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Using a large number of numerical simulations we examine the steady state of
rotating turbulent flows in triple periodic domains, varying the Rossby number Ro
(that measures the inverse rotation rate) and the Reynolds number Re (that measures
the strength of turbulence). The examined flows are sustained by either a helical or a
non-helical Roberts force, that is invariant along the axis of rotation. The forcing acts
at a wavenumber kf such that kf L= 4, where 2πL is the size of the domain. Different
flow behaviours were obtained as the parameters are varied. Above a critical rotation
rate the flow becomes quasi-two-dimensional and transfers energy to the largest
scales of the system, forming large coherent structures known as condensates. We
examine the behaviour of these condensates and their scaling properties close to and
away from this critical rotation rate. Close to the critical rotation rate the system
transitions supercritically to the condensate state, displaying a bimodal behaviour
oscillating randomly between an incoherent-turbulent state and a condensate state.
Away from the critical rotation rate, it is shown that two distinct mechanisms can
saturate the growth of the large-scale energy. The first mechanism is due to viscous
forces and is similar to the saturation mechanism observed for the inverse cascade
in two-dimensional flows. The second mechanism is independent of viscosity and
relies on the breaking of the two-dimensionalization condition of the rotating flow.
The two mechanisms predict different scaling with respect to the control parameters
of the system (Rossby and Reynolds), which are tested with the present results of
the numerical simulations. A phase space diagram in the Re, Ro parameter plane is
sketched.

Key words: rotating flows, rotating turbulence, turbulent flows

1. Introduction
Turbulent rotating flows are met in a variety of contexts in nature. From the interior

of stars, to planet atmospheres and industrial applications, rotation plays a dominant
role in determining the properties of the underlying turbulence (Greenspan 1968;
Pedlosky 1987; Hopfinger & Heijst 1993). In its simplest form an incompressible
turbulent flow in the presence of rotation is controlled by the incompressible
Navier–Stokes equation, which in a rotating frame of reference reads

∂tu+ u · ∇u+ 2Ω êz × u=−∇P+ ν1u+ F, (1.1)

† Email address for correspondence: skannabiran@lps.ens.fr
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where u is the incompressible velocity field, Ω is the rotation rate (assumed here
to be in the z direction with êz its unit vector), P is the pressure that enforces
the incompressibility condition ∇ · u = 0, ν is the viscosity and F is a mechanical
body force that acts at some length scale `f . Traditionally, the strength of turbulence
compared to viscous forces is measured by the Reynolds number Re=U`f /ν, while
compared to the Coriolis force it is measured by the Rossby number Ro=U/(2Ω`f ),
where U stands for the velocity amplitude. Precise definitions of these numbers will
be given when we describe in detail the model under study.

It has been known for some time that when rotation is very strong, flows tend
to become quasi-two-dimensional (quasi-2D) varying very weakly along the direction
of rotation (Hough 1897; Proudman 1916; Taylor 1917). The reason for this behaviour
is that the incompressible projection of the Coriolis force 2Ω êz × u − ∇P′ =
2Ω∆−1∂z∇ × u does not act on the part of the flow that is invariant along the
rotation axis ∂zu= 0. Here P′ is the part of the pressure that enforces incompressibility
condition for the Coriolis term and ∆−1 is the inverse laplacian. At the same time
velocity fluctuations that vary along this axis become inertial waves that satisfy the
dispersion relation,

ωk =±2Ω
kz

k
, (1.2)

where ωk is the wave frequency, k the wavenumber and the sign depends on
the helicity of the mode. Fast rotation leads to a de-correlation of inertial waves
weakening their interactions. Thus, in the presence of strong rotation, fluid motions
that are invariant along the direction of rotation (often referred as the slow manifold)
become isolated from the remaining flow, and if forced they dominate, leading to
the quasi-2D behaviour (Chen et al. 2005; Scott 2014). This quasi-2D behaviour
has been realized in experiments (Ibbetson & Tritton 1975; Hopfinger, Browand &
Gagne 1982; Dickinson & Long 1983; Baroud et al. 2002, 2003; Ruppert-Felsot et al.
2005; Sugihara, Migita & Honji 2005; Morize & Moisy 2006; Staplehurst, Davidson
& Dalziel 2008; van Bokhoven et al. 2009; Yoshimatsu, Midorikawa & Kaneda
2011; Duran-Matute et al. 2013; Machicoane, Moisy & Cortet 2016) and numerical
simulations (Yeung & Zhou 1998; Godeferd & Lollini 1999; Smith & Waleffe 1999;
Chen et al. 2005; Mininni, Alexakis & Pouquet 2009; Thiele & Müller 2009; Favier,
Godeferd & Cambon 2010; Mininni & Pouquet 2010; Sen et al. 2012; Marino et al.
2013; Alexakis 2015; Biferale et al. 2016; Valente & Dallas 2017).

These arguments, however, have various limitations. For large Reynolds numbers Re,
the quasi-2D behaviour breaks down at scales ` smaller than the Zeman–Hopfinger
scale `Z defined as the scale for which the vorticity w` ∝ u`/` is comparable to
the rotation rate Ω (Hopfinger et al. 1982; Zeman 1994). Here u` stands for the
typical velocity at scale `. Thus, for large-Reynolds-number and low-Rossby-number
flows, such that 1� 1/Ro� Re, the large scales ` > `Z show a quasi-2D behaviour,
while smaller scales ` < `Z display three-dimensional (3D) behaviour. Furthermore,
the quasi-2D behaviour is also expected to break down even at large scales for
sufficiently elongated boxes H � `f , (where H stands for the domain size in the
direction of rotation). If H is sufficiently large, the slowest inertial mode has a
frequency ω∼Ω`f /H comparable to or smaller than the inverse of the eddy turnover
time `/u`. This last limiting procedure, 1� 1/Ro�H/`f provided also that Re� 1,
corresponds to the weak wave turbulence limit, in which the nonlinear interactions
can be treated in a perturbative manner (Galtier 2003; Nazarenko 2011). Finally,
for finite (fixed) heights H and finite (fixed) Reynolds numbers, fast rotating flows
become exactly 2D above a critical rotation rate (Gallet 2015). This corresponds to
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the limiting procedure Re� 1/Ro and H/`f � 1/Ro. Thus, in general, the quasi-2D
behaviour at low Ro depends on the scales under investigation, the geometry of the
system, and the relative amplitude of the Rossby and Reynolds number, with different
limits leading to different results.

The distinctive difference between 3D and 2D or quasi-2D flows is that the former
cascades energy to small scales while the latter cascades energy to large scales.
Thus a significant change in the energy balance occurs when the rotation rate is
increased and the flow becomes quasi-2D: while in a forward cascade the energy
that arrives at small scales gets dissipated, in an inverse cascade the energy piles
up at scales of the size of the domain size L. Indeed, it has been shown both in
numerical simulations (Smith, Chasnov & Waleffe 1996; Smith & Waleffe 1999; Sen
et al. 2012; Pouquet et al. 2013; Deusebio et al. 2014; Biferale et al. 2016) and
experiments (Duran-Matute et al. 2013; Yarom, Vardi & Sharon 2013; Campagne
et al. 2014; Yarom & Sharon 2014; Campagne et al. 2015, 2016) that while for
weak rotation the flow is close to an isotropic state and cascades all energy to the
small scales, for fast rotation the flow is in a quasi-2D state that cascades at least
part of the energy to the large scales. This quasi-2D state has also been observed
in buoyancy-driven systems such as rotating convection (Favier, Silvers & Proctor
2014; Guervilly, Hughes & Jones 2014; Rubio et al. 2014; Stellmach et al. 2014;
Kunnen et al. 2016; Plumley et al. 2016). This change in the direction of the cascade
as a parameter is varied has been the subject of study of various investigations in
different systems (Smith & Waleffe 1999; Celani, Musacchio & Vincenzi 2010;
Alexakis 2011; Marino et al. 2013; Pouquet & Marino 2013; Deusebio et al. 2014;
Seshasayanan, Benavides & Alexakis 2014; Marino, Pouquet & Rosenberg 2015;
Sozza et al. 2015; Seshasayanan & Alexakis 2016; Benavides & Alexakis 2017). In
particular, for rotating flows, it has been shown that the transition from a forward
to an inverse cascade happens at critical rotation Ωc above which the flow starts to
cascade part of the injected energy ε inversely at a rate εinv. The fraction of the rate
that cascades inversely εinv/ε depends on the difference Ω − Ωc and the height of
the domain H (Deusebio et al. 2014). This description holds at early times before
the inverse cascading energy reaches scales the size of the domain. At late times the
energy starts to pile up at the largest scale of the system, altering the dynamics. This
pile up of energy at the largest scale, amounting to a spectral condensation at the
smallest wavenumbers, is referred in the literature as a condensate and has been the
subject of many studies on 2D turbulence (Kraichnan 1967; Smith & Yakhot 1994;
Xia et al. 2008).

In this work, we try to determine the behaviour of a forced rotating flow at late
times when the flow has reached a steady state, in the absence of any large-scale
dissipative mechanism. Due to the long computational time required to reach a
steady state, very few investigations have focused on this regime like the early
low-resolution studies in Bartello, Metais & Lesieur (1994) and, more recently, the
studies in Alexakis (2015), Dallas & Tobias (2016), Yokoyama & Takaoka (2017),
where turbulent rotating flows at steady state were investigated. Experiments on the
other hand, for which long times are realizable, have investigated this steady-state
limit (Duran-Matute et al. 2013; Campagne et al. 2014; Yarom & Sharon 2014;
Campagne et al. 2016; Machicoane et al. 2016).

The rest of this paper is structured as follows. In § 2 we present our numerical set-
up and introduce our control parameters and observables. In § 3 we discuss possible
mechanisms for the saturation of the initial energy growth. In § 4 we present the
results on global quantities from the numerical simulations and in § 5 we describe
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the spatial and spectral structures as well the dynamics involved. In § 6 we discuss
the effect of helicity of the forcing on the resulting flow. In § 7 we summarize and
draw our conclusions.

2. Numerical set-up, and control parameters

We consider the flow of a unit density liquid in a cubic triple-periodic domain of
size 2πL that is in a rotating frame with z being the axis of rotation. The governing
equation for the flow velocity u is given by (1.1). The flow is driven by the body
force F; here we consider two cases given by

F= f0

 −sin(kf y),
+sin(kf x),

cos(kf x)+ cos(kf y)

 and F= f0

 −sin(kf y),
+sin(kf x),

sin(kf x)+ sin(kf y)

 . (2.1a,b)

The first one is maximally helical 〈F · ∇ × F〉S = kf 〈F · F〉S and will be referred
to as the helical forcing and the second one has zero helicity 〈F · ∇ × F〉S = 0 and
will be referred as the non-helical forcing. Here 〈〉S denotes spatial average. These
forcing functions have been proposed by Roberts (1972) for dynamo studies and are
commonly referred to as Roberts flow. Helicity, defined as H= 〈u · ∇× u〉, is known
to play an important role in fast-rotating turbulence since it has been shown that its
forward cascade can control the dynamics at the small scales (Mininni & Pouquet
2010; Sen et al. 2012). In this work we will examine both cases with and without
helicity in parallel. It is also important to note that our forcing is invariant along the
axis of rotation, and thus the forcing acts only on the slow manifold (that consists
of all the Fourier velocity modes for which kz = 0). This is in contrast with the case
examined in Alexakis (2015), Yokoyama & Takaoka (2017), where a Taylor–Green
forcing was used that has zero average along the vertical direction. Thus, while the
Taylor–Green forcing does not inject energy directly to the slow manifold, the Roberts
forcing used here injects energy only to the slow manifold. The two cases can thus
be considered as two extremes.

This system was investigated using numerical simulations. All runs were performed
using the pseudo-spectral code GHOST (Mininni et al. 2011), where each component
of u is represented as a truncated Galerkin expansion in terms of the Fourier basis.
The nonlinear terms are initially computed in physical space and then transformed to
spectral space using fast Fourier transforms. Aliasing errors are removed using the 2/3
de-aliasing rule. The temporal integration was performed using a fourth-order Runge–
Kutta method. Further details on the code can be found in Mininni et al. (2011). The
grid size varied depending on the value of ReF and RoF from 643 to 5123. A run was
considered well resolved if the value of enstrophy spectrum at the cutoff wavenumber
was at least one order of magnitude smaller than its value at its peak. Each run started
from a random multimode initial condition and was continued for a sufficiently long
time that long-time averages in the steady state were obtained.

The parameter f0 gives the amplitude of the forcing, and kf is the wavenumber at
which energy is injected into the flow. These two parameters define the length scale
`f = k−1

f , the time scale τf = (kf f0)
−1/2 and velocity amplitude Uf =

√
f0/kf which will

be used to non-dimensionalize the control parameters in our system. The product kf L
gives the scale separation between the forcing scale and the box size. Throughout this
work we have fixed the scale separation to kf L = 4. We thus do not investigate the
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dependence on the box size. The Reynolds number Ref and the Rossby number Rof

based on Uf are defined as

Ref =

√
f0/k3

f

ν
and Rof =

√
f0kf

2Ω
. (2.2a,b)

The more classical definition of the Reynolds and Rossby number can be obtained
using the root-mean-square amplitude of the velocity U = 〈u · u〉1/2ST , where 〈·〉ST

denotes spatial and temporal average. This leads to the velocity based Reynolds
number Reu and the velocity based Rossby number Rou,

Reu =
U

kfν
and Rou =

Ukf

2Ω
. (2.3a,b)

In many experiments, as well as in many theoretical arguments, it is the energy
injection rate

ε = 〈u · F〉ST = ν〈|∇× u|2〉ST (2.4)

per unit of volume that is controlled. It is thus worth expressing the control parameters
also in terms of ε. This leads to the definition of the Reynolds/Rossby numbers based
on ε,

Reε =
ε1/3

νk4/3
f

and Roε =
ε1/3k2/3

f

2Ω
. (2.5a,b)

Finally, the ratio of the square root of enstrophy to twice the rotation rate is referred
to as the micro-Rossby number Roλ, which in terms of Reε and Roε can be expressed
as

Roλ =
〈|∇× u|2〉1/2ST

2Ω
=

ε1/2

2ν1/2Ω
= Re1/2

ε Roε. (2.6)

In the examined system only (Ref , Rof ) are true control parameters, while (Reu, Rou)

and (Reε, Roε) can only be measured a posteriori.
The location of all of the performed runs in the (Ref , Rof ) parameter space are

shown in figure 1(a,b) for (a) helical flow and (b) non-helical flow in a log–log
scale. The figure shows symbols that correspond to simulations that lead to different
hydrodynamic steady states. Darker symbols correspond to larger values of Rof while
larger symbols correspond to larger values of Ref . The largest symbols correspond
to simulation runs of size 5123 points. The same symbols, sizes and shades (colours
online) are used in some of the subsequent figures and thus the reader can refer to
figure 1 to estimate the value of Ref and Rof . Each symbol corresponds to different
behaviour of the flow: squaresp (red) correspond to flows that are laminar, diamonds
f (green) correspond to unstable or turbulent flows that do not form a condensate,
and circlesu (black) correspond to turbulent flows that form a condensate. We have
shifted the points corresponding to Ω = 0, Rof =∞ to the values Rof = 100 in order
for them to appear along with other points that correspond to finite rotation.

The star symbols ? (purple) denote the simulations of the reduced two-dimensional
equations valid for Rof → 0 given by

∂tu2D + u2D · ∇u2D =−∇p2D + ν1u2D + f 2D,
∂tuz + u2D · ∇uz =+ν1uz + f z,

}
(2.7)
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FIGURE 1. (Colour online) The figures show the location of the numerical runs in the
(Rof ,Ref ) parameter plane (a,b), the (Rou,Reu) plane (c,d) and the (Roε,Reε) plane (e, f ).
Helical flows are in (a,c,e) and non-helical flows in (b,d, f ). Larger symbols denote larger
values of Ref and lighter symbols correspond to smaller values of Rof . Different symbols
correspond to different behaviour of the flow as follows: squares p (red) correspond to
flows that are laminar, diamondsf (green) correspond to unstable or turbulent flows that
do not form a condensate, circles u (black) correspond to turbulent flows that form a
condensate, star symbols ? (purple) denote the simulations of the reduced two-dimensional
equations valid for Rof → 0 and trianglesq (cyan) denote hyperviscous runs.

where u2D stands for the horizontal components of the velocity field and uz for the
vertical. All fields are independent of the vertical coordinate z. The points for the 2D
simulations (Rof = 0 limit) are placed at the position Rof = 10−2. Finally, the triangles
q (cyan) denote hyperviscous runs obtained when we replace the Laplacian in (1.1)
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with the ∆4. Hyperviscous runs model the limit Ref →∞ where a turbulent forward
cascade is present. However, in systems like the present one, where inverse cascades
build up, the hyperviscous dissipation could affect the amplitude of the large-scale
condensate. This is why we only consider the results of hyperviscous runs along with
DNS with regular viscosity. They are placed in figure 1 at the value Ref = 1000.

The vertical dashed line stands for the linear stability boundary of the laminar flow.
For the chosen forcing the first unstable mode is z-independent and is determined
by the linearized version of (2.7). Accordingly the unstable mode is independent
of rotation and the vertical component of the laminar flow. As a result the laminar
stability boundary is independent of Rof and is the same for the helical and the
non-helical flow, that share the same laminar u2D at Ref ' 1.278.

Figure 1(c,d) show the same points in the parameter plane (Reu,Rou), with points in
the parameter plane (Reε,Roε) shown in panels (e, f ). The dashed lines in figure 1(e, f )
indicate values of constant Roλ. For the range of examined parameters, compared to
the points in the (Ref , Rof ) plane there is a clear shift of the points to larger values
of Reu as Rou is decreased in figure 1(c,d), while there is a decrease of Reε as Roε
is decreased in figure 1(e, f ).

Our principal goal in this work is using this large number of numerical simulations
to determine the dependence of the large-scale quantities of rotating turbulence such
as the saturation amplitude U and the energy dissipation rate and to map the different
behaviours observed in the parameter space making a phase space diagram.

3. Inverse transfers and saturation of condensates

In this section we present some theoretical estimates for the saturation amplitude
of the velocity U and the energy dissipation rate ε. As a first step we consider a
fixed energy injection rate ε and use (Reε, Roε) as control parameters. We relax this
assumption later in the text, where we extend these considerations to the case of fixed
forcing amplitude.

For weak rotating and non-rotating systems (Ro → ∞) the cascade is strictly
forward. The external forcing is balanced either by the viscous forces when Re is
small, or by the nonlinearities that transfer the injected energy to the small scales
where viscosity is again effective. These considerations lead to the classical scaling
for laminar and turbulent flows between the velocity U and the energy injection
rate ε,

U2
∝ ε

`2
f

ν
for Reε→ 0 and U2

∝ (ε`f )
2/3 for Reε→∞. (3.1a,b)

Note that both of these scalings are independent of the domain size L and the rotation
rate Ω . Using these scalings one can show that for Reε→∞ all the definitions of Re
given in the previous section are equivalent up to a prefactor so that Reε ∼ Reu∼ Ref

and Roε ∼ Rou ∼ Rof .
In the presence of an inverse cascade, however, the involved mechanisms for

saturation become considerably different, altering these scaling relations. At late
times, in order for the system to reach a steady state and saturate the initial increase
of the large-scale energy, it has to either suppress the rate at which energy cascades
inversely εinv or to reach sufficiently high amplitudes so that the energy can be
dissipated by viscosity. If indeed the transition from forward to an inverse cascade
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No inverse cascadeInverse cascade

(a) (b)

No condensateCondensate

(a)

(b)
(c)

FIGURE 2. (Colour online) (a) Illustration of the expected dependence of the amplitude
of the inverse flux εinv at the early stages of the inverse cascade as a function of the
Rossby number Roε . (b) Illustration of the expected total energy U2 as a function of Roε
at the steady-state regime for different values of Reε . The dashed vertical line indicates
the transition from a flow with no inverse cascade to a flow with an inverse cascade. The
dashed curved line shows the scaling 1/Ro2

ε that reflects the U2
∝Ω2L2 scaling.

has a critical behaviour, the amplitude of the inverse cascade will depend as a power
law on the deviation from criticality Ro∗ε ,

εinv =C1

(
Ro∗ε − Roε

Ro∗ε

)γ
ε for 0< Ro∗ε − Roε� Ro∗ε , (3.2)

while away from criticality it is expected that

εinv =C2 ε for 0< Roε� Ro∗ε . (3.3)

Here Ro∗ε denotes the critical value of Rossby for which the inverse cascade starts.
Note that Ro∗ε depends on the height of the box but not on the horizontal dimensions
(see Deusebio et al. 2014). The result in (3.3) holds for the Roε→ 0 limit where the
flow becomes 2D and εinv is independent of the rotation rate. The constant C2 is unity
when there is injection of energy only to the horizontal velocity components ux, uy,
while it is between zero and one if uz is forced, as is the case we examine here.

A sketch of the dependence of εinv on Roε is shown in figure 2(a).
The prefactors C1 and C2 6 1 and the exponent γ have not yet been determined

either by DNS or by experiments. In fact, even the conjecture of criticality is very
hard to verify with DNS. Although it seems to be plausible, it has been demonstrated
with some accuracy only for two-dimensional models (see Seshasayanan et al. 2014;
Seshasayanan & Alexakis 2016; Benavides & Alexakis 2017). The reason is that close
to the transition point, finite-size and finite-Reynolds effects become important that
tend to smooth out the transition. To demonstrate this criticality, ever increasing box
sizes and Reynolds numbers need to be considered, and this is extremely costly for
three-dimensional simulations. We thus do expect that the transition might not appear
as sharp as (3.2) might suggest and the results will be rather dominated by finite size
effects that will smooth the transition.

For Roε < Ro∗ε the energy that arrives at the domain size piles up, forming
condensates. In rotating turbulence such condensates can saturate by two possible
mechanisms. First, just like in the case of 2D turbulence, saturation comes from
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viscous forces: the amplitude of the large-scale condensate U2D becomes so big that
viscous dissipation at large scale balances the rate εinv that energy arrives at the large
scales by the inverse cascade. Thus, the balance εinv ∝ ν(U2

2D/L
2) is reached. The

scaling for the amplitude of the condensate close to the transition point Ro∗ε thus
follows,

U2
∝C1

εL2

ν

(
Ro∗ε − Roε

Ro∗ε

)γ
, for 0< Ro∗ε − Roε� Ro∗ε . (3.4)

This argument indicates that if the injection rate ε is fixed, the amplitude of the
condensate U scales supercritically with Ω with an exponent γ /2. For strong rotations
away from criticality Roε � Ro∗ε , we expect the scaling for the condensate of 2D
turbulence,

U2
∝C2

εL2

ν
, for 0< Roε� Ro∗ε . (3.5)

We will refer to the condensate in this case as a viscous condensate because it is the
viscosity that saturates the growth of energy at the large scales.

A different way to saturate the inverse cascade for fast-rotating flows is by breaking
the conditions that make the flow quasi-2D. This can happen in domains with periodic
boundary conditions, where due to the conservation of vorticity flux the shape of
the condensate takes the form of a dipole with one co-rotating vortex and a counter-
rotating vortex. Saturation of the inverse transfer of energy can then happen when the
counter-rotating vortex cancels locally the rotation rate and energy cascades forward
again (see Bartello et al. 1994; Alexakis 2015). This balance is achieved when the
eddy turnover time of the condensate L/U becomes comparable to the rotation rate
Ω . This leads to the scaling

U2
∝Ω2L2. (3.6)

This scaling was realized in simulations of rotating Taylor–Green flows (see Alexakis
2015). Note that this scaling is independent of the amplitude of the inverse cascade,
and thus independent of the deviation from criticality, that suggest that the transition
will be subcritical. This was indeed found to be the case in Alexakis (2015).
Furthermore, recently Yokoyama & Takaoka (2017) were able to follow the hysteresis
diagram of the subcritical bifurcation. Finally, we also note that in this regime a
strong asymmetry between co-rotating and counter-rotating vortices is expected, (see,
for example, Hopfinger et al. 1982; Bartello et al. 1994; Morize & Moisy 2006;
Bourouiba & Bartello 2007; Sreenivasan & Davidson 2008; Staplehurst et al. 2008;
Van Bokhoven et al. 2008; Moisy et al. 2011; Gallet et al. 2014). We will refer to
the condensate in this case as a rotating condensate because the energy at the large
scales depends on the rotation rate.

From the two mechanisms the one that predicts a smaller value of U2
2D is going

to be more effective. As the Rossby number Roε is varied slightly below the critical
value, we expect that due to the small amplitude of the inverse cascade, viscosity
will be effective in saturating the inverse cascade and the saturation amplitude will be
given by (3.4). Away from criticality, however, the breaking of the quasi-2D condition
becomes more effective as the amplitude predicted by (3.6) will become smaller than
(3.4), and the saturation amplitude will depend on rotation as in (3.6). The region
for which the first scaling (3.4) holds becomes smaller as Reε increases. Thus, in
the limit of large Reε the transition will become discontinuous. Viscosity will become
effective again at very small Roε where the saturation amplitude will be governed by
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equation (3.5). The value of Roε at which the behaviour transitions from the scaling
(3.6) to the scaling (3.5) can be obtained by equating the two predictions. This leads
to

Roε ∝ Re−1/2
ε , (3.7)

which implies that the transition from a rotating condensate to a viscous condensate
occurs when the micro-Rossby number is of order unity Roλ=O(1). As we will show
in the coming sections, the difference between the two different saturation mechanisms
is far from being limited to an abstract scaling. They result in considerable different
structures and spectra (as will be shown later in figures 11 and 12).

Figure 2(b) shows a sketch of these expected transitions. The parameter space is
thus split into three regions: Region (a), where a condensate forms that is balanced
by viscosity for Roε� Re−1/2

ε � Ro∗ε , Region (b), in which the condensate that forms
equilibrates to a steady state by the counter-rotating vortex cascading energy back to
the small scales for Re−1/2

ε � Roε < Ro∗ε , and finally Region (c), where there is no
inverse cascade and the system is close to isotropy for Roε>Ro∗ε . We stress that based
on these arguments the behaviour of the flow at large Reε and low Roε depends on
the precise order in which the limits Roε→ 0 and Reε→∞ are taken.

We now relax the assumption of fixed energy injection rate and consider the case
where the system is forced by a constant-in-time forcing of fixed amplitude, as in our
simulations. For weak rotation the relation between the forcing amplitude and energy
injection rate if the Reynolds number is small is given by

ε ∝
f 2
0 `

2
f

ν
for Ref � 1, (laminar scaling), (3.8)

while for large Reynolds numbers we have a viscosity-independent scaling:

ε ∝ f 3/2
0 `

1/2
f for Ref � 1, (turbulent scaling). (3.9)

For high rotation rates, however, the injection rate can depend on Ω if the forcing is
not invariant along the axis of rotation. This was shown for the Taylor–Green forcing,
where the flow was shown to re-laminarize at high rotation rates (Alexakis 2015).
This effect will not take place in the present investigation, for which the forcing is
z independent and we thus expect that the scaling in (3.9) remains valid, that along
with (3.5) leads to the prediction

U2
∝U2

f Ref (kf L)2 for Rof � 1, (3.10)

for the amplitude of the condensate. We note that in the presence of large-scale
separation this relation is altered to the weaker scaling U2

∝ U2
f Re2/3

f (kf L)4/3 due to
the effect of sweeping (see Shats et al. 2007; Xia et al. 2008; Tsang & Young 2009;
Gallet & Young 2013). Such an effect, however, is not expected to be present in our
case, for which kf L= 4. For moderate values of Rof , such that the saturation comes
from the cancelling of the quasi-2D condition of the counter-rotating vortex, U2 is
independent of the energy injection rate and thus from the forcing amplitude. U2 is
then given by (3.6). Thus, a qualitative difference between the constant injection of
energy and constant forcing amplitude is only expected for viscous condensates, and
only alters the dependence of the saturation amplitude on Ref and not on Rof .
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FIGURE 3. (Colour online) The figures show the total energy U2 (in units of U2
f ) as a

function of Rof for the examined numerical runs for (a) helical flow and (b) non-helical
flow. Larger symbols denote larger values of Ref and lighter symbols correspond to smaller
values of Rof . Different symbols correspond to different behaviour of the flow as indicated
in figure 1.

4. Simulation results
We begin by plotting in figure 3 the square of the velocity saturation amplitude

U2 (in units of U2
f ) as a function of the Rossby number for the entirety of our data

points for the helical (a) and the non-helical (b) runs. For both cases the velocity
amplitude increases rapidly as Rof decreases beyond a critical value Ro∗f =O(1). This
increase appears to become stronger for larger values of Ref (larger symbols). For
larger values of Rof (weakly rotating runs), U2

f quickly saturates to a Rof - and Ref -
independent value provided Ref is sufficiently above the laminar instability threshold.

As we show in what follows, the large increase of U2 is due to the formation of a
condensate at large scales. This is clear for large Ref and strong rotation, where Rof
is much smaller than the critical value. However, for values of the rotation close to
the critical value Ro∗f or for small Ref , for which the condensate does not obtain such
large values, a better indicator for a condensate formation is the energy U2

2D contained
in the largest Fourier mode |k| = 1, or in terms of the energy spectrum Ek we have
U2

2D = E(k= 1), where

E(k)=
〈∫
|û(q)|2δ(|q| − k) dq3

〉
with û(q)≡

1
(2π)3/2

∫
u eiq·x dx3. (4.1)

Figure 4 shows U2
2D as a function of Rof for a few different values of Ref for helical

and non-helical flow. From this figure the critical value Ro∗f is estimated to be Ro∗f '
0.6 for both flows. The value of Ro∗f is denoted by a vertical dashed line in the figures.
For values above Ro∗f the large-scale energy remains close to zero. Below Ro∗f the
energy U2

2D increases as Rof decreases further from Ro∗f and asymptotes to a finite
value as Rof → 0 is approached.

Close to the onset the transition to the condensate appears to be supercritical, and
U2

2D can be fitted to a function of the form U2
2D ∝ C3(Ro∗f − Rof )

γ . From the present
data we cannot measure with any significant accuracy the exponent γ . We note that
increasing Ref increases the saturation amplitude of U2

2D, indicating that the prefactor
C3 depends on the Reynolds number. But in the large-Ref limit, we see that the data
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FIGURE 4. (Colour online) The figures show the energy at large scales U2
2D as a function

of Rof (in units of U2
f ) for a few different values of Ref for (a) helical flow and (b)

non-helical flow. The vertical dashed line at Rof ∼ 0.6 denotes the critical Rossby number
Ro∗f at which the system transitions to a condensate.

0.2 0.4 0.6 0.8 1.00

0.5

1.0

1.5

2.0(a) (b)

0.2 0.4 0.6 0.8 1.00

0.5

1.0
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FIGURE 5. (Colour online) The figures show the product U2DRof (in units of Uf ) as a
function of Rof for a few different values of Ref for (a) helical flow and (b) non-helical
flow. The vertical dashed line at Rof ∼ 0.6 denotes the critical Rossby number for the
transition to condensates. The horizontal dashed line denotes the scaling U2DRof ∼ 1.

points converge for Rof close to Ro∗f . This shows that, unlike the discussion in § 3
and the results of Alexakis (2015) and Yokoyama & Takaoka (2017), the transition at
large Ref is supercritical.

For intermediate values of Rof and for sufficiently large values of Ref , we are
expecting that U2

2D will saturate to values that follow the scaling of the rotating
condensates U2D ∝ ΩL (3.6), that implies that the saturation amplitude is such that
U2DRof ' 1. To test this expectation in figure 5 we plot U2DRof as a function of
Rof for different values of Ref . Indeed in the region 0.3 > Rof > Ro∗f the product
U2DRof appears to converge to an order one value as Ref is increased, independent
of Rof . We note that the largest Ref points are close to the hyperviscous results,
implying independence on Ref has been reached. Although the results indicate that
the saturation mechanism leading to (3.6) is plausible, the range of validity is too
small to claim that the scaling has been demonstrated.

To extend the range of validity to smaller values of Rof we need to extend our
simulations to larger values of Ref . However, this becomes numerically very costly,
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FIGURE 6. (Colour online) The figures show the energy U2 (in units of U2
f ) as a function

of Ref for very small values of Rof � 1 for (a) helical flow and (b) non-helical flow. The
thick line denotes the linear scaling with Ref .

not only because it implies an increase of resolution, but also because the saturation
amplitude of the condensate becomes large, and the time scale to reach saturation
increases. As an example we mention that if we would like to extend the range of
the rotating condensate to a value of Roε half as small, it will require achieving a
Reε that is four times as large as the one used now. This would require a spatial grid
that is 43/4 finer in each direction. If we take in to account the computational cost
increase due to the CFL condition (Courant, Friedrichs & Lewy 1928) by a factor of
2× 43/4 (due to the finer grid and twice larger U) and the twice longer duration of
the run to attain saturation, we arrive at a computational cost that is 28 times more
expensive than the present computations.

Finally, in figure 4, for very small values of Rof the energy U2
2D asymptotes to a

finite value. This value matches the results obtained from the 2D simulations using
equation (2.7) that are marked by a star, indicating that the flow has become two-
dimensional. The saturation amplitude U2

2D at the Rof→ 0 limit, however, depends on
the value of Re. In figure 6 we plot U2 for the smallest values of Rof examined as a
function of Ref , along with the results from the system (2.7). The data scale linearly
with Ref in agreement with the prediction given in (3.10) for the viscous condensate.
Equating the two results shown in figures 5 and 6, we obtain that the transition from
the rotating condensate regime to the viscous condensate regime occurs when Ro−2

f ∼

Ref , as seen in (3.7).
We now focus on the effect of rotation on the energy injection rate in the system.

In figure 7 we plot the energy injection rate ε (in units of f 3/2
0 k1/2

f ) as a function
of Rof for the entirety of our data points for the helical (a) and the non-helical (b)
runs. We remind the reader that smaller symbols indicate smaller Reynolds numbers
as in figure 1. The energy dissipation rate saturates to a value independent of Ref
in the large-Ref limit. This value, however, is different for small and large values
of Rof , with the transition occurring over a thin region close to Rof = Ro∗f . This
is seen more clearly in figure 8, where we have concentrated on the five largest
values of Ref and plotted the data in a linear scale close to Ro∗f . For these values
of Ref , the energy injection rate is decreased by a factor of five as Rof is decreased.
The decrease in the value of ε as Rof is decreased occurs very fast when Rof is
close to its critical value Ro∗f = 0.6. The transition by this sudden jump at Ro∗f
indicates that, possibly close to the critical point, the dependence of ε on Rof could
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FIGURE 7. (Colour online) The figures show the injection/dissipation rate ε (in units of
U3

f kf ) as a function of Rof for the examined numerical runs for (a) helical flow and
(b) non-helical flow. Larger symbols denote larger values of Ref and lighter symbols
correspond to smaller values of Rof . Different symbols correspond to different behaviour
of the flow as indicated in figure 1.
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FIGURE 8. (Colour online) The figures show the dissipation rate ε (in units of U3
f kf ) as a

function of Rof for a few different values of Ref for (a) helical flow and (b) non-helical
flow. The vertical dashed line at Rof ∼ 0.6 denotes the critical Rossby number for the
transition to a condensate.

be discontinuous. Another possibility is that ε is continuous but with diverging
derivatives close to the critical point. Similar behaviour has been observed close to
the transition to an inverse cascade for a two-dimensional magnetohydrodynamic
flow where the low dimensionality of the system allowed a much closer investigation.
In any case the investigation of the energy injection close to the critical rotation
rate is very interesting but would require long runs that are expensive for numerical
simulations but could be addressed more easily with experiments.

We conclude this section by considering the ratio ε/(U3kf ). The quantity ε/(U3kf )
is sometimes referred to as the drag coefficient. For laminar flows it scales like
1/Reu, while it tends to a non-zero constant for strongly turbulent flows at large Reu.
The finite asymptotic value of this ratio at large Reu gives one of the fundamental
assumptions of turbulence theory, that of finite dissipation at the zero-viscosity
limit. This has been clearly demonstrated in experiments of non-rotating turbulence
and large-scale numerical simulations (see Sreenivasan 1984; Kaneda et al. 2003;
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FIGURE 9. (Colour online) The figures show the normalized dissipation rate ε/(U3kf ) as
a function of Reu for the examined numerical runs for (a) helical flow and (b) non-helical
flow. Larger symbols denote larger values of Ref and lighter symbols correspond to smaller
values of Rof . Different symbols correspond to different behaviour of the flow as indicated
in figure 1. The thick lines denote the laminar scaling Re−1

u and the turbulent scaling Re0
u.

The blue vertical arrow indicates the direction of increasing Rof (decreasing Ω). The three
dashed brown lines connect the data points of three values Rof =1.0,0.5,0.33 as we move
from top to bottom.

Ishihara et al. 2016). In rotating turbulence experiments it has been investigated in
Campagne et al. (2016), where the drag coefficient has been shown to scale as Rou

for sufficiently small Rou. We note that in their experimental set-up it was the velocity
of the propellers that were used to define Rou. In figure 9 we plot the ratio ε/(U3kf )

as a function of Reu for different Rossby numbers. The arrow indicates the direction
that Rof is increased (i.e. rotation is decreased). The dashed lines connect points with
the same value of Rof for three different values of Rof = 1.0, 0.5, 0.33 as we move
from top to bottom.

For rotation rates such that Rof > Ro∗f (diamonds), the data show a Re−1
u scaling at

low Reu that transitions to a constant at large Reu demonstrating a finite dissipation
at infinite Reu. This asymptotic value decreases slightly with Rof . For the runs with
Rof <Ro∗f (circles) on the other hand, the region of the laminar scaling Re−1

u appears to
extend to larger values of Reu. The very fast rotating runs (circles with light colours)
and the 2D simulations from (2.7) show a Re−1

u scaling throughout the examined range.
The prefactor in front of Re−1

u has decreased at the condensate regime because the
laminar vortices are at the scale of the forcing (3.1) while the viscous condensate
vortices are at the scale of the box size (3.5). However, for fixed Rof (dashed lines),
as the Reynolds number is increased the Re−1

u scaling appears to flatten to a Reu-
independent scaling. This occurs for the flows that are in the rotating condensate
regime. This suggests that even for the rotating runs, the ratio ε/(U3kf ) will reach an
asymptotic non-zero value at Reu→∞ (for fixed Rof ) matching the one obtained by
the hyperviscous simulations. This asymptotic value, however, is different for different
values of Rof , indicating that the value of the drag coefficient depends on the Rossby
number.

The values of this asymptotic behaviour along with the results of the hyperviscous
runs are shown in figure 10, where ε/(U3kf ) is plotted as a function of Rof . The
results are compared with the scaling ε/(U3kf ) ∝ Ro3

f . This scaling is obtained by
assuming a constant injection rate and a saturation amplitude that follows U ∝ ΩL.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 E

N
S 

Pa
ri

s,
 o

n 
22

 A
ug

 2
01

8 
at

 1
1:

29
:2

0,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

10
6

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.106


Condensates in rotating turbulent flows 449

10–2 10–1 100 101
10–5

10–4

10–3

10–2

10–1(a) (b)

10–2 10–1 100 101
10–5

10–4

10–3

10–2

10–1

FIGURE 10. (Colour online) The figures show the normalized dissipation rate ε/(U3kf ) as
a function of Rof for a few different values of Ref � 1 for (a) helical flows and (b) non-
helical flows. The thick line denotes the scaling Ro3

f and the vertical dashed line denotes
the critical Rossby number for the transition to condensates.

The data appear to be slightly steeper. Perhaps this is not surprising considering the
small range of Rof in which the scaling U∝ΩL was shown to hold in figure 5. Note
that weak wave turbulence predicts the scaling ε/(U3kf ) ∝ Roε , which is clearly not
obtained here. We note also that the scaling ε/(U3kf )∝ Ro was also obtained in the
experiments of Campagne et al. (2016); however, not due to weak wave turbulence
but due to a two-dimensionalization of the large-scale flow. The difference with
the present scaling could be due to boundary layer effects that are absent in our
simulations.

5. Structures, spectra and dynamical behaviour
In this section we try to obtain an understanding of the results in the previous

section by visualizing the structures involved and examining their spectral and
temporal behaviour. We start by the visualization of the flows. Figure 11 shows
colour-coded visualizations of the vertical vorticity field. The red colours correspond
to vorticity parallel to rotation while the blue colours correspond to vorticity
antiparallel to rotation. The three images have been constructed from numerical
simulations corresponding to the three regimes discussed in the previous section (in
figure 2b)): panel (a) shows the viscous condensate, panel (b) shows the rotating
condensate with the counter-rotating vortex cascading energy back to the small scales
and (c) shows the weakly rotating (or non-rotating) turbulence. In the first case
(panel a) the flow looks very close to a 2D state with no visible variations along
the z direction and no observed asymmetry between co-rotating and counter-rotating
vortices. In the second case (panel b) a condensate is also formed, but only clearly
observed for the co-rotating vortex. The counter-rotating vortex, although present, is
infested with small-scale eddies that extract energy from it. Finally, in the third case
(panel c), no large-scale condensate is observed and the flow looks isotropic.

The spectra for the three cases are shown in figure 12. The spectrum for the flow
in the viscous condensate regime is shown with a green dash-dot line. The energy is
concentrated at the smallest wavenumber kL = 1, with the energy for wavenumbers
above kf L = 4 dropping very fast. In the non-rotating case, shown by a dashed
line, energy is concentrated at the forcing wavenumber kf L= 4 that is followed by a
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(a) (b) (c)

FIGURE 11. (Colour online) The figures show the contours of the vertical vorticity ωz
for (a) Rof = 0.02, Ref = 100 (viscous condensate), (b) Rof = 0.5, Ref = 100 (rotating
condensate), (c) Rof =∞, Ref = 100 (3D turbulence). Red colours correspond to positive
vorticity and blue colours correspond to negative vorticity.

100 101 102

kL

10–4

10–3

10–2

10–1

100

101

E
(k

)

FIGURE 12. (Colour online) The figure shows the energy spectra for a few different
values of Rof with Ref = 100. The black thick lines denote the scaling k−5/3, k−3.

power-law spectrum close to k−5/3. Finally, the case in the intermediate regime, shown
by the dotted line, shows signs of both behaviours: the energy is concentrated at the
largest scale kL= 1 as in the viscous condensate case but the spectrum at the small
scales follows a k−5/3 power law as in the non-rotating case. Thus, the spectrum
for the rotating condensate is in agreement with the coexistence of a condensate
along with a forward cascade. The temporal energy spectra in fast-rotating flows have
been measured in experiments as well (see Duran-Matute et al. 2013; Campagne
et al. 2015, 2016) although the different forcing mechanisms and absence of a Taylor
hypothesis for the large scales makes it difficult to make a one-to-one comparison
with the ones presented here. An obvious extension of the present work is the
calculation of spatio-temporal spectra that allow one to make the connection between
the two (di Leoni, Cobelli & Mininni 2015; Clark di Leoni & Mininni 2016).

The processes for upscale and downscale cascade are shown more clearly in
figure 13, where the normalized energy flux Π(k)/ε, the normalized 2D energy flux
Π2D(k)/ε and the normalized scale-dependent dissipation rate D(k)/ε are shown for
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FIGURE 13. (Colour online) The figures show the normalized energy flux Π(k)/ε, the
normalized 2D energy flux Π2D(k)/ε and the normalized scale-dependent dissipation rate
D(k)/ε = ν

∑
|k′|<k(k

′)2E(k′)/ε for three different cases, (a) viscous condensate Rof =

0.02, Ref = 100, (b) rotating condensate Rof = 0.5, Ref = 100 and (c) 3D turbulence
Rof =∞, Ref = 100.

three different cases: figure 13(a) for the viscous condensate regime, figure 13(b) for
the rotating condensate and figure 13(c) for 3D turbulent case with no rotation. The
energy fluxes Π(k), Π2D(k) and the scale-dependent dissipation rate D(k) are defined
as

Π(k)=〈u<k · (u ·∇u)〉, Π2D(k)=〈u<k · (u ·∇u)〉, D(k)= ν
∑
|k′|<k

(k′)2E(k′), (5.1a−c)

where u<k (x) stands for the filtered velocity so that only Fourier modes with
wavenumbers of norm less than k are kept and the over-bar stands for vertical
average. In the 3D-turbulence case, shown in figure 13(c), all the energy cascades
to the small scales and the dissipation is concentrated at the smallest scales. In
the rotating condensate, shown in figure 13(b), the 2D flux Π2D(k) is negative at
large scales, indicating that the 2D motions transfer part of the energy to large
scales sustaining the condensate. However, the net energy cascade to the large scales
remains close to zero, as seen from Π(k), implying that the remaining (not 2D)
interactions bring the energy transferred to large scales by Π2D back to the small
scales in a flux loop mechanism. Similar flux loop mechanisms have been observed
in 2D stratified turbulence (Boffetta et al. 2011) and compressible 2D turbulence
(Falkovich & Kritsuk 2017). In this case the dissipation is seen to be concentrated at
the small scales. Finally, in the case of the viscous condensate (figure 13a), the 2D
flux Π2D(k) takes most of the energy to large scales, where it is dissipated. In the
large scales the flux is negative and there is also a weak forward cascade to small
scales, as seen from Π(k), possibly related to the vertical velocity component whose
related energy cascades forward. The total energy flux Π(k) is almost identical to
the 2D flux Π2D(k), implying that 3D effects are absent. The dissipation at the large
scales is much larger than the previous cases, with more than half the total dissipation
occurring at scales equal to and larger than the forcing scale.

We next examine the behaviour of the flow close to the transition point Ro∗f . The
arguments made in § 3 suggested that at large Ref this transition would become
discontinuous (subcritical), which was found for the Taylor–Green forcing (Alexakis
2015; Yokoyama & Takaoka 2017). The results in the previous section, however,
showed that even at large Ref the transition remains supercritical.

To understand this discrepancy, in figure 14(a) we show the time evolution of the
total energy U2 (lighter shade) and the energy of the large scales U2

2D for a value
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FIGURE 14. (Colour online) (a) Time series of the total energy U2 and the energy at the
large scales U2

2D for the case of Rof = 0.556,Ref = 100, which is close to Ro∗f . The vertical
dashed lines denote the time instances at which the visualizations shown in figure 15 are
taken. (b) Shows the spatial averaged energy injection rate 〈 f · u〉S and the dissipation
rate ν〈|∇u|2〉S for the same run.

of Rof = 0.556 close to the critical value and a relatively large Ref = 100. The flow
randomly oscillates between two distinct states: one where the energy of the large
scales is weak and most of the energy lies in the forcing scales, and one where the
energy of the large scales dominates and accounts for more than 60 % of the total
energy. The energy at the large scales varies by an order of magnitude between these
two states with U2

2D ∼Ω
2L2 when U2

2D dominates and U2
2D�Ω2L2 at its low values.

In figure 14(b) the time series of the spatial-averaged energy injection rate 〈 f · u〉S
and the energy dissipation rate ν〈|∇u|2〉S is shown. A burst of energy dissipation is
observed at the time instances that the flow transitions from the condensate to the
3D turbulent state. This correlation between the change of state in the large scales
and the energy dissipation/injection is typical of bimodal systems (Mishra et al. 2015).
Visualizations of the vertical vorticity of the flow are shown in figure 15 at the two
different times indicated by the vertical dashed lines in figure 14(a,b). The two figures
resemble the ones shown in figure 11(b,c) that were obtained for different values of
the parameter Rof .

It appears thus that the transition from isotropic turbulence to rotating condensate
occurs through a bistable regime where both states are realized at different instances
of time. The two states are distinct, i.e. they are separated by a finite amount of
energy; however, the time the system spends in each one of these states can depend
on the deviation from the onset Ro∗f , becoming infinite for the condensate state for Rof
sufficiently smaller than Ro∗f . The time-averaged quantities displayed in the previous
sections thus remain continuous. This bistable behaviour, if it persists at larger Ref ,
will indicate that the transition will remain supercritical. Similar behaviour has been
observed in experiments in a rotating tank where intermittent switching between
blocked and large-scale zonal patterns has been observed Weeks et al. (1997). This
presents an alternate mechanism other than the subcritical transition discussed in § 3
and observed in Alexakis (2015), Yokoyama & Takaoka (2017).

A similar oscillating behaviour is observed even further from the onset Ro∗f . In
figure 16(a) we show the time evolution of U2

2D and U2, as in figure 14(a), for
a slightly smaller value of Rof = 0.357. Unlike the previous case the system here
is only in the condensate regime with the energy concentrated at the largest scale
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(a) (b)

FIGURE 15. (Colour online) The figures show the contours of the vertical vorticity ωz
for Rof = 0.556,Ref = 100 for the two time instances marked in figure 14(a). Red colours
correspond to positive vorticity and blue colours correspond to negative vorticity. In panel
(a) a co-rotating vortex is formed when the system is in the condensate regime, while
panel (b) does not have any large-scale structure.
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FIGURE 16. (Colour online) (a) The time series of the total energy U2 and the energy
at the large scales U2

2D for the case of Rof = 0.357, Ref = 100, which is below Ro∗f .
The vertical dashed lines denote the time instances at which the visualizations shown
in figure 17 are taken. (b) The spatial averaged energy injection rate 〈 f · u〉S and the
dissipation rate ν〈|∇u|2〉S for the same run.

k L = 1. U2
2D is always dominant and it undergoes strong fluctuations. Figure 16(b)

shows the time series of the spatially averaged energy injection rate 〈 f · u〉S and
the energy dissipation rate ν〈|∇u|2〉S for the same run as figure 16(a). The peaks of
energy injection/dissipation are correlated with changes in the large-scale flow states.
We note that in the condensate regime, even though the dissipation is always positive,
the energy injection rate takes both negative and positive values. This means that at
certain instances of time the forcing takes energy out of the system. Visualization of
the flows in figure 17 at different times reveal that these fluctuations correspond to
a transition of the flow from a state that has a co-rotating vortex that is stable to
states that are unstable to 3D fluctuations that, however, fail to destroy it. Thus, it
seems that the key to understanding the behaviour of this flow lies in understanding
the stability properties of these freely evolving vortices.
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(a) (b) (c)

FIGURE 17. (Colour online) The figures show the contours of the vertical vorticity ωz for
Rof = 0.357, Ref = 100 for the three time instances marked in figure 16(a). Red colours
correspond to positive vorticity and blue colours correspond to negative vorticity.
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FIGURE 18. (Colour online) The figures show the time series of the relative helicity Hr as
a function of time for a few different Rossby numbers and fixed Ref =100.0 for (a) helical
runs and (b) non-helical runs.

6. Effect of helicity
Finally we comment on the effect of helicity on the condensate formation. Contrary

to the small-scale behaviour, where the presence of helicity was shown to play
a significant role (Mininni & Pouquet 2010; Sen et al. 2012), in the present
investigation it was shown that it did not affect the dynamics of the observed
large-scale quantities. Both helical and non-helical flows were shown to obey the
same scaling laws, and only small variations were observed in the prefactors. This
is perhaps not surprising since helicity cascades to the small scales, and thus it does
not affect the large scales of the condensates.

In figure 18 we show the time series of the relative helicity Hr for a few different
values of Rof and fixed Ref = 100 for both the helical and the non-helical cases. The
relative helicity is defined as

Hr =
〈u · ∇× u〉S

〈|u|2〉1/2S 〈|∇× u|2〉1/2S

. (6.1)

For the helical forcing case the relative helicity is always non-zero and increases as
we reduce Rof . For the small values of Rof it reaches a value of approximately 0.4.
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FIGURE 19. (Colour online) The figures show the relative helicity Hr and the standard
deviation of the relative helicity σHr as a function of Rof for fixed Ref =100 for (a) helical
runs and (b) non-helical runs.

For the non-helical case the relative helicity oscillates around zero; however, with the
fluctuations being significantly strong and larger for smaller values of Rof . It is also
worth noting that the time scale of these fluctuations increases as the rotation becomes
larger. This has already been observed in Dallas & Tobias (2016).

In figure 19 we show the time-averaged relative helicity Hr and the standard
deviation of the relation helicity σHr as a function of Rof for both helical and
non-helical forcing with Ref = 100. For the helical forcing, as Rof is decreased
the relative helicity and the fluctuations increase. For the non-helical case, also the
fluctuations increase when Rof is decreased below the critical value, even if the mean
remains zero. The fluctuations in the mean helicity can play an important role for
dynamo studies in turbulent rotating flows (see Seshasayanan, Dallas & Alexakis
2017).

7. Conclusions
This work gives a description of steady-state rotating turbulence when the forcing

acts directly on the slow manifold, by mapping the parameter space with the different
behaviours observed and the resulting scaling relations. Our results are concisely
summarized in figure 20, where the four different phases of the rotating flows
examined are shown in the parameter space (Ref , Rof ): laminar flow, 3D turbulence
flow, rotating condensate flow and viscous condensate flow. Solid lines indicate the
boundaries where a critical transition takes place, while dashed lines indicate smooth
transitions.

For values of Ref below a critical value Re∗f that is independent of Rof , the flow has
a laminar behaviour. At this state the resulting flow is 2D, independent of time, and
proportional to the inverse Laplacian of the forcing. The first unstable mode in this
laminar state is a 2D mode that is not affected by the rotation, and thus the instability
boundary does not depend on Rof .

For Ref �Re∗f and Rof above a critical value Ro∗f , the flow displays quasi-isotropic
3D turbulence. This regime is described to a good degree by Kolmogorov–Richardson
phenomenology (Richardson 1926; Kolmogorov 1941), and classical results of
turbulence like the finite energy dissipation at the zero-viscosity limit and a k−5/3

energy spectrum appear to hold.
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FIGURE 20. (Colour online) The figure shows the phase space diagram with the different
flow behaviour marked. Solid lines denote sharp/critical transitions. Dashed line denotes
smooth transitions.

For Ref � Re∗f and Re−1/2
f � Rof 6 Ro∗f , the flow is shown to be in what we refer

as a rotating condensate state. In this state a co-rotating 2D vortex is dominant at
the large scales while the counter-rotating vortex breaks down to 3D eddies cascading
energy back to the small scales. At this state the amplitude of the condensate U2D (in
the rather small range examined by our simulations) was shown to be proportional to
the rotation rate U2D ∝ΩL. Our results also indicate (with the help of hyperviscous
simulations) that in this regime the finite energy dissipation at the zero-viscosity limit
still holds but with a drag coefficient that rapidly decreases with Rof . The spectra at
the small scales follow a close to k−5/3 power law, while a large peak appears at the
largest scale, indicating the presence of the condensate.

The transition from the quasi-isotropic 3D turbulent state to the rotating condensate
state was shown to be supercritical, contrary to the arguments described in the
introduction that were predicting that at sufficiently large Ref , right below criticality
Ro∗f , the system would transition discontinuously to the rotating condensate value
U2

2D ∝Ω
2L2. The reason for this discrepancy is in part because the arguments in § 3

assumed weak dependence of the energy injection rate ε at criticality, while the DNS
showed a strong sensitivity of ε on Rof close to criticality. The second reason is that
the system close to criticality showed a bimodal behaviour where part of the time
was spent in the 3D turbulence state with U2

2D�Ω2L2 and the remaining part was
spent in the rotating condensate state with U2

2D ∝ Ω
2L2. Despite the fact that these

states have distinct energy levels, the time spent in the condensate state can decrease
continuously to zero as Rof→Ro∗f (from below), leading to a continuous supercritical
transition.

For Ref � Re∗f and Rof � Re−1/2
f the flow is shown to be in what we refer to as a

viscous condensate state. In this state the flow is close to 2D and both the co-rotating
and counter-rotating 2D vortices exist and dominate the large scales. The flow has
a normalized energy dissipation rate that decreases with Reu, following the laminar
scaling Re−1

u . The transition from the rotating condensate regime to the viscous
condensate was found to be smooth. We note, however, that another critical value
of Rof is expected for which the flow becomes exactly 2D and all 3D perturbations
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decay exponentially (Gallet 2015). Such a transition is expected at even smaller
values of Rof , and to observe it we have to focus on deviations from 2D flows,
which was not done in the present study. A similar study in thin layers has shown
that this transition is governed by strong intermittent events (Benavides & Alexakis
2017). Thus, this is an interesting limit that is worth investigating in the future.

The difference between the parameters (Ref , Rof ) and (Reu, Rou) or (Reε, Roε)
was not found to be as severe as in the Taylor–Green flow, where discontinuous
(subcritical) transitions were present, which results in mapping from one set of
parameters to the other being neither one-to-one nor onto. In particular, the difference
between (Ref , Rof ) and (Reε, Roε) was only found to be significant close to the
critical point Ro∗f where ε was found to change abruptly. The difference between
(Ref , Rof ) and (Reu, Rou) was stronger, and is due to the fact that in the rotating
condensate regime the scaling U ∝ΩL merged all values of Rou to be close to unity.
This left all larger values of Rou to be in the viscous condensate regime. Thus, in
the steady-state regime, at least Rou does not appear to be a good indicator for the
strength of rotation.

We stress the importance of the ordering of the limits when one considers the low-
Rossby-number, large-Reynolds-number limit. If one considers the Rof → 0 limit first,
and afterwards the Ref →∞ limit then one always falls in the viscous condensate
regime. While if one considers the Ref →∞ first one falls in the rotating condensate
regime. To distinguish between the two one needs to look at the products Rof Re1/2

f

or Roλ=RoεRe1/2
ε . Referring thus to the large-Reynolds-number, small-Rossby-number

limit is ambiguous unless the ordering is specified.
The presence or absence of helicity in the forcing does not affect the dynamics

of the large-scale condensates. Both helical and non-helical forcing lead to similar
bifurcation diagrams and scaling laws for the large-scale quantities. This perhaps could
have been expected since helicity is a quantity that cascades to the small scales and
is unlikely to affect the condensate scales. However, the normalized mean helicity did
display non-trivial dynamics. Its mean value increased as Rof was decreased for the
helical forcing case, while for the non-helical forcing even if the mean value was zero
then strong fluctuations were present. In both cases the fluctuations of the relative
helicity are stronger in the condensate regime.

We note that the results presented here are obtained in a cubic box. Varying box
height gives rise to different values of Ro∗f , as discussed in § 3 (see Deusebio et al.
2014). Also varying the box size in the horizontal direction with respect to the
forcing length scale is something that has not been examined in our runs. Although
we have concluded the scaling U2

2D ∼ Ω2L2 for the amplitude of the condensate,
we have only verified this scaling with rotation and not with the box size L. This
is something that needs to be examined in future investigations. Furthermore, the
presence of anisotropy in the two horizontal directions tends to alter the structure of
the flow from vortex dipoles to shear layers, as has been suggested in Bouchet &
Simonnet (2009), Bouchet & Venaille (2012) and shown recently for 2D turbulence
(Frishman, Laurie & Falkovich 2017), and rapidly rotating convection (Guervilly &
Hughes 2017; Julien, Knobloch & Plumley 2018) and this is a new direction where
condensate dynamics could be studied.

Finally, we comment on the effect of boundaries and the realizability of the
present results in experiments. In the present results we considered only the simplest
domain, that of a triple periodic geometry, and we should give a word of caution
in extrapolating them to domains with no-slip boundary conditions. In the presence
of no-slip boundaries, rotation will introduce Ekman layers (Ekman 1905) that can
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lead to large-scale drag effects (Caldwell, Van Atta & Helland 1972; Howroyd &
Slawson 1975; Zavala Sansón, van Heijst & Backx 2001; Sous, Sommeria & Boyer
2013), altering in part the energy balance. Nonetheless, we do believe that in a
carefully prepared experimental set-up where these effects are accounted for some of
the presently observed phenomena would carry over to no-slip boundary conditions.
In particular, it would be interesting to investigate the transition to the rotating
condensate regime from 3D turbulence that displayed such rich behaviour. The high
numerical cost of 3D simulations in this regime limits our runs to relatively short
times, and does not allow us to study in detail their statistical behaviour. Experiments
where long time series are easily attainable can then address this issue.
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