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An introduction to turbulence
Forward and Inverse cascades
Inverse cascades in MHD turbulence

Inverse cascades in rotating turbulence
A model problem: 2D MHD

e Global Quantities
e Spectra and Fluxes
o Fields

Conclusions



Turbulence is met everywhere...

Astrophysics, Atmospheric physics, weather prediction, geophysics,
engineering, aviation, Industry, ...
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The problem of (3D hydrodynamic) turbulence

Incompressible Navier-Stokes

ou+u-Vu=-VP+vAu+F, V-u=0, +B.C.

Claude-Louis Navier (1785-1836), Sir George Gabriel Stokes, (1819-1903) P
UrmsL "“\"%;‘
v %

Osborne Reynolds 1842-1912
Turbulence obtained at the Re — oo limit.

One non dimensional control parameter: Re =

@ Chaotic system

@ Many degrees of freedom

@ Injection of energy at one scale by F dissipation of energy at
an other scale by viscosity



The problem of (3D hydrodynamic) turbulence

Energy dissipation = € = v((Vu)?) = (u - F) = Energy injection

The conjecture of turbulence
lim v{(Vu)?) >0

v—0

by an ever increasing amplitude of the gradients of u due to the
transfer of energy to smaller scales by the nonlinearity.

Fourier space Energy flux Energy Spectrum
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The problem of (3D hydrodynamic) turbulence

Energy dissipation = € = v((Vu)?) = (u - F) = Energy injection

The conjecture of turbulence
lim v{(Vu)?) >0

v—0

by an ever increasing amplitude of the gradients of u due to the
transfer of energy to smaller scales by the nonlinearity.

Fourier space Energy flux (3D HD)  Energy Spectrum
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2D hydrodynamic turbulence

Energy dissipation = € = v((Vu)?) = (u - F) = Energy injection

2D turbulence dissipation
lim v{(Vu)?) o vu?,,,/L*

rms
v—0

No transfer of energy to smaller scales.

Ek) 2D-HD
o s

5

Fourier space Energy flux (2D HD)  Energy Spectrum
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Why 2D turbulence cascades energy inversely?

Kraichnan-Leith-Batchelor Cascade
1 E&) 2D—HD

1 1
Energy : E = §<u2> & Enstrophy: Q= §<(V x u)?)
W
E Q
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Forward and Inverse cascades

3D Turbulence and 2D Turbulence

3D simulations at 40963

from website of P.K. Yeung

EK) Ju 3 D-HD

1

Energy
Mg

Energy condensation in 2D turbulence

From PhysRevE 85 036315

E&) 2 D-HD

—5/3 Ju

~
S K

N .~

Energy

Iy

Dissipation

Dissipation

k

T k5 K3

Forward cascade

ks 5

Inverse cascade
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Intermediate cases

There are some systems ...

13 /62

Fast rotating flows (Ro = U/Q¢ < 1)

Flows in the presence of a magnetic field (M = U/By < 1)
Confined flows (thin geometries) (I' = h/{; < 1)

Helical MHD flows (h,, = helicity injection/energy injection -ky)

for which the inverse cascade depends on a parameter

w=Ro,I', M, h,,,...



Motivation

Fluxes in: Thin layers/Rotating/Stratified/Magnetic fields ...

MMRP PM

SBMGM R XBFS
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A turbulence to turbulence transition ...

@ the system transitions from one turbulent state (inverse
cascading) to an other (forward cascading) varying a
parameter . (u is not Re)

@ the transition occurs in the presence of turbulent noise

@ these transitions are not only observed as dimensional (ie 2D
to 3D), but weak to strong, HD to MHD, ...

@ these transitions are not only observed for the energy cascade
but also for other invariants (magnetic helicity, square vector
potential, wave action, ...)
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First example: MHD with a strong uniform magnetic field

MHD equations
Jdu+u-Vu = Bd,b —VP +b-Vb+vrvAu+Fy

u+u-Vb = BoJ,u +b - Vu+nAb

16 /62 HDR



First example: MHD with a strong uniform magnetic field

B

ou+u-Vu = Bd,b —VP +b-Vb+vrvAu+F,
ou+u-Vb = Bd,u +b - Vu+nAb
Large By forces the flow to be 2-dimensional.
The transition from 2D to 3D occurs when the largest mode

becomes unstable:
B/Lpoy ~ U/

17 /62 HDR



First example: MHD with a strong uniform magnetic field

Quantifying the transition:
Energy flux

0
1

Energy Spectra
10*! K5/ 1.0 —R1 (V= 5)
i | ---R2fued) e,
& 05F _.Rspye10) A
N )i s
o 4 5 ia,
c 00 T }
o i
-0.5
1 10 100
ky

As B is increased
@ the flux towards the large scales increases

@ the flux towards the small scales decreases
@ below a value of B there is no visible flux to the large

scales
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Second example: Turbulence with a twist

Rotating Navier-Stokes

Jdu+u - Vu+2Qxu = —VP+vAu+F, V-u=0, +B.C.
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Rotating turbulence (Taylor Green Forcing)

Q

ou+tu - Vut+20xu = —VP+rAu+F, V-u=0, +B.C.
VX =
ow+u - Vw+2Q0,u =w - Vu+rAw+V x F, w =V X u,

The transition from 2D to 3D occurs when the largest mode

becomes unstable:
Q~U/l or Ro=U/QL~1

20/62 HDR



Large scale condensates

How an inverse cascade saturates
(in the absence of large scale dissipation)

at saturation the flow forms condensates
and moves Ro to the critical value:

] Ro=U/QL ~1

oo where the inverse cascade stops

Q.1 1/ 1.0

The system is attracted to the marginal inverse-cascade-state!
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Spectrum and fluctuations of condensates

At steady state:

0.05

n(k)

0.00

-0.05

1 10 100 1000

@ At the condensate state large & small scales co-exist
@ Flux to the large scales ~0
o Large fluctuations of the flux (noise)



Attempting a detailed study of the transition.

Previous models had a varying inverse cascade of energy
due to a dimensional transition from a 3D to a 2D
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Attempting a detailed study of the transition.

Previous models had a varying inverse cascade of energy
due to a dimensional transition from a 3D to a 2D

Thus they require 3D high resolution numerical simulations.
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Attempting a detailed study of the transition.

Previous models had a varying inverse cascade of energy
due to a dimensional transition from a 3D to a 2D

Thus they require 3D high resolution numerical simulations.

Are there computationally more tractable models
that show a transition from forward to inverse cascade?
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Breaking the enstrophy conservation

The inverse cascade of energy in 2D is solely due to
enstrophy ((V x u)2) conservation.

24 /62 HDR



Breaking the enstrophy conservation
The inverse cascade of energy in 2D is solely due to

enstrophy ((V x u)2) conservation.

2D or not 2D?

10° F

=
ey
= 10"
L
-5
10
10%

Figure from A. Celani, S. Musacchio, and D. Vincenzi,

Phys. Rev. Lett. 104, 184506 (2010)
Energy spectra of in-plane and out-of-plane velocity components
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Breaking the enstrophy conservation

The inverse cascade of energy in 2D is solely due to
enstrophy ((V x u)2) conservation.

2D-HD or 2D-MHD?

S

Kinetic and magnetic energy spectra
In a 2D MHD simulation

25 /62 HDR



2D-HD vs 2D-MHD

Equations:

Ow+u-Vw = + [V v, VW] + F,

where
w=¢,-Vxu

Nonlinearity conserves

1
E:/quv, Q=
2

N | =

/wgdv
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2D-HD vs 2D-MHD

Equations:
dw+u-Vw = b-Vj+ [y V"0 + V0] + F,
da+u-Va = +niv*a + 0,V *a] + F,
where

w=¢&,-Vxu, b=Vx(éua), j=¢6,-Vxb

Nonlinearity conserves

1 1
E:2/u2+b2dv, A:2/a2dv

27/62 HDR



2D-HD vs 2D-MHD

Equations:
dw+u-Vw = b-Vj+ [y V"0 + V0] + F,
da+u-Va = +niv*a + 0,V *a] + F,
where

w=¢&,-Vxu, b=Vx(éua), j=¢6,-Vxb

Nonlinearity conserves

1 1
E:2/u2+b2dv, A:2/a2dv

e we will use the hypodissipation 7, V2" to avoid condensates
e we will use the hyperdiffusion 1, V2" to extend the inertial
range:n=2.
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2D-HD vs 2D-MHD

2D-HD 2D MHD

E®) 2D-HD E®) 2D-MHD

|Fu| >0,F,=0 ’Fu’ > 0, ‘Fb| >0 F, =0, |Fb| >0
Inverse cascade of E ? Forward cascade of E
Forward cascade of ) ? not conserved
Forward cascade of A ? Inverse cascade of A

What is the fate of the forward/inverse cascade
as we vary F,, F?

28/62 HDR



Set-up of Numerical Experiments

—7¥, 2D square periodic box of side 2L
No mean magnetic field (b) =0

5
u

F,(x,y) = fuk;{l sin(kz) sin(ksx)
Fy(z,y) = fbk:]?l cos(ksx) cos(kyx)

2m k¢

ll » — &
' fu
1/2.1/2+2n 1/2.1/2-2n
kyL Rej =—L Ref=—-1
: Un, Un
P =v, [, =1, Py = v/ =1
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Limiting procedure

large Re 5, Ren

el 4= = =" limit
g%

%] 2 L

g2 .

[ |

[ |

—

log(Re?,)
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E(k) 2D-MHD

-13

~ K JbJu
~ N ‘

Ty .
Sq. Vec. Pot. N N k_SB
Energy N N
h « Dissipation
' Dissipation k
- +
kd kd

e Fix Re;, vary puy for different box sizes (Re;, , kyL)
o Fix box size (Re,, , kyL) vary py for different values of Re;l,



Global Quantities
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Quantifying the cascades

Inverse and Forward cascades of energy:

€, =1 (V"2 H(V7"b)%), o =g (V) +(V"b)?)

E

@)
o]

@)

< =<1,

= 4t
€y =€, T €,

@)
&

Inverse and Forward cascades of square vector potential:

& =v (V")) e =yH(VTa)?)

a

)

<

f'h‘(’h

— = +
EA:€E+€E Slv
A
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A Ciritical transition

Varying ps for different box-size and fixed Re;l.

k'L € s;
8
16 L
0.8 32 8 @
64 o o
Q)< 1
< 0.6[ 0.5
w
Ju
w041
w
L 0
0.2 015 0.2 25 03
0 0.4 0.6 0.8
Hy
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A Ciritical transition

critical behavior:
€y X (Hep —p)'E  and €, X (1= Hen)4
a best fit leads to:

fey ~0.22. .., v, ~0.82 and ji, ~0.25..., v, ~0.27
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+

Critical point dependence on Re

n

Varying ps for different values of Re;} and fixed box-size.
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Critical point dependence on Re; (rescaling)

Varying pu s for different values of Re; and fixed Re;, .

. . R ,
5)1/2,, 6 7 8 9 10

4
Hy X (Re
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Critical point dependence on Re; (rescaling)

Varying pu s for different values of Re; and fixed Re;, .

. . R ,
5)1/2,, 6 7 8 9 10

4
Hy X (Re

® fic o< (Ret)~1/2n

Magnetic tension determines the transition:
b2k kN
=~ oc i (,j) o pj[Re]"
u f
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Energy distribution among scales
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Large scale spectra

38/62

Varying pus for large box-sizes kyL > 1.
fep > 0.22. .., & fey >~ 0.25. ..

Kinetic energy spectra Magnetic energy spectra

T K




Small scale spectra

Varying s for Re) > 1.
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Small scale dissipations

‘ 0
. x Me*)”" 10
1
For small u
@ magnetic energy at the smallest scales is b? x ,uQE(;Q (passive advectio)
@ kinetic energy at the smallest scales is u% o< 622/3((21 (enstrophy cascade)

Nonlinearity starts when
= Mg X E?l X Re_l/n

HDR




Variable forward and backward fluxes

Energy flux Sq.Vec.Pot. flux
1 =0.05 s 0.2
=0.15 ~-0.26
0.5-02 0.5-03
QUJ -03 8<I -08
g £ 0
v — <
B o
\——-_
-05 =057\
-1 ‘ ‘ -1 ‘
10’ 10 10’ 10’ 10 10’
k
HDR
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Instantaneous and time averaged fluxes

Strong fluctuations of the energy fluxes .....




Fields
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Small scale Structures — 2D-HD to 2D-MHD

Vorticity Current density

HDR



Small scale Structures — 2D-HD to 2D-MHD

Py S H <K fhe

Vorticity Current density

HDR




scale Structures — 2D-HD to 2D-MHD

iy < B < pe

Vorticity Current density

HDR



Small scale Structures — 2D-HD to

Py, KBS e

Vorticity Current density

HDR



Large scale Structures — 2D-HD to 2D-MHD

Kinetic energy Magnetic energy
[m] = =
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Kinetic energy Vector Potential
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Large scale Structures — 2D-HD to 2D-MHD

Kinetic energy Magnetic energy

HDR




Large scale Structures — 2D-HD to 2D-MHD

Kinetic energy Vector Potential

HDR




Phase diagram

In the limit kyL — oo
log(R ; )
ogReh “NU(RCDN b ~ e, Re?

Forward E | p—— == ===

Inverse and forward A

clin
)

N
| v E
3 Passive ' e B
2 |magnetic + Forward A W g
field oo
[nverse and wl>
[nverse E forvard B M
Forward A onwar o é
L
-1
U~(Re})



Conclusions

@ Transitions from forward to inverse cascades (IC) are common
in turbulence

@ The transition to IC can be critical

@ In the absence of large scale dissipation (some) IC saturate at
the marginal state for an IC

@ 2D MHD is the first model to demonstrate that this transition
happens through a critical point.

@ New theoretical venues open for expansions around the critical
point

53/62 HDR






A cartoon summary
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A cartoon summary |

Transition Diagram Energy Spectra
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A cartoon summary I

Transition Diagram Energy Spectra
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A cartoon summary Il

Transition Diagram Energy Spectra
B ~RED Rep ~ pey ~Refy > N 3,3, 2D-HD to
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A cartoon summary IV

Transition Diagram Energy Spectra
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A cartoon summary V

Transition Diagram Energy Spectra
B ~(RET [y ~ Wy ~(Repy ™ . 3.3, 2D-HD to
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A cartoon summary VI

Transition Diagram Energy Spectra
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Break down of the enstrophy conservation

Energy flux Sq.Vec.Pot. flux
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