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Turbulent flows in a thin layer can develop an inverse energy cascade leading to spectral
condensation of energy when the layer height is smaller than a certain threshold. These
spectral condensates take the form of large-scale vortices in physical space. Recently,
evidence for bistability was found in this system close to the critical height: depending on
the initial conditions, the flow is either in a condensate state with most of the energy in the
two-dimensional (2-D) large-scale modes, or in a three-dimensional (3-D) turbulent state
with most of the energy in the small scale modes. This bistable regime is characterised
by the statistical properties of random and rare transitions between these two locally
stable states. Here, we examine these statistical properties in thin-layer turbulent flows,
where the energy is injected by stochastic and deterministic forcing. To this end, by
using a large number of direct numerical simulations (DNS), we measure the decay time
τd of the 2-D condensate to 3-D turbulent state and the build-up time τb of the 2-D
condensate. We show that both of these times τd, τb follow an exponential distribution
with mean values that increase faster than exponentially as the layer height gets closer
to the threshold. We further show that the dynamics of large-scale kinetic energy may be
modeled by a stochastic Langevin equation. From time-series analysis of DNS data, we
determine the effective potential that shows two minima corresponding to the 2-D and
3-D states when the layer height is close to the threshold.
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1. Introduction

Turbulence is ubiquitous in the universe, from stars to tea cups. Many astrophysical
and geophysical turbulent flows, such as planetary oceans and atmospheres, are subject
to geometrical constraints, e.g. thinness in one spatial direction (Pedlosky 2013). Such
constraints significantly change the properties of the flow, which therefore deviate from
those of classical three-dimensional (3-D) homogeneous and isotropic turbulence. Fully
3-D turbulence is characterised by a forward cascade of energy from large to small scales
(Frisch 1995), while in two dimensions (2D), an inverse energy cascade from small to
large scales occurs due to additional inviscid invariants such as enstrophy (Boffetta
& Ecke 2012). Turbulence in thin layers combines properties of both cases, as large-
scale dynamics are constrained to be 2-D, whereas small scale dynamics are not. As a
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consequence, in thin-layer turbulence, energy may cascade both to small and large scales
depending on the layer height H: Above a critical height Hc there is no inverse cascade
while bellow this critical height an inverse cascade develops with its amplitude (measured
by the inverse energy flux) increasing continuously. Similar transitions towards an inverse
cascade occur in rotating turbulence stratified turbulence magnetohydrodynamic systems
(see the review articles (Alexakis & Biferale 2018; Pouquet et al. 2018)).

In a finite domain, an inverse cascade saturates at late times, forming a condensate
in which the energy is concentrated in the largest scales. This condensation has been
extensively studied in 2-D turbulence (see Hossain et al. 1983; Smith & Yakhot 1993,
1994; Chertkov et al. 2007). In quasi-2D systems it has been observed in rapidly rotating
convection (Rubio et al. 2014; Favier et al. 2019), rotating turbulence (Seshasayanan
& Alexakis 2018; Alexakis 2015; Yokoyama & Takaoka 2017) and thin-layer turbulence
(Xia et al. 2011; van Kan & Alexakis 2019). In many of these cases, the amplitude of
the condensate state (measured by the energy in the large scales) has been shown to
varies discontinuously with the system parameters. Furthermore, close to the transition,
bistability has been observed: the system was either attracted or not to the condensate
state depending on the initial conditions. In particular in thin-layer flows, for values of
H close to Hc, the system was attracted to either a 2-D condensate state (where most
of the energy is concentrated in two counter-rotating, large-scale, 2-D vortices) or a 3-D
turbulent state (where energy is mostly contained in 3-D small scale fluctuations) (van
Kan & Alexakis 2019). The bistability in this system was accompanied by sudden ‘jumps’
between these two states. These transitions occur randomly with the waiting times that
are, presumably, stochastic, following a statistical distribution that characterises the
bistable regime.

In this paper, we present the first analysis of the statistical properties of thin-layer
turbulence close to the critical height. We use a very large number of direct numerical
simulations (DNS) and calculate the probability distribution functions (PDFs) of the
transition times: the decay time τd from a 2-D condensate state to a 3-D turbulent state
and the build-up time τb from a 3-D turbulent state to a 2-D condensate state. We examine
their dependence to H and attempt to model the transitions in terms of a particle in a
one dimensional potential using a Langevin equation.

2. Setup and results from direct numerical simulations

In this study, we consider forced incompressible 3-D flow in a triply periodic domain
of dimensions L×L×H with H � L. The setup is identical with the one studied in (van
Kan & Alexakis 2019). The thin direction is referred to as the vertical ‘z’ direction and
the remaining two as the horizontal ‘x, y’ directions. The flow obeys the incompressible
Navier-Stokes equation

∂tv + v · ∇v = − ∇P + ν∇2v + f , (2.1a)

∇ · v = 0 , (2.1b)

where v(x, t) is the velocity field, P (x, t) is physical pressure divided by constant density,
ν is kinematic viscosity and f is the external body force injecting energy into the flow.
In this work, we use two different forcing functions: stochastic fs and deterministic fd.
Both forcing functions depend only on x and y and have only x and y components, i.e.,
are two-dimensional-two-component (2D2C) fields. In both cases, the force is divergence-
free and only acts on a shell of wavenumbers |k| = kf = 2π/`. The stochastic force is
delta-correlated in time, which leads on average to a fixed mean injection rate 〈v · fs〉 =ε.
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Figure 1: Sketch illustrating a hysteresis loop close to the critical height. Solid and dash-
dotted lines represent the stable and unstable branches. We select initial conditions for
decay and build-up experiments from the typical configurations at sufficiently small and
large values of Q (here denoted by Q1 and Q2), respectively.

The deterministic force fd is written in terms of the the Fourier transform of the velocity
field, v̂(k), as

fd(x, t) = ε
∑
|k|=kf

v̂(k)eik·x∑
|k′|=kf |v̂(k′)|2 + i(εk2f )1/3

∑
|kh|=kf

Ωkh
v̂2D(kh)eikh·x, (2.2)

where the sum is taken over all modes with kz = 0 and |k| = kf , and Ωkh
are time-

independent random numbers that are uniformly distributed over [−1, 1]. They are kept
fixed throughout the simulation time and are the same for all simulations. Since Ωkh

is time-independent, the forcing is indeed deterministic, i.e. is fully determined by the
velocity field at any time. The energy injection rate of fd at every instant is ε, matching
the mean injection rate of fs.

For both forcing functions, the system is characterised by three non-dimensional
parameters: the injection scale Reynolds number Re = (ε`4)1/3/ν, the ratio between
forcing scale and box height Q = `/H, and the ratio between forcing scale and the
horizontal domain size K = `/L. In all simulations, we focus on the horizontal large-
scale kinetic energy, defined as

V 2
ls =

∑
k,kz=0

|k|<kmax

[
|v̂x(k)|2 + |v̂y(k)|2

]
, (2.3)

where kmax =
√

2 2π
L . The simulations performed for this work use an adapted version of

the Geophysical High-Order Suite for Turbulence (GHOST) which uses pseudo-spectral
methods including 2/3 de-aliasing to solve for the flow in the triply periodic domain, (see
Mininni et al. 2011). For all experiments, we fix K = 1/8 and Re = 203 at a resolution
of 128 × 128 × 16, varying Q over the interval [1.6, 2.0]. We choose these low resolution
and Re because very long-duration runs are needed for this study. In addition, we also
made runs at a resolution 256 × 256 × 16 at Re = 406, which qualitatively showed the
same dynamics, even though reliable statistical analysis was not done in this case due to
longer CPU times required to integrate (2.1).

Depending on Q and the initial conditions, the system is attracted either to the 2-D
condensate state or the 3-D turbulent state as sketched in the Vls − Q plane in figure
1. The upper branch corresponds to the 2-D condensate state while the lower branch
corresponds to the 3-D turbulent state. The dash-dotted lines indicate regions where
jumps form one state to the other are observed. As detailed below, we perform decay and
build-up experiments for each value of Q. In the build-up experiments, initial conditions
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Figure 2: Typical time-series of V 2
ls for build-up experiments (Q = 1.55, left) and decay

(Q = 1.556, right) experiments (f = fs). We define a build-up time τb (or a decay time τd)
as the time when V 2

ls grows (or drops) to its condensate mean value (or a small threshold
≈ 2(ε`)2/3). These τb and τd fluctuate and their statistics are of our interest.
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Figure 3: PDFs of the scaled build-up time τb/τf (left) and the scaled decay time τd/τf
(right) for different values of Q, with τf = (`2/ε)1/3. The stochastic forcing fs is used. The
PDFs have exponential tails whose characteristic time scale increases as the transition is
approached.

corresponding to the 3-D turbulent state are used (see figure 1). In these simulations, we
observe the build-up of 2-D condensates after a certain simulation time, which we denote
by τb. In the decay experiments, initial conditions corresponding to the 2-D condensate
state are used. The system is evolved until the 2-D condensate decays, When decay or
build-up events occur, the integration is interrupted and the next independent experiment
is initiated. For the stochastic forcing, runs are started from a fixed initial condition
but with different random number sequences, while for deterministic forcing, the initial
conditions are altered by a small random perturbation that is different for every run.
Figure 2 illustrates typical time-series for build-up and decay experiments. We note that
similar procedures have been used to determine a critical Reynolds number for turbulent-
laminar transitions in pipe flows (see Avila et al. 2011).
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Figure 4: Mean transition times, non-dimensionalised by τf = (`2/ε)1/3, for stochastic
(left) and deterministic (right) forcing as a function of Q. Blue diamonds correspond
to 〈τd〉 in the decay experiments and red circles correspond to 〈τb〉 in the build-up
experiments. Error bars are estimated based on the approximation that the PDF is
exactly exponential.

3. Build-up and decay times

We measure the statistical properties of the decay and build-up times τd, τb by using
more than 2.5 million CPU hours, which amount to ten million (107) eddy turnover
times in this system. Figure 3 shows PDFs of τd and τb for the stochastic forcing fs for
different values of Q. All PDFs have an exponential tail, whose slope (in log-linear scale)
increases as the transition is approached. The PDFs for the deterministic forcing fd show
qualitatively the same results. An exponential PDF of waiting times implies that the
waiting mechanism can be modeled using a memoryless process (Billingsley 2008). We
explore this possibility in Section 4.

The resulting mean build-up and decay times, 〈τb〉, 〈τd〉, are shown in figure 4 for
stochastic (left panel) and deterministic (right panel) forcing in log-linear coordinates.
The ascending branch (left, in blue) represents the mean decay time 〈τd〉 and the
descending branch (right, in red) represents the build-up time 〈τb〉. For each case, both
transition times increase drastically when a certain value of Q is approached. This
increase is faster than exponential (super-exponential) and could be either diverging
at some critical values Qb and Qd or staying finite (similar to what is observed for the
decay and split time of turbulent puffs in pipe flows (Hof et al. 2006, 2008; Avila et al.
2011)). In the former case, the 2-D condensate is never formed below the critical value
Qb for which 〈τb〉 diverges, while above Qd for which 〈τd〉 diverges, the 2-D condensate
remains forever. In the latter case, a double-exponential function might be used to fit
this super-exponential increase, supported by the argument using extreme value statistics
(Fisher & Tippett 1928; Gumbel 1935; Goldenfeld et al. 2010; Goldenfeld & Shih 2017).
This can be justified if we assume that the transition to the condensate state is triggered
when the maximum value of the small scale vorticity exceeds a certain threashold value.

Four different scenarios may be envisaged for the Q-dependence of the transition times,
illustrated in figure 5. In the first scenario, both 〈τb〉 and 〈τd〉 diverge at Qb, Qd with
Qd < Qb. In the range (Qd, Qb), where both transition times diverge, either the 3-D
turbulent or 2-D condensate state is selected depending on initial conditions, towards
which the system approaches. In the second scenario, 〈τb〉 and 〈τd〉 diverge at the same
point, i.e., Qd = Qb. This is an analogue of standard equilibrium phase transitions with a
single power-law singularity. In the third scenario, a crossover is observed, i.e., Qb < Qd,
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Figure 5: Four scenarios for dependence of transition times on Q. In each panel, the
x-axis represents Q and the y-axis is either the mean decay time 〈τd〉 (left branch) or the
mean build-up time 〈τb〉 (right branch). Dashed vertical lines indicate Qd,b, where the
mean transition times diverge.

where random transitions between the two states are possible within a finite range of Q
between Qb and Qd. Finally, in the fourth scenario, a crossover is again observed, but
without any divergence of 〈τb〉 and 〈τd〉 for finite Q. This scenario is compatible with the
double-exponential fitting function explained above, where transitions between the two
states are possible for all Q (although they are extremely rare). From the data in figure
4, we can see that for the stochastic forcing, the two branches are intersecting around
Q = Qs ≈ 1.55 at a value of around 105 eddy turnover times. Therefore we can exclude
cases 1 and 2 for fs, while all four scenarios are possible for fd. In addition, it may be
proven (see Gallet & Doering 2015) and has been confirmed numerically (van Kan &
Alexakis 2019), that beyond a second critical value Q2D, the flow two-dimensionalises
and the condensate is stable to 3-D perturbations in the long-time limit. Therefore,
condensate decay time diverges at least for Q > Q2D and we can exclude a double-
exponential behavior extending to all Q for 〈τd〉. Note that based on our evidence, we
cannot exclude that condensate build-up time never becomes infinite. In a future study,
rare event algorithms may help elucidating these questions (see Section 5).

4. Effective Markovian modelling

The exponential PDFs of the transition times (figure 3) indicate that these times are
stochastically determined by a mechanism that is not affected by long-time correlations
in the dynamics. Since the transitions are quantitatively characterized by a single macro-
scopic variable, the horizontal large-scale kinetic energy V 2

ls (figure 2), this observation
implies that the dynamics of V 2

ls could be described by a Markov (memory-less) process,
such as an inertia-less particle moving in a double-well potential in the presence of white
noise. Within this effective description, the transitions are characterized as rare jumps
of the particle between the two wells of the potential.

Motivated by this observation, in this section, we discuss to what extent the dynamics
of E ≡ V 2

ls/(ε`)
2/3 can be described by one-dimensional Markov process. Assuming the

continuity of the trajectory of E(t), a general form of this process is written as (Gardiner
1986):

dE

dt
= −∂U(E)

∂E
+
√

2B(E)ξ(t), (4.1)

where ξ(t) is Gaussian white noise satisfying 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t′)〉 = δ(t − t′) and
we use the Itô rule for the multiplication between ξ(t) and

√
2B(E). The potential

U(E) and the E-dependent diffusion constant B(E) characterise the dynamics and are
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Figure 6: Left panel: The potential U(E) obtained from DNS (both decay and build-up
experiments) for different values of Q. The values of Q from top to bottom are 1.438
(red), 1.5 (yellow), 1.556 (blue), 1.563 (green), 1.594 (grey), 1.656 (black). Middle panel:
an enlarged view close to E = 0. Right panel: an enlarged view of U(E) for Q = 1.563.
The potential is obtained using eq. A 2 for stochastic forcing.
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Figure 7: Left panel: The E-dependent diffusion constant B(E) obtained using eq. A 3
for stochastic forcing. Colors are as in Fig 6. Right panel: Transition probability p(E, t+
∆t|E′, t) obtained from DNS (blue solid line) and a Gaussian fit (red dashed line). We
set E′ = 0.5 and ∆t = 0.2 with Q = 1.563 for a stochastic forcing build-up experiment.

to be determined. Note that the noise term models the smaller-scale turbulent motions.
Eq. (4.1) indicates that the average and the variance of dE/dt conditional on E are
equal to −∂U(E)/∂E and B(E)/dt respectively. From the time-series data of the DNS,
we thus evaluate these statistical properties and estimate U(E) and B(E) (see Appendix
A for more detail). The results are shown in figures 6 and 7. When Q is well below the
transition, U(E) has a single minimum at E ' 0.1. Positive slopes at larger values of E
indicate a mean drift towards the 3-D turbulent state. As Q approaches the transition,
U(E) becomes flatter, meaning that this drift vanishes, and a second minimum appears
at E ' 7 for Q ' 1.5. This indicates that the system is in a bistable regime. The second
minimum becomes more dominant as Q is further increased. Eventually for Q & 1.65 the
first minimum disappears and the system is left with a single minimum corresponding
to the condensate state. In the presence of bistability, the time scale for the system to
jump from one minimum to the other depends exponentially on the amplitude ∆U of
the potential barrier, i.e., τ ∼ exp[−∆U/B] (Gardiner 1986). An order-of-magnitude
estimate shows that this is in agreement with the values of 〈τd〉, 〈τb〉 measured in the
previous section.

The interpretation of our results using a Langevin equation with a double-well potential
is the simplest model to describe a discontinuous phase transition. The presence of a
double-well potential implies that the system can always jump from one state to the
other if one waits long enough. However we cannot conclude that 〈τd〉 and 〈τb〉 do not
diverge for finite Q (Scenario 4 in figure 5) from this observation. First of all, the range
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of Q that we have studied is highly limited. Second, an oversimplification has been made
when we assumed that the system could be described by a single variable E, while the
system in reality evolves in an extremely high-dimensional space. Indeed disagreements
between the 1D model (4.1) and DNS results can be detected when we look at the
distribution of the energy increment ∆E over a small time interval ∆t. According to the
Langevin equation (4.1), this distribution needs to be Gaussian, but this is not exactly
true for the DNS results: using the time-series data of DNS, we evaluate the transition
probability p(E, t+∆t|E′, t) from the state E′ at time t to E at time t+∆t. In figure 7 we
plot this probability with E′ = 0.5 and ∆t = 0.2 for stochastic forcing with Q = 1.5625,
which shows deviations from a Gaussian distribution.

5. Conclusions

In this work we have studied the statistical properties of thin-layer flows close to
the transition between a 3-D turbulent flow and the formation of a 2-D condensate.
Such transitions have recently been discovered in a variety of systems (Seshasayanan
& Alexakis 2018; Favier et al. 2019; van Kan & Alexakis 2019) and this work is the
first attempt to systematically study their statistics. We have measured the probabilities
of the transition times between the two states, where the mean transition times were
shown to increase by three orders of magnitude by a relatively small change (10%) of
the control parameter Q. We point out the qualitative similarity between figure 5 of
(Avila et al. 2011) for the turbulent-laminar transitions in pipe flows and figure 4 of
our work. Although the physical situations are different, in both cases we observe super-
exponential growing time scales of two competing processes. Our results could neither
exclude nor confirm whether this sharp increase has a double-exponential scaling form
exp(β exp(αx)), supported by an argument based on extreme value statistics (Goldenfeld
et al. 2010). This leaves a possibility of the divergence of mean transition times, i.e.,
transitions from one state to the other could become impossible for a certain range of Q.

Our results show that the system can be modeled to some extent as an inertia-less
particle trapped in a one-dimensional potential in the presence of stochastic noise. The
model revealed that close to the transition the potential displays two minima implying
the existence of a bistable state. Discrepancies in the noise statistics of the DNS and of
the stochastic model were observed that were attributed in the multi-dimensional nature
of the real problem.

Several simplifying assumptions have been made in this work in order to make the
problem more tractable. For example, the domain was triply periodic and also the forcing
was 2-D. These simplifications could limit the applicability of these results to laboratory
or natural flows. Further investigations with more realistic boundary conditions and
forcing are thus necessary. More importantly, the present investigation was limited to a
single relatively small value of Re and K (the scale separation between the forcing length
scale and the horizontal domain scale). Examining the observed behavior at larger values
of Re andK is crucial for validating the robustness of our results and for their applications
to natural flows. Unfortunately, the extremely long duration of decay and build-up times
close to the transitions limits the range of parameters that can be examined with DNS.

However, there are alternative methods that have been developed in the recent years
that could address this problem. In particular, it could benefit from studies using rare
event sampling algorithms, such as a method calculating instanton based on Freidlin-
Wentzell theory (Chernykh & Stepanov 2001; Heymann & Vanden-Eijnden 2008; Grafke
et al. 2015b,a; Grigorio et al. 2017), splitting methods that copy rare event realizations
to efficiently accumulate statistics (Allen et al. 2005; Giardinà et al. 2006; Cérou &
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Guyader 2007; Tailleur & Kurchan 2007; Teo et al. 2016; Nemoto et al. 2016; Lestang
et al. 2018; Bouchet et al. 2019) and also a recently proposed method that relies on
feedback control of Reynolds number (Nemoto & Alexakis 2018). Such studies can help
to overcome the difficulty caused by the extremely long computational time required to
accurately describe the rare transition events close to the onset. Studies at larger Re or
scale separations could therefore become tractable using these methods.

Furthermore given the large experimental literature (see Xia et al. 2011; Xia & Francois
2017) on the transition between 3-D turbulence and condensation in thin layers, it
would be exciting and very important to study the observed bistability experimentally.
The biggest advantage of an experiment compared to DNS would be that much longer
observation times are possible as well as higher Re. The same remarks apply to rotating
turbulence.
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Appendix A. Determining U(E) and B(E)

In this appendix we express U(E) and B(E) in terms of transition probabilities
to obtain expressions which allow determining them from the DNS time series. For
convenience, let A(E) ≡ −dU

dE , the drift velocity. For a small time increment ∆t, we
denote by p(E, t+∆t|E′, t) the transition probability from E(t+∆t) = E at time t+∆t
to E(t) = E′ at time t. It obeys, (see Gardiner 1986),

p(E, t+∆t|E′, t)−δ(E−E′) = − ∂

∂E
A(E)δ(E−E′)∆t+ ∂2

∂E2
B(E)δ(E−E′)∆t+O(∆t2)

(A 1)

By multiplying both sides by E − E′ or (E − E′)2 and integrating over E, we get∫
dE(E − E′)p(E, t+∆t|E′, t) = A(E′)∆t+O(∆t2), (A 2)∫
dE (E − E′)2 p(E, t+ dt|E′, t) = 2B(E′)∆t+O(∆t2). (A 3)

The left-hand sides (and thus A and B) are measurable from a time-series EDNS(t) of
large-scale energy by computing the mean of EDNS(t+∆t)− EDNS(t) and (EDNS(t+
∆t) − EDNS(t))2, over all times t for which EDNS(t) = E′, for all values of E′. Finally
the potential U(E) is obtained from A(E) by simple integration.
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