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In pipe flow, turbulence locally created by a perturbation to laminar state shows sudden
decay or splitting after a stochastic waiting time. A conjecture has been made that
this sudden stochastic decay is triggered by extreme events, resulting in a fast (double-
exponential) increase of the typical waiting time as the Reynolds number approaches
its critical value. To investigate this conjecture, we perform, in parallel, more than 1000
pipe-flow direct numerical simulations (DNS) of the Navier-Stokes equations using a large
number of computational resources, and measure the maximum value of axial vorticity
field over the pipe (turbulence intensity). We show that the cumulative distribution func-
tion of this quantity is well approximated by Gumbel distribution function, confirming
that the turbulence decay is described by the extreme value theory. Our observation
provides the quantitative proof to the conjecture, and clarifies the mechanism of the fast
(double exponential) increase of the turbulence decay’s typical waiting time.

Key words: Turbulence, turbulent-Laminar transitions, pipe flows, extreme value statis-
tics

1. Introduction

The laminar to turbulent transition in pipe flow is one of the most important problems
in fluid mechanics (Eckhardt et al. 2007), initiated by O. Reynolds in 1887 (Reynolds
1883). The flow in a pipe is characterised by one non-dimensional parameter the Reynolds
number, defined as Re = UR/ν where U is the flow velocity, R the diameter of the
pipe, and ν the dynamic viscosity of the fluid. The question about the critical Reynolds
number Rec is simple: at which Reynolds number the flow in a pipe becomes turbulent
from laminar (and vice versa). Though its apparent simpleness, answering this question
was not straightforward due to a number of technical reasons (see (Eckhardt 2009) for a
historical review of the critical Reynolds number). After 2000s, a localised turbulent state
(Fig. 1) called “puff” (Wygnanski & Champagne 1973) created by a local perturbation to
laminar flows has been studied in detail. The puff shows a sudden decay or splitting into
two after a stochastic waiting time, which follows a memoryless exponential distribution
(Hof et al. 2006, 2008; de Lozar & Hof 2009; Avila et al. 2010; Kuik et al. 2010). These
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studies culminated in the estimation of the critical Reynolds number in 2011 (Avila et al.
2011), where Rec was determined as Re at which the two typical times of the decay and
splitting become equal. The obtained Rec was about 2040 (Avila et al. 2011).

The critical Reynolds number was determined in laboratory experiments using long
pipes. In direct numerical simulations (DNS) of the Navier-Stokes equation, the ob-
servation of critical Reynolds number has not yet been achieved because of too high
computational costs. The current state of the art is to measure decay events up to Re =
1900 and splitting events down to 2100 (Avila et al. 2011). There are several important
benefits to measure these decay and splitting events in DNS. First, in experiments,
unknown background noise that affects the results, could always exist. See, for example,
(Eckhardt 2009) for a history of the struggle to determine the upper critical Reynolds
number due to small background fluctuations. In DNS on the other hand, we know all
the origin of the artificial noise, such as insufficient mesh sizes or periodic boundary
effects, which can be easily controlled. Second, the quantities that can be measured
in experiments are limited. For example, to determine the critical Reynolds number, a
double-exponential fitting curve was heuristically used (Hof et al. 2006, 2008; Avila et al.
2011). The origin of this double-exponential law was argued using the extreme value
theory (Goldenfeld et al. 2010; Goldenfeld & Shih 2017), where Goldenfeld et al. assumed
a certain shape of the probability distribution function of maximum kinetic energy
fluctuations. Mesurments of this probability function are out of reach in experiments,
but can be achieved in DNS.

In this article by using high performance computing resources described in Acknowl-
edgment, we study the statistics of turbulence decay in pipe flows. We perform more
than 1000 independent single-core pipe-flow simulations in parallel (see Fig. 1) and
determine the decay time up to Re = 2000. Especially, we show that the cumulative
distribution function of a maximal turbulence intensity (vorticity) is well described by
the double-exponential Gumbel distribution. As a result, we verify the conjecture made
by Goldenfeld et al. (Goldenfeld et al. 2010; Goldenfeld & Shih 2017) to explain the
origin of the double-exponential empirical law for the turbulence decay time (Hof et al.
2006, 2008; Avila et al. 2011) in pipe flows.

2. Setup

We consider three dimensional pipe flows (with pipe length L and pipe diameter D)
where the boundaries are periodic for z-axis and no-slip along the pipe (Fig. 1). The
mean flow speed in z direction is denoted by Ub and we use the basic unit of length
and time as D and D/Ub throughout this paper. The velocity field is denoted by u(r, t)
and we simulate it by solving the Navier-Stokes equation using an open source code
(openpipeflow (Willis 2017)) whose validity has been vastly tested in many works (see
Appendix A for the simulation detail). We simulate pipe flows for the Reynolds numbers
below the critical value Re < Rec ∼ 2040, where the flows tend to be laminar. We
start the simulations with initial conditions where localised turbulence, i.e., a turbulent
puff, exists (see Appendix A for more details). If the Reynolds number is not too small
(say, Re > 1850), localised turbulent dynamics are sustained (Fig. 1). It quickly forgets
their initial conditions and eventually decays after the stochastic time t, following an
exponential distribution function (Hof et al. 2006, 2008; de Lozar & Hof 2009; Avila
et al. 2010; Kuik et al. 2010): pd(t) = (1/τd) exp(−t/τd), where τd is the typical decay
time. This time scale τd is our target.
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Figure 1: We simulate, in parallel, many single-core pipe flow simulations (from 96 to 1524
pipes at the same time), where each pipe has a diameter D and length L, and contains
a single turbulent puff. We continue the simulations during a certain time interval (24
hours) and we store the configurations of velocity fields at the end of the simulations. Note
that when a puff decays in a pipe, we immediately start another single puff simulation
within that pipe. Using the final configurations as the next initial conditions, we repeat
this procedure several times (from 10 to 40 times). We store the total simulation time T
and the total number of decay events nd for all pipes and for all repetitions, from which
we estimate the typical decay time τd as detailed in the main text.

3. Results

3.1. Measurements of τd

To measure τd, we repeat many single-core pipe flow simulations in parallel and measure
the total time T of all the simulations (ignoring initial relaxation times) and the number
of decay events nd that we observe during all the simulations (Fig. 1). Since the decay
time is distributed exponentially (Hof et al. 2006, 2008; de Lozar & Hof 2009; Avila
et al. 2010; Kuik et al. 2010), the probability of observing nd decay events during a time
interval T follows the poisson distribution

ppoisson(nd) =
e−T/τd

nd!

(
T

τd

)nd

. (3.1)

As detailed in Appendix B, we then estimate τd and its error bars (95% confidence inter-
val) from the observed data (nd, T ) by using Bayesian inference with an uninformative
prior (which is a standard method to estimate Poisson event rate from observed data
(Box & Tiao 2011)). This way of determining τd has the advantage that it accurately
estimates error bars, which is important as we can only observe a few decay events when
Reynolds number is large.

We show in Fig. 2 the obtained τd for different pipe lengths L = 50D,L = 100D (red
circles and blue squares, respectively) together with the experimentally fitted double
exponential (yellow dashed) curve obtained in (Avila et al. 2011). For the Reynolds
number up to 1900 (which has been studied so far using DNS), τd does not depend on the
pipe length, and the results for both pipe lengths agree very well with the experimental
data. However, as the Reynolds number increases, we observe that the results for L =
100D deviate from those for L = 50D and for the experiments. In DNS, periodic boundary
conditions indicate that identical consecutive puffs are simulated, where the distance
between these puffs is the pipe length L. An insufficient pipe length in DNS thus creates
artificial correlations among the puffs, which play a role as noise to the dynamics and
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Figure 2: The typical decay time τd of turbulent puff in pipe flows obtained from DNS
(red dots for L = 50D and blue squared for L = 100D). Double exponential curves fitted
to experiments (Avila et al. 2011) (yellow dashed line) and the theoretical lines (3.9)
are also plotted as red and blue solid lines. In the theoretical lines, the parameters a, b
are determined in Fig. 4(b), δt = 1/4, and Π(hx) is measured in Fig. 3(b). The error
bars show 95% confidence interval (see Appendix B for the estimation of this confidence
interval).

facilitate decay events. Note that the experimental results agree with the DNS result for
L = 50D, even though the pipe lengths used for the experiments were much longer (Avila
et al. 2011). Based on this observation, one could speculate that the experimental results
were affected by small unknown background noise that facilitated the decay events, i.e.,
the decay events close to critical Reynolds number could be ultrasensitive to tiny external
perturbations. Further numerical and experimental studies are necessary to clarify this
possibility. Below we discuss the derivation of the double-exponential formula for each
fixed L = 50D and L = 100D.

3.2. Origin of the double-exponential formula

To infer correctly the Reynolds number dependence of the time scale τd, a double-
exponential fitting curve exp [exp(αRe + β)] (with fitting parameters α, β) was used
(Avila et al. 2011). Although this function can fit well to the experimentally observed
time scale τd, the origin of this double exponential form is still conjectural. In the
conjecture made by Goldenfeld et al. in 2010 (Goldenfeld et al. 2010), they assumed
that the maximum of kinetic energy fluctuations over the pipe is distributed double
exponentially (Gumbel distribution function) due to the extreme value theory (Fisher
& Tippett 1928; Gumbel 1935). When this maximum goes below a certain threshold,
turbulence decays. Assuming the linear dependence on Re of the parameters in the
Gumbel distribution function, they thus derived the double-exponential increase of the
time scale τd. Mathematically proving the validity of the extreme value theory and the
linear scaling of the fitting parameters seems impossible, thus verifications in experiments
or numerical simulations are needed. In laboratory experiments, the verification of this
extreme value theory is not easy, as obtaining the maximum of a velocity field within a
tiny turbulent puff is a non-trivial procedure. In this respect, numerical simulations have
a strong advantage, because velocity fields are precisely tractable and the maximum of
the fields is well-defined.

To this goal, we characterize the intensity of turbulence by the z-component of vorticity
H(r, t) = (∇ × u)z. We then consider the maximum value of this turbulence intensity
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Figure 3: (a) An example of the maximum turbulence intensity hmax(t) for L = 50D
and Re = 1900, where the puff decays when t ' 1000. We set hth = 0.1, shown as a black
dotted line, throughout this paper, below which the maximum turbulence intensity always
monotonically decreases (i.e., puffs always decay). (b) The cumulative distribution of the
maximum turbulence intensity P (h) (3.3) divided by its minimum value P (hth), obtained
from numerical simulations (solid coloured lines). The measurement interval δt is set to
1/4. The pipe length is set to L = 50D. (For L = 100D, similar results are obtained).
Below a certain value hx, this function P (h)/P (hth) becomes independent of Reynolds
number. This hx is shown as a vertical red dotted line, and around 6.5 for L = 50D
and 7.5 for L = 100D. Above this value hx, P (h) can be well approximated by the
Gumbel function PRe(h) (3.5). Dashed coloured lines are these Gumbel functions divided
by P (hth). See Table 1 for the fitting parameters γ and h0 used in this figure. Note that
the value of 1/P (hth) (for Re = 1975) is the length of the double-headed arrow. From this
figure, we estimate Π(hx) ≡ P (hx)/P (hth) ' 158.8 for L = 50D and 219.2 for L = 100D.

over the pipe

hmax(t) = max
r

H(r, t). (3.2)

Once this quantity goes below a certain threshold hth, hmax(t) monotonically decreases,
leading to a quick decay of the puff (i.e., the puff dynamics shows transient chaos (Barkley
2011; Hof et al. 2008)). See Fig. 3(a) for a decaying trajectory of hmax(t). In order to
measure the cumulative distribution function of hmax(t) in our numerical simulations,
we store hmax(t) for every fixed time interval δt. We denote by (hmax(ti))

N
i=1 the data

obtained from all simulations with the number of measurements N . By using these data,
we then define a cumulative distribution function P (h) as the probability that hmax(t)
takes a value less than or equal to h:

P (h) =

N∑
i=1

Θ(h− hmax(ti))

N
(3.3)

with a Heaviside step function Θ(h). Note that the number of decay events nd is written

as NP (hth) =
∑N
i=1Θ(hth − hmax(ti)) by definition. This indicates that the decay time

τd ≡ (Nδt)/nd is expressed as (Nemoto & Alexakis 2018)

τd =
δt

P (hth)
, (3.4)
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Figure 4: (a) The fitting parameters in the Gumbel function (3.5), γ and h0, used in
Fig. 3(b) (i.e., the values summarised in Table 1) as a function of Re: Red circles (h0 for
L = 50D), yellow diamonds (γ for L = 50D), blue squares (h0 for L = 100D), and green
triangles (γ for L = 100D). To plot them together in the same panel, we divide each
γ(Re) and h0(Re) by γ(1900) and h0(1900). They show linear dependence on Reynolds
number: the solid and dashed straight lines are the linear fit. See Table 2 for the slopes
and intercepts of these linear lines. Note that the slopes of the fitting lines for h0/h0(1900)
are much larger than those for γ/γ(1900). (b) γ(Re)[h0(Re) − hx] as a function of Re,
where γ(Re) and h0(Re) use the same values in the panel (a), and hx = 6.5 for L = 50D
and hx = 7.5 for L = 100D. We find a linear dependence: γ(Re)[h0(Re)− hx] = a Re + b
(3.8). Here a and b are determined as a = 0.00895442, b = −15.6087 for L = 50D and
a = 0.0105166 and b = −18.6222 for L = 100D.

when N is sufficiently large. We set hth = 0.1 throughout this article †.
We measure this cumulative distribution P (h) in DNS, rescale it by the threshold

probability P (hth), and plot it in Fig 3(b). When h is smaller than a certain value hx (>
hth), the overlap in this scaled cumulative distribution is observed, i.e., P (h)/P (hth) '
Π(h) for h < hx with a Re-independent function Π(h). (Note that hx ' 6.5 for L = 50D
and hx ' 7.5 for L = 100D from Fig 3(b)). When hmax(t) is smaller than hx, dynamics
are in a metastable state where the puff is hovering between death and life (see the
panel (a) of Fig. 3). This overlap indicates that the dynamics in this metastable state are
independent of (or less sensitive to) the change of the Reynolds number. Next, when h is
greater than this value, we find that the P (h) is well-described by a Gumbel distribution
function PRe:

PRe(h) ≡ exp [− exp (−γ(h− h0))] , (3.5)

where γ and h0 are fitting parameters that depend on Re. In summary, we confirm that
the scaled probability P (h)/P (hth) has the following form

P (h)

P (hth)
=

{
Π(h) h 6 hx

PRe(h)/P (hth) h > hx.
(3.6)

Based on the expression (3.5), the double-exponential increase of the turbulence decay
time is justified as follows: From the continuity condition of (3.6) at h = hx, we get

† Precisely, the threshold value hth should be defined as the value below which puffs always
decay monotonically, but above which puffs have a certain probability to grow up and survive
(even if this probability is very small). In reality, it is not easy to determine this precise value
from numerical simulations. Fortunately, the magnitude of the errors (due to the inaccurate
value of hth) does not depend on the Reynolds number. When we consider Re close its critical
value, these errors are therefore negligible because τd increases super-exponentially.
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Π(hx) = PRe(hx)/P (hth). Using the relation (3.4) that connects the decaying time τd
and P (hth), we then derive

τd = δt/P (hth) = δt Π(hx) exp [exp (γ(h0 − hx))] . (3.7)

In the right-hand side of this expression, the Re-dependence only comes from γ and h0,
because hx does not depend on Re (at least in the range of Re we are considering). In
order to study Re-dependence on γ and h0, we next plot these quantities as a function of
Re in Fig. 4(a). The figure indicates that, within the examined range, these parameters
depend linearly on Re. Especially, we can see that the slope of the linear fitting curve
for γ is much smaller than that for h0, which means we can approximate γh0 as a linear
function of Re. We thus get

γ(h0 − hx) ' a Re + b (3.8)

with coefficients a and b. In Fig. 4(b), we confirm this linear approximation by plotting
the left-hand side of (3.8) as a function of Re. We also determine the coefficients a and b
from this figure, and summarise them in the caption of Fig. 4(b). Finally, using (3.8) in
(3.7), we derive the double-exponential formula

τd ' δt Π(hx) exp [exp (a Re + b)] . (3.9)

Using δt = 1/4 and the values of Π(hx) measured in Fig. 3(b) (together with a, b obtained
in Fig. 4(b)), we plot this double exponential formula in Fig. 2 as red and blue solid lines.
The agreement between these theoretical lines with the direct measurements (red circles
and blue squares) is excellent. Note that the parameters γ, h0 are determined from the
measurements up to Re = 1975 for L = 50D and Re = 1950 for L = 100D. But the
obtained curves agree with the direct measurements for Re = 2000 for L = 50D and
Re = 1975 for L = 100D. This observation indicates that our method can be used to
infer statistical properties for higher Reynolds numbers from the data obtained in lower
Reynolds numbers.

In our argument, the double exponential form in the decay time (3.9) comes from the
Gumbel distribution function (3.5). The validity of this Gumbel description is where the
extreme value theory could be relevant, e.g., one of the theorems used in the theory
is Fisher-Tippett-Gnedenko theorem, which ensures that the cumulative distribution of
the maximum value of a set of independent stochastic variables becomes the Gumbel
distribution function (3.5) under some conditions (Fisher & Tippett 1928; Gumbel 1935).
We do not expect that these conditions are exactly satisfied in our problem, because,
for example, turbulent velocity fields are hardly independent from each other. Indeed,
as shown in Fig. 5 of Appendix C, the deviations from the Gumbel distribution are
clearly detected in the probability density (the derivative of the cumulative distribution
in Fig. 3(b)). This discrepancy is contrasted to the recent observation done in (Shimizu
et al. 2019) for channel flows. Anyway, as detailed above, our interest is τd that is related
to 1/P (hth) (as indicated as the double-headed arrow in Fig 3(b)). This quantity is less
affected by those deviations. Overall, the effect of the deviations on the decay time is
small and can be neglected.

4. Conclusion

In this paper, using a large number of DNS, we measure the decay time of turbulent
puff in pipe flows up to Re = 2000. In DNS, periodic boundary conditions are employed in
the axial direction, so that the insufficient length of the pipe introduces artificial noise in
puff dynamics. Our numerical simulations show that, as the length of the pipe increases
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(i.e., as this artificial noise decreases), the obtained decay times increase, resulting in
values larger than those obtained in experiments (Avila et al. 2011) for large Reynolds
numbers (that were not studied previously using DNS). This could indicate that the
experimental results were affected by small (unknown) background noise that helped the
turbulence to decay quickly. Further numerical and experimental studies are necessary
to clarify this point.

To infer the decay time of puff, a double-exponential fitting curve has been heuristically
used (Hof et al. 2006, 2008; Avila et al. 2011). It was conjectured in (Goldenfeld et al.
2010; Goldenfeld & Shih 2017) that this double-exponential form can be derived using
the Gumbel distribution function of maximum kinetic energy fluctuations based on the
extreme value theory. We measure the cumulative distribution function of the maximum
turbulence intensity (3.2) and show that the function indeed approximately satisfies the
Gumbel distribution function, proving that their conjecture is correct, in the range of
the Reynolds numbers between 1900 and 2000.

As future perspectives, it is interesting to investigate, based on the extreme value
theory, the universality of the argument to derive the double-exponential formula. For
example, the same argument has been applied to turbulence decay problems in different
geometries in (Shimizu et al. 2019). Furthermore, turbulent transitions between 2D- and
3D-dynamics have been long studied (Smith et al. 1996; Celani et al. 2010; Benavides &
Alexakis 2017; Musacchio & Boffetta 2017; Alexakis & Biferale 2018), where a similar
super exponential increase of the transition time was recently observed in thin-layer
turbulent condensates (van Kan et al. 2019). This super-exponential increase could be
also discussed based on the extreme value theory.

Studying these super exponential laws in DNS is computationally demanding. A brute-
force approach using a large number of DNS is efficient as proven in this work. But
exploiting so-called rare-event sampling methods could be also helpful. Such sampling
methods include instanton methods based on Freidlin-Wentzell theory (Chernykh &
Stepanov 2001; Heymann & Vanden-Eijnden 2008; Grafke et al. 2015b,a; Grigorio et al.
2017) as well as splitting methods to simulate several copies in parallel (Allen et al. 2005;
Giardinà et al. 2006; Cérou & Guyader 2007; Tailleur & Kurchan 2007; Teo et al. 2016;
Nemoto et al. 2016; Lestang et al. 2018; Bouchet et al. 2019). These methods have been
successfully applied to many high dimensional chaotic dynamics.

Acknowledgements

The authors thank Dwight Barkley and Laurette Tuckerman for fruitful discussions
and comments. This work was granted access to the HPC resources of CINES/TGCC
under the allocation 2018-A0042A10457 made by GENCI (totally 3 million hours) and of
MesoPSL financed by the Region Ile de France and the project Equip@Meso (reference
ANR-10-EQPX-29-01) of the program Investissements d’Avenir supervised by the Agence
Nationale pour la Recherche.

Appendix A. Simulation detail

We used an open source code openpipeflow (Willis 2017), which simulates flows in a
cylindrical domain by solving the Navier-Stokes equation. Below are the summary of the
parameters and settings we used:
• For azimuthal and longitudinal directions of the pipe, the spectral decomposition is

used to evaluate the derivatives, for which we use 24 variables for azimuthal direction
and 384 variables (for L = 50D) and 768 variables (for L = 100D) for longitudinal
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directions. For the radial direction, finite-element method is used, for which the radial
space is divided into 64 points using Chebyshev polynomials.
• The code can solve the Navier-Stokes equation under two conditions, fixed flux

conditions and fixed pressure conditions. We especially use the fixed flux condition for
the simulations.
• For the time step, the algorithm uses a second-order predictor-corrector scheme with

automatic time-step control with courant number 0.5.
• We simulated totally 3 million hours to investigate the decay time following the

way described in the main text (Fig. 1). We repeated in parallel many single-core pipe
flow simulations (from 96 ∼ 1524 pipes) several times (from 10 ∼ 40 times), where each
simulation lasts 24 hours.
• We defined that a puff decays when hmax < 0.1 is satisfied. We never observed that

a puff regenerates once hmax < 0.1 is observed.
• To prepare initial velocity fields, we used a configuration where a single steady puff

already exists. We added a small Gaussian noise to this configuration, and simulate
during the time interval 50 or 100. These time intervals are our initial relaxation time.
We checked that both initial relaxation times show consistent (almost the same) results
for Re > 1900. We set the measurement interval δt to be 1/4 (in units of D/Ub) for the
simulations in Fig. 3(b).

Appendix B. Parameter inference for Poisson distribution

Here we summarise the method to infer the typical decay time τd from the observed
decaying events.

Since the waiting time before observing a decaying event is distributed exponentially,
the number nd to observe multiple decaying events for a fixed time interval T follows the
Poisson distribution

ppoisson(nd) =
e−λdT

nd!
(λdT )

nd , (B 1)

where λd ≡ 1/τd. Our aim is to estimate the parameter λd in this distribution from
the number of decay events nd observed in simulations. To this end, we use Bayes’ rule,
which allows us to construct a posterior probability distribution pposterior(λd|nd), i.e.,
the probability distribution of the parameter λd for a given observed data nd, as follows:

Pposterior(λd|nd) ∝ ppoisson(nd)Qprior(λd). (B 2)

Here Qprior(λd) is a prior probability distribution that represents the initial guess of the
parameter distribution. In our case, as we do not know the probability of λd a priori, we
use a Jeffreys prior (an uninformative prior) defined as the square root of the determinant
of the Fisher information (Box & Tiao 2011):

Qprior(λd) ∝ 1√
λd
. (B 3)

(Note that we checked that the results are not sensitive to the choice of prior probability
distributions.)

The error bars are estimated using the posterior probability distribution Pposterior(λd|nd)
as follows: first, we define 2.5%-quantile λ2.5d and 97.5%-quantile λ97.5d as the values of
λd at which the cumulative posterior probability distribution takes 0.025 and 0.975,
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Figure 5: Probability distribution function of the maximum turbulence intensity
dP (h)/dh (where P (h) is the cumulative distribution defined in (3.3)). The Gumbel
probability distribution function, which is fitted to these curves, is also plotted in the
same figure.

respectively: ∫ λ2.5
d

0

dλdPposterior(λd|nd) = 0.025, (B 4)

∫ λ97.5
d

0

dλdPposterior(λd|nd) = 0.975. (B 5)

Then 95% confidence interval is given as

λ2.5d < λd < λ97.5d , (B 6)

or
1

λ97.5d

< τd <
1

λ2.5d

, (B 7)

which is plotted as error bars in Fig.2.

Appendix C. Probability density of the turbulence intensity

From the cumulative distribution P (h) of the maximum turbulence intensity (3.3),
we define the corresponding probability density as its derivative dP (h)/dh. We calculate
dP (h)/dh from the data in Fig. 3(b) and plot it in Fig. 5 together with the corresponding
Gumbel distribution dPRe(h)/dh (where PRe(h) is defined as (3.5)). We can see the
discrepancies between the probability density and the Gumbel counterpart for h > 20
in Fig. 5. These discrepancies are hidden in the cumulative distributions as shown in
Fig. 3(b), so that the argument to derive the super-exponentially increasing decaying
time is intact.
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