the
interface; it gives the growth of the amplitude H due to the out-of-phase component
of the pressure. Equation (5.4) gives the evolution of the vorticity inside the critical
layer that determines the phase change, and involves the nonlinear term Ψ̃ 0,xZ,Y . The
coefficients C1, C2, D1, D2, ∈ � are obtained from the linear theory, and are given in
equations (4.16), (4.30) and (4.31). C1 and D2 are coefficients that involve correction
to the real part of C due to both the gradient of the velocity at the interface U,y and
the pressure component in phase with the travelling wave. C2 and D1 involve the part
of the pressure perturbation that is out of phase with the travelling wave.

Before we start investigating the properties of the set of equations (5.1)–(5.4) we
re-scale the amplitudes, the time scale and length scales to reduce the number of free
parameters. The rescaling is carried out in Appendix B, where it is shown that we
can set C1 = 0 and D1 = −C2 = U ′ =U ′′ = K = 1 with no loss of generality. The two
remaining independent parameters are D2 and ν.

Dropping the nonlinear term in (5.4) we obtain J = iπA in the linear case (Drazin
& Reid 1981). Assuming an exponential growth rate A= eγ T a1 and H = eγ T a2,
equation (5.4) can be written as

γ a2 − πa1 = 0,

a2 − (1 + iπD2)a1 = 0;

}
(5.7)

the growth rate then is given by

γ =
π

1 + π2D2
2

− i
π2D2

1 + π2D2
2

. (5.8)

We note as an aside that there are several conservation laws at work here. First, the
vorticity is conserved inside the critical layer 〈Z〉,T = 0, which implies 〈Z〉 = 0 since the
initial Z had infinitesimal amplitude. Second, by noting that 〈Ψ0,xZ〉 = iK(J ∗A−JA∗),
one can show that the following laws hold:

d

dT
{|H |2 + 〈YZ〉} =0, (5.9)

d

dT

{
|H |2 − 1

2
〈Z2〉

}
= ν〈Z2

,Y 〉, (5.10)

d

dT

{〈(
Ψ̃ 0 + 1

2
Y 2
)
Z
〉

+ D2|J |2
}

= ν〈Z〉. (5.11)

Equations (5.10) and (5.11) are conservation laws only if ν = 0. In equations (5.9),
(5.10) and (5.11), the integration over x was assumed to be taken first, so that we
ensure the convergence of the integrals. Recalling that the velocity (in the units
we are using) inside the critical layer is given by [u − C, w] = [εY + ε2(1/2Y 2 +
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184 A. Alexakis, Y.-N. Young and R. Rosner

Ψ2,Y ) + · · · , ε2Ψ0,x + · · ·] we can identify the first relation (5.9) as corresponding to
the conservation of momentum. Combining equations (5.9) and (5.10), we obtain the
conservation of enstrophy inside the critical layer,

d

dT
〈Z2〉 = −ν

〈
Z2

,Y

〉
. (5.12)

The third equation (5.11) can be regarded as a statement of the conservation of
energy.

5.2. Quasi-steady state

An interesting limit in our set of equations is when the rescaled viscosity is large
enough to play a dominant role inside the critical layer. With this assumption we can
drop the time derivative term in equation (5.4)†; Z then depends only on the value
of A, which then makes J a function of A only. More specifically we have

νZ,YY + Ψ̃ 0,xZ,Y − YZ,x =−Ψ̃ 0,x; (5.13)

by letting A= R(T )eiΘ(T ), ξ = x + Θ and also using the rescaling Y =
√

2ηR1/2,
Z =

√
R/2Ẑ(ξ, η) and χ ≡ ν/(2R)3/2, we obtain

χẐ,ηη − sin(ξ )Ẑ,η − ηẐ,ξ = 2 sin(ξ ). (5.14)

Equation (5.3) then becomes

J =
1

2π
ReiΘ

∫ +∞

−∞

∫ +π+Θ

−π+Θ

e−iξ Ẑ dξ dη = −i
1

2π
A

∫ +∞

−∞

∫ +π

−π

sin ξẐ dξ dη, (5.15)

where the cos(ξ ) term is zero due to symmetry. Equation (5.15) can be written as

J = −iAΦH (χ), with ΦH (χ) =
1

2π

∫ +π

−π

∫ +∞

−∞
sin ξẐ dη dξ. (5.16)

ΦH (χ) was first studied numerically by Haberman (1972). Its value ranges from −π
for χ → ∞ to 0 for χ → 0. Its asymptotics for χ → 0 and χ → ∞ are given by

ΦH (χ) =

{−c1χ + c2χ
3/2 + O(χ2), χ � 1,

−π + c3χ
−4/3 + O

(
χ−8/3

)
, χ � 1,

(5.17)

where c1 = 5.5151 . . . , c2 = 4.2876 . . . and c3 = 1.6057 . . . . The derivation for the above
asymptotics can be found in Churilov & Shukhman (1996). The amplitude equation
then can be written as

H,T =−AΦH

(
ν

(2|A|)3/2

)
, with H = A + iD2AΦH

(
ν

(2|A|)3/2

)
.

We have thus ended up with an ordinary differential equation for the amplitude of
the wave. Writing A in terms of R and Θ , and after some algebra, one can show that(

1 + D2
2ΦHΦ̃H

)
R,T = −R2ΦH, and

(
1 + D2

2ΦHΦ̃H

)
Θ,T = −D2ΦHΦ̃H , (5.18)

where Φ̃H = (RΦH ),R . For large R at late times we can conclude that

|H | ∼ |A| ≡ R ∼ νT 2/3 and Θ ∼ ν2T −1. (5.19)

† By using the rescaling A → ν2/3A, Z → ν1/3Z, Y → ν1/3Y one can show that the time derivative
term is of order ν−1/3 smaller than the other terms.
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Figure 1. The evolution of the wave amplitude A for (a) D2 = 0, (b) D2 = +0.3,
(c) D2 = −0.3.

This is one of the basic results of our calculations. The above limit becomes valid at
later times when small scales appear inside the critical layer, even when the rescaled
viscosity is smaller than one. An important implication of this result is that the
amplitude grows with an algebraic power instead of the initial exponential variation.
Another important feature is that the growth rate depends linearly on the viscosity,
unlike the case in linear theory. In linear theory, a weak viscosity gave the same
phase change ‘−iπ’, and the resulting growth rate was independent (to first order) of
ν. Finally we note that the phase of the waves, Θ , goes asymptotically to zero at late
times.

5.3. Numerical results

Next we investigate the weakly nonlinear evolution of the wave by solving equations
(5.1)–(5.4) numerically. To solve the advection equation (5.4), we used a code which
is spectral in x and finite difference in Y . The domain range we used was (−50, 50)
in Y and (0, 2π) in x. Up to 1024 grid points were used in the Y -direction and 63
modes were kept in x. Viscosity ν = 0.1 is used in all the simulations. The far-field
boundary conditions (Y → ±∞) were satisfied to order 1/Y , although the asymptotic
behaviour of Z was taken into account when we evaluated the integral in equation
(5.3). The code was tested by comparing with a fully pseudo-spectral code as well as
with already published results.

Equations involving a critical layer have been solved numerically for various cases
(Balmforth & Young 2002; Balmforth & Piccolo 2001; Goldstein & Hultgren 1988;
Warn & Warn 1978; Onishchenko et al. 1970). The nonlinear evolution of the critical
layer leads to the well-studied ‘cats-eye’ pattern. As the amplitude of the wave
increases, the ‘phase-change’ across the critical layer is decreased to zero and the
amplitude saturates up to diffusive time scales. We will focus only on the differences
introduced by the coupling of the amplitude A of the upper ‘wind’ perturbation with
the amplitude of the wave H . Such coupling is controlled by the parameter D2. When
D2 = 0 we have no feedback of the gravity wave to the critical layer ‘free critical layer’;
the amplitude A then is proportional to H . In figure 1 we plot the amplitude of the
‘wind perturbation’ A as a function of time for three different cases: D2 = 0, ±0.3. The
saturation amplitude does not seem to strongly depend on the coupling coefficient
D2. The phase of the amplitude (arg{A}) does change; this corresponds to travelling
vortices.

Figure 2(a) shows the temporal behaviour of the phase change Im{−J/A}, which
is similar for all three cases. Panels (b) and (c) show the evolution of the amplitude of
the wave H as a function of time for the D2 = ±0.3 cases. H has the same properties
as A although the time dependence is smoother, which is expected since H can be
written as a time integral of A.
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Figure 2. The evolution of the phase change across the critical layer as a function of time
for the D2 = 0 case (a), and the evolution of the wave amplitude H for the cases D2 = +0.3
(b) and D2 = −0.3 (c).
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Figure 3. Plots of the vorticity inside the critical layer using a grey-scale representation for
the cases D2 = 0,+0.3, −0.3 (a–c respectively) at T = 4.5, 5.0 and 5.

Finally in figure 3 we display the total vorticity Z +Y inside the critical layer at the
nonlinear stage, for the cases D2 = 0, ±0.3. The displacement of the vortices in the
non-zero coupling coefficient cases indicates that the vortices are drifting with respect
to the frame co-moving with the wave. Furthermore, we note the small differences in
the vorticity near the separatrix between figure 3(a) and figures 3(b) and 3(c). This
hints at different mixing properties induced by the coupling with the wind, which
turn out to be important in the mixing properties of the flow that we examine in the
next section.

6. Effect of gravity wave on chaotic mixing inside critical layers
The above analysis was originally motivated by the possibility of enhanced mixing

of different fluids due to the instability of wind-driven gravity waves at the interface.
Specifically in the context of nuclear runaway in novae, we are ultimately most
interested in the mixing of two differentially rotating layers of distinct chemical
abundances in a strong gravitational field (Rosner et al. 2001). In the strongly
nonlinear regime, where the surface waves break due to the wind, dimensional analysis
based on preliminary numerical simulations (Rosner et al. 2001 and references therein)
indicates that turbulent mixing due to breaking of wind-driven gravity waves is the
key to explaining the mixing of white dwarf stellar matter into the ‘burning’ accreted
envelope on time scales consistent with the observations. Motivated by these results,
we investigate in this section the effect of gravity waves on the chaotic mixing in
the critical layers, before wave breaking occurs. In this case, the weakly nonlinear
flow is laminar everywhere, as shown in previous section; and the cat’s eye vortices
develop within the critical layer, with the gravity surface waves yet too weak to break.
Fortunately, there already exists a substantial body of work focused on mixing within
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Wind-driven gravity waves 187

critical layers. The aim of this section is to analyse weakly nonlinear wave-driven
mixing from this perspective; we mainly focus on the qualitative aspects, and illustrate
how the coupling between gravity waves and vorticity inside the critical layer alters
the mixing.

Similar chaotic mixing in critical layers associated with Rossby waves has been
investigated in great detail, using a variety of approaches, and in various geophysical
and plasma physics contexts (del Castillo-Negrete & Morrison 1993; Ngan &
Shepherd 1997; del Castillo-Negrete 2000). Proper treatment of the mixing in the
critical layer requires consistency in updating the velocity field, vorticity and the tracer
particles (del Castillo-Negrete 2000). The sensitivity of transport of tracer particles
to their initial conditions reflects the complicated structures of manifolds com-
monly found in these non-integrable Hamiltonian systems (del Castillo-Negrete &
Morrison 1993; Ngan & Shepherd 1997).

In the previous section, we have found that, with or without coupling with surface
waves, the general flow structure of the vortices is similar inside the critical layer.
Such vortical structures are typical of the weakly nonlinear evolutions of parallel
flows (del Castillo-Negrete 2000; Balmforth & Piccolo 2001). However, their mixing
properties may be very different (depending on the details of the underlying flow)
in spite of great similarity in the general features. As pointed out in del Castillo-
Negrete & Morrison (1993), the single-wave approach adopted above to derive the
amplitude equations is equivalent to the pendulum approximation of a single-mode
Hamiltonian system. In our amplitude equation (5.4), the vorticity Z is advected by
a time-dependent pendulum flow: (u, v) = (Y, −Ψ0,x), with Ψ0 ≡ AeiKx + c.c. Putting
A ≡ R(T )eiΘ(T ), the particle trajectories (x(x0; T ), Y (x0; T )) satisfy equations

x,T = u = Y, (6.1)

Y,T = v = KR(T ) sin (Kx + Θ(T )), (6.2)

where x0 ≡ (x0, Y0) is the initial particle position.
Given the time dependence from the numerical solutions in the previous section,

we can calculate the strain rate of such a flow by first linearizing equations (6.1)–(6.2)
for an infinitesimal separation between two particles δx,

dδx
dT

= (δx · ∇)v =

(
0 1

K2R cos(Kx(x0; T ) + Θ) 0

)
δx ≡ Aδx. (6.3)

λ0, defined as the product of eigenvalues of matrix A in equation (6.3), is interpreted
as the combination of strain and rotation: λ0(x0) = −det(A) = R cos(Kx(x0; T ) + Θ).
During the numerical integration of equations (5.1)–(5.4) from t = 0 to t ∼ 8, we
update λ0 for each x0 in the computation domain as the amplitudes are updated, and
we obtain λ0 as a function of both space (x0) and time. We then time-average λ0 for
each x0 in the entire domain. The time-averaged λ0, denoted as 〈λ0〉, is a function
of only the initial position x0 of the particle. Positive 〈λ0〉 implies the likelihood
of a positive Lyapunov exponent for that initial position; negative 〈λ0〉 implies that
rotation is dominant over strain. We have calculated the time-averaged 〈λ0〉 for each
initial position x0 in the computation domain for D2 = 0.2 case as shown in figure 4(b).
Figure 4(b) is to be compared with figure 4(a), where the vorticity is decoupled from
the surface wave: D2 = 0. More striated layers are found in figure 4(b), indicating
more complicated tangles of manifolds due to coupling with the surface gravity wave.

The relation between 〈λ0〉 and the finite-time Lyapunov exponent may not be
straightforward, and can depend sensitively on the prescribed flow. In general cases
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Figure 4. (a) 〈λ0〉 for the critical layer without coupling to the gravity wave (D2 = 0). (b) 〈λ0〉
for the critical layer coupled to the gravity wave (D2 = 0.2). Bright regions indicate possible
positive Lyapunov exponent.

where the flow is time dependent, some correction to 〈λ0〉 can be made so that it is
closer to the Lagrangian description (Boffetta et al. 2001):

〈λ〉 = 〈λ0〉 + 〈λ1〉, (6.4)

λ1 =
√

Ψ 2
,T xy − Ψ,T xxΨ,Tyy, (6.5)

where Ψ is the stream function of the flow. Interestingly λ1 = 0 in our case despite the
time-dependence of the amplitudes. Thus we expect 〈λ0〉 to be a good indicator of the
finite-time Lyapunov exponent, which we have also calculated independently (figure 5)
for the two corresponding cases in figures 4(a) and 4(b). Similar to dynamical systems,
positive finite-time Lyapunov exponents strongly suggest the presence of unstable
mixing manifolds. The larger the number of positive finite-time Lyapunov exponents
in the system, the more chaotic is the mixing.

The spatial distribution of the finite-time Lyapunov exponents (FTLE) is certainly
different between figures 5(a) and 5(b) due to the coupling of shear flow to the surface
wave. However, up to time T ∼ 8, our calculation shows that the range of positive
FTLE is similar: both cases have almost identical maximum (∼0.72) and minimum
(∼ −0.4) values. The relative frequency of positive FTLE is also similar (see figure 6),
with a slight difference in the variance: variance ∼0.04 in (b), while in (a) variance
∼0.03.

In realistic situations where the passive tracers may be weakly diffusive, the
asymptotic mixing property is determined by the combination of slow diffusion
and fast advection. If we define ζ as the tracer concentration, we can write down the
equation for the weakly diffusive tracer in the above flow field (6.1) and (6.2) as

ζ,T + Yζ,x + R(T ) sin (Kx + Θ(T ))ζ,Y =
1

Pe
∇2ζ, (6.6)
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Figure 5. (a) Finite-time Lyapunov exponent the uncoupled case D2 = 0. (b) Finite-time
Lyapunov exponent for the case D2=0.2. Bright regions indicate positive Lyapunov exponent.
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Figure 6. Probability distribution of the positive finite-time Lyapunov exponent. Dashed line
corresponds to figure 5(a), and solid line corresponds to figure 5(b).

where Pe ≡ Umaxl/κ is the Péclet number, with Umax and l the characteristic velocity
and length defined in the previous section, and κ the molecular diffusivity of the
tracer. Among all the measures used to describe mixing of diffusive tracers in shear
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flows, we focus on the streamwise particle dispersion (variance), defined as

σ 2 ≡ 〈x2〉 − 〈x〉2, (6.7)

where 〈x〉 and
〈
x2
〉

are, respectively, the first and second longitudinal moments of
the concentration field ζ :

〈x〉 ≡
∫

xζ d2x, 〈x2〉 ≡
∫

x2ζ d2x,

and we similarly define the y-variance σ 2
y ≡ 〈y2〉 − 〈y〉2.

If the flow is weak and diffusion is strongly dominant over advection, particles
undergo random walks and σ increases linearly with the square root of time:
σ = (2T/Pe)1/2. On the other hand, if the shear flow is strong and irregular in
time, the particles will be in a super-diffusive regime (σ ∼ T α, α > 1), during which
the dispersion grows faster than that for ballistic transport (σ ∼ T ). In cases where
the flow is bounded and time-independent, the super-diffusive regime eventually gives
way to yet another diffusive (Taylor) regime, with a larger effective diffusivity than
molecular diffusion (Latini & Bernoff 2001). For a time-dependent velocity field, the
super-diffusive regime is the long-time limit of particle transport.

To examine how the time dependence of the flow affects diffusive particle mixing
in our case, we have integrated equation (6.6) using a particle method (Latini &
Bernoff 2001 and references therein). Due to the need to integrate equation (6.6) over
long durations, we have used three models of R(T ) and Θ(T ), resembling two classes
of solutions from solving the amplitude equations (figure 7); the first two are for
the inviscid critical layer, where the amplitude oscillates around the saturated value,
while the third is for a viscous critical layer, where the amplitude grows as T 2/3

asymptotically in time.
We place 105 particles at an initial position close to the separatrix, solve for their

positions in �2, according to equation (6.6) for Pe =105, and record their positions,
from which we can calculate the particle dispersion. As pointed out in Latini &
Bernoff (2001), the method used (Lingevitch & Bernoff 2001) is particularly robust
for small values of the diffusion coefficient, e.g. large Péclet number. In our case
(equations (6.1) and (6.2)), ballistic transport is expected (and confirmed numerically)
if there is no time variation in A.

Figure 7 illustrates the temporal characteristics of the model flow amplitudes R

we used in this study: two cases corresponding to inviscid critical layers, for which
the initially exponentially growing amplitude saturates to R ∼ 1 at T ∼ 100 and
then oscillates periodically with a fluctuation amplitude of 0.2 and periods of 6 and
65, respectively; and one case corresponding to the viscous situation, in which the
amplitude oscillation just discussed is replaced by an algebraic growth proportional
to T 2/3. The consequent results for our measured transverse and longitudinal particle
dispersion are shown in figure 8, which provides the computed dispersion σ versus
time for these three cases. We clearly see that the early time dependence of σ is
verified as the diffusive regime, where σ = (2T/Pe)1/2; and that transverse diffusion
saturates, corresponding to complete transverse mixing in the critical layer. We also
observe that the long-time asymptotics for all cases studied are at least super-diffusive,
with σ ∼ T 3/2 for cases 1 and 2, while for case 3, where the amplitude grows as T 2/3,
the dispersion is close to σ ∼ T 2. This contrasts with results for Poiseuille flow, for
which longitudinal diffusion asymptotes to Taylor dispersion once transverse diffusion
saturates (Latini & Bernoff 2001); this difference in behaviour is expected because
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Figure 7. The two classes of model for the amplitude R used in calculating the particle
dispersion: the first class, corresponding to inviscid critical layers, shows initial exponential
growth followed by saturation to R ∼ 1 and oscillatory behaviour; the second class,
corresponding to the viscous case, follows the exponential phase with algebraic growth. We
show only the oscillatory case with period 65; the shorter-period (6) case looks identical but
for the period of the oscillation, but cannot be easily displayed on the same time plot for
reasons of graphical clarity.

T

σy

(a)
100

10–1
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Diffusive regime
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(b)

T

Super diffusive regime σ ~ T 3/2

Diffusive regime σ = (2T/Pe)1/2

σ

Figure 8. Results of our particle dispersion calculations, for the three amplitude models
shown in the previous figure; in each panel, the solid line corresponds to the oscillatory case
with period 6; the long dashed line to the oscillatory case with period 65; and the dash-dotted
line to the viscous case, with ultimately algebraic amplitude growth. We show the particle
dispersion σ in (a) the transverse direction and (b) the longitudinal direction.
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in our case (as opposed to the Poiseuille case) the flow amplitude continues to show
temporal variations in the long-time limit.

These results are consistent with anomalous diffusion found in other two-
dimensional flows by Venkataramani, Antonsen & Ott (1998) that predict the σ ∼ T 3/2

scaling for flows with KAM regions. The temporal periodicity in the flow in our first
two cases creates the possibility for KAM regions to coexist with chaotic regions; and
particle dispersion is in good agreement with theory. However, for the third case, the
amplitude of the flow grows indefinitely with time, with no periodicity, and there do
not exist any KAM regions; thus the absence of KAM regions (where particles can
become trapped) and the indefinite growth of the vortices leads to particle transport
that is more super-diffusive.

From the above particle simulation results, we expect that, despite the fact that
the particle diffusion coefficient is the same, more diffusive particle dispersion can be
found in viscous critical layers (third case in figure 8) than inviscid critical layers (first
and second cases in figure 8). For the case of viscous critical layers, the single-wave
asymptotic expansion eventually fails as the critical layer expands indefinitely. Thus
it would be interesting to see how the mixing pattern might be altered when the
critical layer comes in contact with the interface. In the case where multiple critical
layers interact with each other, the ensuing mixing patterns are found to depend
sensitively on various dimensionless parameters (Balmforth & Young 2002). In the
present case of wind-driven gravity waves, the expanding viscous critical layer may
cause the surface wave to break as the critical layer expands towards the interface,
leading to complicated mixing, as observed in figure 9 below from direct numerical
simulations of wind-driven gravity waves (Alexakis et al. 2004).

7. Discussion and conclusion
In this paper, we have conducted a weakly nonlinear analysis of the resonant

interaction between wind and surface gravity waves based on our earlier linear
analysis (Alexakis et al. 2002).

Our results indicate that the exponential growth of unstable resonant waves during
the linear regime transitions to algebraic growth in the weakly nonlinear regime.
For the parameters we have used to simulate the amplitude equations, the transition
occurs when the surface amplitude H ∼ 60, which translates to h/l ∼ 60e−3AtG for
the large G case, or h/l ∼ 60r2 for the small-density-ratio case. As pointed out by
Reutov (1980), such a transition amplitude is extremely small for the air–water case
as r = 10−3 and h/l ∼ 6 × 10−5. In the weakly nonlinear regime, the algebraic growth
scales as t2/3 with a prefactor linearly proportional to the weak viscosity in the critical
layer, similar to cases without coupling with gravity waves.

We have also obtained an interesting result related to mixing at the ‘saddle points’
connecting neighbouring cat’s eyes inside the critical layer; this mixing (which we
studied by means of inserting Lagrangian tracers, and observing their evolution) is a
consequence of the dynamics near the ‘saddle’, where mixing between two adjacent
vortices appears to take place (see earlier related work by del Castillo-Negrete &
Morrison 1993). Such mixing regions are commonly found in non-integrable
Hamiltonian systems, and here they suggest the presence of chaotic mixing. Results
from the particle analysis further confirm that chaotic mixing is a consequence of
the temporal behaviour of the amplitude associated with the global background flow.
Even though we have assumed much simpler temporal behaviour for the amplitude
in our simulations, the super-diffusion found in the simpler cases affirms that more
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chaotic mixing should be expected as a result of the instability of the shear flow
coupled to the gravity surface waves. This may imply that the entrainment rate of
water vapour into air could be enhanced by the coupling of weak wind with surface
waves.

At the outset of our weakly nonlinear analysis we assume the spatial domain
is periodic in the streamwise direction, and rely on the periodicity to avoid the
problems of interaction between modes in the continuum without resorting to quasi-
linear theory (Jenkins 1992) or eddy viscosity models (Belcher et al. 1994; Harris
et al. 1996). Assuming that some dissipative and surface restoring force reduces
the number of unstable modes to one, we focus on such a resonant mode inside
the critical layer. The periodicity assumption, albeit unrealistic in most physical
situations, is advantageous for comparison between our weakly nonlinear results and
direct numerical simulations. The details of this process are elucidated in the following
for various relevant physical scenarios where our results may be applicable.

The G ≡ gl/U 2 � 1 assumption can be relevant in astrophysics, where gravity
is very large compared to convection ‘winds’ in the convection zone, or to the
accretion flow on the white dwarf surface. However, there exists no capillary force
in astrophysics. Magnetic fields aligned with the interface act similarly to the surface
tension, yet the resultant dispersion relation is different; unlike surface tension the
phase velocity of the waves does not increase with the wavenumber but instead
saturates at the Alfvén speed. Therefore, contrary to the case with surface tension,
modes with large wavenumbers are not neutralized or damped completely by magnetic
fields, but their growth rate decreases exponentially with wavenumber. Thus, in the
case of a magnetized plasma, we would also need to further assume that the most
unstable mode is much more ‘dominant’ than any other mode in the continuum
in order to apply our results to astrophysics. In terrestrial situations, the condition
G � 1 can be met in liquid interfaces for large length scale of the wind (l � U 2/g)
provided that the constraint 4TG < (r + 1)2/(1 − r) for instability is satisfied. For
the small-density-ratio case (r � 1), the periodicity assumption and the criterion for
surface tension to damp all the modes except the most unstable mode result in a
range of the maximum wind velocity within which our weakly nonlinear results apply
to small-density-ratio cases: 0.2 m s−1 <Umax < 1 m s−1 for the air–water case.

The calculations presented here provide useful information for validating numerical
simulations of wind-driven interface instabilities. For cases of G � 1 or r � 1 the linear
behaviour can be found only for amplitudes too small to be observed numerically;
thus it will be challenging to verify linear theory. In contrast, it should be relatively
easy to test the numerics in the weakly nonlinear limit.

We further remark that, as found in the case of an internal boundary layer
(Balmforth & Young 2002), a similar nonlinear development of the vorticity in
the critical layer and its ensuing expansion are also observed in direct numerical
simulations with parameters well beyond the range suitable for weakly nonlinear
analysis. Figure 9 illustrates such an example obtained from direct numerical
simulation of wind-driven gravity waves with G = 0.1 and r = 0.1, no surface tension,
and an initial maximum Mach number of Umax/Csound = 0.2 (Alexakis et al. 2004).
We note that while the characteristic parameters are beyond the range for weakly
nonlinear analysis, the fully nonlinear results bear a strong similarity to the weakly
nonlinear results discussed earlier. Thus, the cat’s eye vorticity shown in figure 3
resembles the contour of scalar density field in figure 9(a), even though the vorticity
has already expanded just above the interface. The temporal evolution of the wave
energy is shown in figure 9(b). Despite the fast oscillations due to sound waves emitting
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Figure 9. Results from direct numerical simulations with G = 0.1 and r = 0.1, obtained at a
(dimensional) time of ∼1 s. (a) Density contour plot of a wind-driven gravity wave; (b) the
energy of the wave as a function of time.

from the reflecting bottom boundary, the temporal variation behaves similarly to the
amplitude H for the weakly nonlinear case shown in figure 2 if the fast sound
wave oscillations are filtered. Here it is especially notable that while the temporal
evolution in these two rather different cases bears a remarkable resemblance, the
physics underlying the saturation in these two cases is quite different: contrary to the
weakly nonlinear case, the saturation in the fully nonlinear calculations results from
the fact that the critical layer both broadens substantially and descends onto the
interface (figure 9a); this behaviour strongly suggests that in this nonlinear regime,
saturation is largely a consequence of the broadening of the resonant layer, and
consequent decreased coupling between the wind and the perturbed interface. Thus,
we see that the saturation mechanism is likely to depend on details of the specific
parameter regime governing the shear layer; this is an issue we intend to pursue in
much more detail in subsequent studies.

Finally, we note a number of interesting additional issues that remain to be
investigated. For example, while we have focused on mixing above the interface,
mixing below the interface can also have important astrophysical consequences; this
is principally because (for example) mixing H and He into C/O of the white dwarf
star can lead to nuclear burning in the upper layers of the star itself, which may
significantly affect the stratification of the interface layer (because then the dynamics
of the latter layer may resemble much more closely what occurs in atmospheres
heated from below (e.g. the solar photospheric case). Similarly, subsurface currents
(possibly due to subsurface convection) can also significantly couple to the interface
instability (Cheung & Street 1988; Simmen & Saffman 1985; Saffman & Yuen 1982).

This work was supported in part by the DOE-funded ASCI/Alliances Center for
Thermonuclear Flashes at the University of Chicago. We thank N. J. Balmforth, N. R.
Lebovitz, and S. C. Venkataramani for helpful conversations. We would also like
to thank the anonymous referees for pointing out additional crucial references and
giving useful comments. Y.N. Y. acknowledges support from NASA and Northwestern
University, and computation support from Argonne National Laboratory.

Appendix A. Large-G behaviour
We are interested in cases for which the factor G is large. As already discussed, such

cases correspond not only to the astrophysical limit of strong surface stratification,
but also to cases for which the wind is weak enough so that the growth rate of
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(linearly) unstable modes is small, i.e. to cases for which our analysis is actually
appropriate.

In order to proceed, we need to adopt a specific wind profile; in what follows, we
will use a profile of the form U = (1 − e−y). However, we note that our basic results
hold for more general wind profiles. From equation (3.6) we know that the unstable
modes will have K of the same order as G, and therefore K � 1; this allows us to
write a WKBJ expansion for the solution of the perturbation stream function of
equation (3.1) for the wind. The equation we have to solve for large K is therefore

φ,yy −
[
K2 +

U,yy

U − C

]
φ = 0. (A 1)

The boundary condition at the interface is

KC2 − r[C2φy |0 − CU ′|0] − G(1 − r) = 0. (A 2)

The WKBJ approximation will break down at two points: the first one is at y = yc,
where the critical layer is located; the second one is at y = ya , where ya is the solution
of K2(U −C)+U,yy = 0 and the second term in (A 1) becomes zero. For this reason, we
will have to decompose the y-axis into three regions: (I). 0 < y < yc; (II). yc < y <ya;
(III). ya < y. The first-order solutions of the WKBJ equations therefore are

(I) φ = A1

1√
w

exp

(
−
∫ y

0

w dy ′
)

+ B1

1√
w

exp

(
+

∫ y

0

w dy ′
)

, (A 3)

(II) φ = A2

1√
w

sin

(∫ y

yc

w dy ′ − π/4

)
+ B2

1√
w

cos

(∫ y

yc

w dy ′ − π/4

)
, (A 4)

(III) φ = A3

1√
w

exp

(
−
∫ y

ya

w dy ′
)

, (A 5)

where

w(y) =

√∣∣∣∣K2 +
U,yy

U − C

∣∣∣∣=
√∣∣∣∣K2 − e−y

1 − C − e−y

∣∣∣∣, (A 6)

and the −π/4 factor appearing in the solution for region (II) is inserted for
convenience, to be exploited shortly. The coefficients A1, B1, A2, B2, A3 are connected
through the solutions at the points where the WKBJ approximation breaks down,
and can be obtained using matched asymptotics. Thus, close to y = ya it is well-known
that the solution is an Airy function (Olver 1997). Matching the two solutions we
obtain that, for yc < y < ya ,

φ =
2A3√

w

{
sin [I1] cos

[∫ y

yc

w dy ′ − π/4

]
− cos [I1] sin

[∫ y

yc

w dy ′ − π/4

]}
, (A 7)

and therefore

B2 = 2A3 sin[I1], A2 = −2A3 cos[I1], (A 8)

where I1 =
∫ ya

yc
w dy ′. The solutions near the critical point y = yc satisfy the equation

φ,yy − U ′′
c

U ′
cy

φ = 0 (A 9)

where U ′′
c = U ′′|y = yc

and U ′
c = U ′|y = yc

. The solutions of the above equations are given
in terms of z = −(y − yc)U

′′
c /U ′

c > 0 by

f1(z) =
√

zJ1(2
√

z), f2(z) =
√

zN1(2
√

z), (A 10)
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where J1, N1 are, respectively, the first Bessel and Neumann (Bessel of the second
kind) functions. The first terms in the asymptotic expansion for y → +∞ are

f1(z) � z1/4

√
π

sin
(
2z1/2 − π/4

)
, f2(z) � −z1/4

√
π

cos
(
2z1/2 − π/4

)
. (A 11)

Matching with the outer solution, we have

φ =
√

πA2f1(z) −
√

πB2f2(z).

The asymptotic expansion for z → 0+ is

f1 � z + · · · , (A 12)

πf2 � −1 + z ln |z| + · · · − (1 − 2γ )z + · · · , (A 13)

where γ is the Euler–Masceroni constant. Thus, we can identify f1 with the regular
Frobenius solution φa , and f2 with the singular Frobenius solution φb. Here we
assumed that Ci is much smaller that G−1 (this is something that will be justified a
posteriori).

For y <yc the solutions of equation (A 9) can be obtained by making the trans-
formation z → e−iπz which is equivalent to taking the contour below the critical layer.
By doing this the first Bessel function transforms to the first modified Bessel function
that is growing exponentially and is real while the second one transforms to a linear
combination of an exponentially growing and an exponentially decreasing modified
Bessel function, and due to the presence of the logarithm it will have an imaginary
part. Their asymptotic expansion for y → ∞ is

f1 � − z1/4

2
√

π
e+2

√
z, f2 � z1/4

2
√

π
[ie2

√
z − 2e−2

√
z], (A 14)

with z = (y −yc)U
′′
c /U ′

c > 0. The inner solution for negative large z can be then written
as

φin �
√

π(A2f1 − B2f2), (A 15)

� −z1/4

2
[(A2 + iB2)e

2
√

z − 2B2e
−2

√
z]. (A 16)

Matching with the outer solution then gives

φ � 1

2
√

w

[
−(A2 + iB2) exp

(
−
∫ y

yc

w dy ′
)

+ 2B2 exp

(
+

∫ y

yc

w dy ′
)]

(A 17)

or

φ = − A2 + iB2

2
eI2

1√
w

exp

(
−
∫ y

0

w dy ′
)

+ B2e−I2

1√
w

exp

(∫ y

0

w dy ′
)

, (A 18)

where I2 =
∫ yc

0
w dy ′. Gathering all the terms then gives

A1 = A3( cos[I1] − i sin[I1])e
+I2, B1 = 2A3 sin [I1] e−I2, (A 19)
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and

φ = A3

[
2 sin(I1)e

−I2 exp

(
+

∫ y

0

w dy ′
)

+ cos(I1)e
+I2 exp

(
−
∫ y

0

w dy ′
)

− i sin(I1)e
+I2 exp

(
+

∫ y

0

w dy ′
)]

. (A 20)

The values of φ and φ,y at zero are therefore

φ|0 = A3

[
2 sin(I1)e

−I2 + cos(I1)e
+I2 − i sin(I1)e

+I2
]
, (A 21)

φ,y |0 = A3

[
2 sin(I1)e

−I2 − cos(I1)e
+I2 + i sin(I1)e

+I2
]
, (A 22)

where we have kept terms only to first order in K . For the given wind profile (1−e−x),
we have

yc = −K ln(1 − C), ya = −[K ln(1 − C) − K ln(1 + 1/K2),

I1 � π

2K
+ O(1/K3), (A 23)

I2 � Kyc + O(1/K2) = −K ln(1 − C) + O(1/K), (A 24)

sin(I1) � π

2K
, cos(I1) � 1, e−I2 = (1 − C)K.

Normalizing so that φ|0 = 1, we then obtain

φ,y =
2 sin(I1)e

−I2 − cos(I1)e
+I2 + i sin(I1)e

+I2

2 sin(I1)e−I2 + cos(I1)e+I2 − i sin(I1)e+I2
, (A 25)

or

φ,y = −1 +
4 sin(I1)e

−I2

2 sin(I1)e−I2 + cos(I1)e+I2 − i sin(I1)e+I2
. (A 26)

The second term in equation (A 26) is exponentially small when compared to 1 since
I2 ∼ K; neglecting this term when appropriate then allows φ,y to be written as

φ,y = −1 + 4i sin2(I1)e
−2I2, (A 27)

where we have kept only the first term in the expansion of the real and imaginary
parts. Substituting this value of φ,y in equation (A 2), we obtain, to zeroth order,

C0 =

√
1 − rG

1 + rK
=
√

AtG/K, (A 28)

which corresponds to the gravity wave in the absence of a wind; At is the Atwood
number. For our purposes, this is as far as we need to go in analysing the real part
of C.

We next turn to analysing the imaginary part of C. To obtain the first order in
Im{C} =Ci � C0 we have

2K(1 + r)C0Ci − rKC2
0 (1 + φ,y) = 0, Ci =

1

2

r

1 + r
C0(1 + φ,y), (A 29)

so that

Ci =
2rC0

1 − r
sin2(I1)e

−2I2, (A 30)
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or

Im{C1} =
rπ2

2(1 + r)

1

A2
t G

2

(
AtG

K

)5/2
[(

1 − 1√
K/(AtG)

)(K/AtG)
]2AtG

. (A 31)

We note that (1 − 1/
√

x)2x is a bounded function that is smaller than 1 with qm =
max(ln(1 − 1/

√
x)2x) � −2.45 . . . , and therefore Ci has a negative exponential

dependence on G and the result in (3.11) follows. We note further that this exponential
dependence should be independent of the wind profile, and in a more general case –
for which U (y) is the wind profile and U−1(c) is its inverse – the growth rate will
be proportional to Ci ∼ exp[−2KU−1(c)]; this can be re-written as Ci ∼ f (c(K))AtG,
with f (c) ≡ exp[−2U−1(C)/C] a bounded function and C =C0. The interpretation of
equation (A 30) is straightforward: it simply states that the growth rate is proportional
to the negative exponential of the height of the critical layer, as measured in units of
the wavelength.

Appendix B. Rescaling (5.1)–(5.4)
Before we begin investigating the amplitude equations we rescale our system so that

we are left with a minimum number of free parameters. By letting Z =U ′′/
√

U ′Z̃,
Y = η/

√
U ′, T = τ/(

√
U ′k), ξ = Kx and ν = ν ′/

√
U ′ we obtain the following equation

to be solved:

Z̃,τ + ηZ̃,ξ − Ψ̃ 0,ξ Z̃,η − ν ′Z̃,ηη = Ψ̃ 0,ξ ,

with

J =
1

2π

∫ +π

−π

∫ +∞

−∞
e−iξ Z̃ dη dξ.

By rescaling A to |C2|2/|D1|2A, and H to |C2|2/|D1|H , we can always scale our system
so that D1 = 1 and C2 = −1. Finally, the coefficient C1 can always be set to zero by
performing a Galilean transformation (τ → τ + C1ξ ) and shifting the critical layer by
Y → Y −C1. The last transformation corrects the position of the critical layer to order
ε. We are left therefore with two independent parameters, D2 and ν, to investigate.
The parameter D2 gives a measure of the coupling of the critical layer to the wave
(D2 = 0 gives the evolution of a ‘free’ critical layer uncoupled from gravity waves).
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