Habilitation à Diriger des Recherches Turbulent Limits

ALEXAKIS, Alexandros

16-03-2015

Many thanks to ...

• The Jury

Laurette TUCKERMAN, Annick POUQUET, Sergey NAZARENCO, William MATTHAEUS, Stephan FAUVE, Marc-Etienne BRACHET, Thierry ALBOUSSIERE

• The students

Benjamin MIQUEL, Santiago Jose BENAVIDES, Kannabiran, SESHASAYANAN, Giorgos MOMFERATOS

Paris

Francois PETRELIS, Basil GALLET, Nicolas MORDANT, Alexandra TZELLA, Martin SCHRINNER, Emmanuel DORMY, Vassilios DALLAS, ...

Nice

Yanick PONTY, Helen POLITANO, Barbara BIGOT, ...

Boulder

Anick POUQUET, Pablo MININNI, Duane ROSENBERG, Jai SUKHATME, Aime FOURNIER, Jonathan GRAHAM, ...

Woodshole

Charles DOERING, Phil MORISSON ...

Chicago

Robert ROSNER, Yuan-Nan YOUNG, Jim TRURAN, Fausto CATTANEO, Alan CALDER, Jonathan DURSI, Ed BROWN ...

SQA

The work presented in the report

MHD turbulence

Universality with: Vassilios DALLAS

Dynamo

Mixing with: Alexandra TZELLA

Elastic waves with: Benjamin MIQUEL & Nicolas MORDANT

Intermittency with: Francois PETRELIS

Rotating turbulence

Inverse cascades with: Kanna SESHASAYANAN, Santiago BENAVIDES

The work that will be presented today: Inverse Cascades

Kannabiran SESHASAYANAN, Santiago Jose BENAVIDES

MHD turbulence

Rotating turbulence ・ロト・日本・モート・モーシーモー つくで

- An introduction to turbulence
- Forward and Inverse cascades
- Inverse cascades in MHD turbulence
- Inverse cascades in rotating turbulence
- A model problem: 2D MHD
 - Global Quantities
 - Spectra and Fluxes
 - Fields
- Conclusions

Turbulence is met everywhere...

Astrophysics, Atmospheric physics, weather prediction, geophysics, engineering, aviation, Industry, ...

The problem of (3D hydrodynamic) turbulence

Incompressible Navier-Stokes

$$\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla P + \nu \Delta \mathbf{u} + \mathbf{F}, \qquad \nabla \cdot \mathbf{u} = 0, \qquad +B.C.$$

Sir George Gabriel Stokes, (1819-1903)

One non dimensional control parameter: $Re = \frac{U_{rms}L}{rms}$

Osborne Revnolds 1842-1912

Turbulence obtained at the $Re \to \infty$ limit.

- Chaotic system
- Many degrees of freedom
- Injection of energy at one scale by F dissipation of energy at an other scale by viscosity

The problem of (3D hydrodynamic) turbulence

Energy dissipation = $\epsilon \equiv \nu \langle (\nabla \mathbf{u})^2 \rangle = \langle \mathbf{u} \cdot \mathbf{F} \rangle$ = Energy injection

The conjecture of turbulence

$$\lim_{\nu \to 0} \nu \langle (\nabla \mathbf{u})^2 \rangle > 0$$

by an ever increasing amplitude of the gradients of u due to the transfer of energy to smaller scales by the nonlinearity.

The problem of (3D hydrodynamic) turbulence

Energy dissipation = $\epsilon \equiv \nu \langle (\nabla \mathbf{u})^2 \rangle = \langle \mathbf{u} \cdot \mathbf{F} \rangle$ = Energy injection

The conjecture of turbulence

$$\lim_{\nu \to 0} \nu \langle (\nabla \mathbf{u})^2 \rangle > 0$$

by an ever increasing amplitude of the gradients of u due to the transfer of energy to smaller scales by the nonlinearity.

2D hydrodynamic turbulence

Energy dissipation = $\epsilon \equiv \nu \langle (\nabla \mathbf{u})^2 \rangle = \langle \mathbf{u} \cdot \mathbf{F} \rangle$ = Energy injection

2D turbulence dissipation

$$\lim_{\nu \to 0} \nu \langle (\nabla \mathbf{u})^2 \rangle \propto \nu u_{rms}^2 / L^2$$

No transfer of energy to smaller scales.

Why 2D turbulence cascades energy inversely?

11/62

HDR

Forward and Inverse cascades

3D Turbulence and 2D Turbulence

3D simulations at 4096^3

Energy condensation in 2D turbulence

Intermediate cases

There are some systems ...

- Fast rotating flows ($Ro \equiv U/\Omega \ell \ll 1$)
- Flows in the presence of a magnetic field ($M \equiv U/B_0 \ll 1$)
- Confined flows (thin geometries) ($\Gamma \equiv h/\ell_f \ll 1$)
- Helical MHD flows ($h_M \equiv$ helicity injection/energy injection $\cdot k_f$)

• ...

for which the inverse cascade depends on a parameter

$$\mu = Ro, \Gamma, M, h_{\scriptscriptstyle M}, \ldots$$

Motivation

Fluxes in: Thin layers/Rotating/Stratified/Magnetic fields ...

- A. Celani, S. Musacchio, and D. Vincenzi, Phys. Rev. Lett. 104, 184506 (2010)
- A. Alexakis, Phys. Rev. E 84, 056330 (2011)
- A. Sen, P. D. Mininni, D. Rosenberg, and A. Pouquet Phys. Rev. E 86, 036319 (2012)
- A. Pouquet and R. Marino, Phys. Rev. Lett. 111, 234501 (2013)
- R. Marino, P. D. Mininni, D. Rosenberg, A. Pouquet European Phys. Lett. 102 44006 (2013)
- E. Deusebio, G. Boffetta, E. Lindborg, S. Musacchio, Phys. Rev. E 90, 023005 (2014)
- A. Sozza, G. Boffetta, P. Muratore-Ginanneschi, S. Musacchio, arXiv:1405.7824(2014)
- D. Byrne, H. Xia, M. Shats Phys. Fluids 23, 095109 (2011)
- H. Xia, D. Byrne, G. Falkovich, M. Shats Nature Physics 7, 321-324 (2011)
- M. Shats, D. Byrne, H. Xia Phys. Rev. Lett. 105, 264501 (2010)

SQA

A turbulence to turbulence transition ...

- the system transitions from one turbulent state (inverse cascading) to an other (forward cascading) varying a parameter μ. (μ is not Re)
- the transition occurs in the presence of turbulent noise
- these transitions are not only observed as dimensional (ie 2D to 3D), but weak to strong, HD to MHD, ...
- these transitions are not only observed for the energy cascade but also for other invariants (magnetic helicity, square vector potential, wave action, ...)

First example: MHD with a strong uniform magnetic field

 $\begin{array}{rcl} \mathsf{MHD} \text{ equations} \\ \partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} &= & B \partial_z \mathbf{b} & -\nabla P & + \mathbf{b} \cdot \nabla \mathbf{b} + \nu \Delta \mathbf{u} + \mathbf{F}_{\mathbf{u}} \\ \partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{b} &= & B \partial_z \mathbf{u} & + \mathbf{b} \cdot \nabla \mathbf{u} + \eta \Delta \mathbf{b} \end{array}$

First example: MHD with a strong uniform magnetic field

$$\mathbf{B}$$

 $\begin{array}{rcl} \partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} &=& B \partial_z \mathbf{b} & -\nabla P & + \mathbf{b} \cdot \nabla \mathbf{b} + \nu \Delta \mathbf{u} + \mathbf{F}_{\mathbf{u}} \\ \partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{b} &=& B \partial_z \mathbf{u} & & + \mathbf{b} \cdot \nabla \mathbf{u} + \eta \Delta \mathbf{b} \end{array}$

Large B_0 forces the flow to be 2-dimensional. The transition from 2D to 3D occurs when the largest mode becomes unstable:

$$B/L_{box} \sim U/\ell$$

First example: MHD with a strong uniform magnetic field

As B is increased

- the flux towards the large scales increases
- the flux towards the small scales decreases
- below a value of *B* there is no visible flux to the large scales

Second example: Turbulence with a twist

Rotating Navier-Stokes

 $\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} + 2\Omega \times \mathbf{u} = -\nabla P + \nu \Delta \mathbf{u} + \mathbf{F}, \qquad \nabla \cdot \mathbf{u} = 0, \qquad +B.C.$

Rotating turbulence (Taylor Green Forcing)

 $\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} + 2\Omega \times \mathbf{u} = -\nabla P + \nu \Delta \mathbf{u} + \mathbf{F}, \quad \nabla \cdot \mathbf{u} = 0, \quad +B.C.$ $\nabla \times \cdots \Rightarrow$

 $\partial_t \mathbf{w} + \mathbf{u} \cdot \nabla \mathbf{w} + 2\Omega \partial_z \mathbf{u} = \mathbf{w} \cdot \nabla \mathbf{u} + \nu \Delta \mathbf{w} + \nabla \times \mathbf{F}, \qquad \mathbf{w} = \nabla \times \mathbf{u},$

The transition from 2D to 3D occurs when the largest mode becomes unstable:

 $\Omega \sim U/\ell$ or $Ro \equiv U/\Omega L \simeq 1$

Large scale condensates

How an inverse cascade saturates (in the absence of large scale dissipation)

at saturation the flow forms condensates and moves Ro to the **critical** value: $Ro = U/\Omega L \simeq 1$ where the inverse cascade stops

The system is attracted to the marginal inverse cascade state!

Spectrum and fluctuations of condensates

At steady state:

• At the condensate state large & small scales co-exist

- Flux to the large scales $\simeq 0$
- Large fluctuations of the flux (noise)

Previous models had a varying inverse cascade of energy due to a dimensional transition from a 3D to a 2D

Previous models had a varying inverse cascade of energy due to a dimensional transition from a 3D to a 2D

Thus they require 3D high resolution numerical simulations.

Previous models had a varying inverse cascade of energy due to a dimensional transition from a 3D to a 2D

Thus they require 3D high resolution numerical simulations.

Are there computationally more tractable models that show a transition from forward to inverse cascade?

Breaking the enstrophy conservation

The inverse cascade of energy in 2D is solely due to enstrophy $\langle (\nabla \times {\bf u})^2 \rangle$ conservation.

Breaking the enstrophy conservation

The inverse cascade of energy in 2D is solely due to enstrophy $\langle (\nabla \times {\bf u})^{\bf 2} \rangle$ conservation.

Figure from A. Celani, S. Musacchio, and D. Vincenzi,

Phys. Rev. Lett. 104, 184506 (2010)

Energy spectra of in-plane and out-of-plane velocity components

Breaking the enstrophy conservation

The inverse cascade of energy in 2D is solely due to enstrophy $\langle (\nabla \times {\bf u})^2 \rangle$ conservation.

Kinetic and magnetic energy spectra In a 2D MHD simulation

Equations:

$$\partial_t \omega + \mathbf{u} \cdot \nabla \omega = + \left[\nu_n^+ \nabla^{2n} \omega + \nu_n^- \nabla^{-2n} \omega \right] + F_\omega$$

where

$$\omega = \hat{\mathbf{e}}_n \cdot \nabla \times \mathbf{u}$$

Nonlinearity conserves

$$E = \frac{1}{2} \int \mathbf{u}^2 dv, \qquad \Omega = \frac{1}{2} \int \omega^2 dv$$

E

E

Equations:

$$\partial_t \omega + \mathbf{u} \cdot \nabla \omega = \mathbf{b} \cdot \nabla j + [\nu_n^+ \nabla^{2n} \omega + \nu_n^+ \nabla^{-2n} \omega] + F_\omega \partial_t a + \mathbf{u} \cdot \nabla a = + [\eta_n^+ \nabla^{2n} a + \eta_n^- \nabla^{-2n} a] + F_a$$

where

$$\boldsymbol{\omega} = \hat{\mathbf{e}}_n \cdot \nabla \times \mathbf{u}, \quad \mathbf{b} = \nabla \times (\hat{\mathbf{e}}_n a), \quad j = \hat{\mathbf{e}}_n \cdot \nabla \times \mathbf{b}$$

Nonlinearity conserves

$$E = \frac{1}{2} \int \mathbf{u}^2 + \mathbf{b}^2 dv, \qquad A = \frac{1}{2} \int a^2 dv$$

E

E

Equations:

$$\begin{array}{lll} \partial_t \omega + \mathbf{u} \cdot \nabla \omega &=& \mathbf{b} \cdot \nabla j + [\nu_n^+ \nabla^{2n} \omega + \nu_n^+ \nabla^{-2n} \omega] + F_\omega \\ \partial_t a + \mathbf{u} \cdot \nabla a &=& + [\eta_n^+ \nabla^{2n} a + \eta_n^- \nabla^{-2n} a] + F_a \end{array}$$

where

$$\omega = \hat{\mathbf{e}}_n \cdot \nabla \times \mathbf{u}, \quad \mathbf{b} = \nabla \times (\hat{\mathbf{e}}_n a), \quad j = \hat{\mathbf{e}}_n \cdot \nabla \times \mathbf{b}$$

Nonlinearity conserves

$$E = \frac{1}{2} \int \mathbf{u}^2 + \mathbf{b}^2 dv, \qquad A = \frac{1}{2} \int a^2 dv$$

• we will use the hypodissipation $\eta_n^- \nabla^{-2n}$ to avoid condensates

• we will use the hyperdiffusion $\eta_n^- \nabla^{-2n}$ to extend the inertial range:n=2.

$ \mathbf{F}_u > 0, \mathbf{F}_b = 0$	$ \mathbf{F}_u > 0, \mathbf{F}_b > 0$	$\mathbf{F}_u = 0, \ \mathbf{F}_b > 0$
Inverse cascade of E	?	Forward cascade of E
Forward cascade of Ω	?	not conserved
Forward cascade of A	?	Inverse cascade of A

What is the fate of the forward/inverse cascade as we vary F_u, F_b ?

5900

Э

Э

Set-up of Numerical Experiments

2D square periodic box of side $2\pi L$ No mean magnetic field $\langle {\bf b} \rangle = {\bf 0}$

$$F_{\omega}(x,y) = f_u k_f^{+1} \sin(k_f x) \sin(k_f x)$$

$$F_a(x,y) = f_b k_f^{-1} \cos(k_f x) \cos(k_f x)$$

Control Parameters / Non-dimensional Numbers

$$\begin{split} \mu_f &\equiv \frac{f_b}{f_u} \\ k_f L & Re_f^- = \frac{f_u^{1/2} k_f^{1/2+2n}}{\nu_n^-} & Re_f^+ = \frac{f_u^{1/2} k_f^{1/2-2n}}{\nu_n^+} \\ P_M^- &\equiv \nu_n^- / \eta_n^- = 1, & P_M^+ \equiv \nu_n^+ / \eta_n^+ = 1 \end{split}$$

Limiting procedure

• Fix Re_n^+ , vary μ_f for different box sizes $(Re_n^-, k_f L)$

• Fix box size $(Re_n^-, k_f L)$ vary μ_f for different values of Re_n^+ ,

Global Quantities

DQC

Quantifying the cascades

Inverse and Forward cascades of energy:

$$\begin{split} \epsilon_{\scriptscriptstyle E}^- &\equiv \nu_n^- \langle (\nabla^{-n} \mathbf{u})^2 + (\nabla^{-n} \mathbf{b})^2 \rangle, \qquad \epsilon_{\scriptscriptstyle E}^+ \equiv \nu_n^+ \langle (\nabla^{+n} \mathbf{u})^2 + (\nabla^{+n} \mathbf{b})^2 \rangle \\ \epsilon_{\scriptscriptstyle E} &\equiv \epsilon_{\scriptscriptstyle E}^- + \epsilon_{\scriptscriptstyle E}^+ \qquad \qquad 0 \leq \frac{\epsilon_{\scriptscriptstyle E}^-}{\epsilon_{\scriptscriptstyle E}} \leq 1, \end{split}$$

Inverse and Forward cascades of square vector potential:

$$\begin{split} \epsilon_A^- &\equiv \nu_n^- \langle (\nabla^{-n} a)^2 \rangle, \qquad \epsilon_A^+ \equiv \nu_n^+ \langle (\nabla^{+n} a)^2 \rangle \\ \epsilon_A^- &\equiv \epsilon_E^- + \epsilon_E^+ \qquad \qquad 0 \leq \frac{\epsilon_A^-}{\epsilon_A} \leq 1, \end{split}$$

Varying μ_f for different box-size and fixed Re_n^+ .

A Critical transition

critical behavior:

$$\epsilon_E^- \propto (\mu_{c_E} - \mu)^{\gamma_E}$$
 and $\epsilon_A^- \propto (\mu - \mu_{c_A})^{\gamma_A}$

a best fit leads to:

 $\mu_{c_E} \simeq 0.22 \dots, \ \gamma_E \simeq 0.82 \quad \text{and} \quad \mu_{c_A} \simeq 0.25 \dots, \ \gamma_A \simeq 0.27$

Critical point dependence on Re_n^+

Varying μ_f for different values of Re_n^+ and fixed box-size.

•
$$\mu_c = \mu_c(Re_n^+)$$

Critical point dependence on Re_n^+ (rescaling)

Varying μ_f for different values of Re_n^+ and fixed Re_n^- .

• $\mu_c \propto (Re_n^+)^{-1/2n}$

Critical point dependence on Re_n^+ (rescaling)

Varying μ_f for different values of Re_n^+ and fixed Re_n^- .

•
$$\mu_c \propto (Re_n^+)^{-1/2n}$$

Magnetic tension determines the transition:

$$\mu_b \equiv \frac{b^2 k_f}{f_u} \propto \mu_f^2 \left(\frac{k_d^+}{k_f}\right)^2 \propto \mu_f^2 [Re^+]^n$$

Energy distribution among scales

Large scale spectra

Small scale spectra

Varying μ_f for $Re_n^+ \gg 1$.

DQC

Small scale dissipations

For small μ

- magnetic energy at the smallest scales is $b_\ell^2 \propto \mu^2 \ell_d^{-2}$ (passive advectio)
- kinetic energy at the smallest scales is $u_{\ell}^2 \propto \epsilon_{\Omega}^{2/3} \ell_d^2$ (enstrophy cascade)

Nonlinearity starts when

$$\mu \ge \mu_{\scriptscriptstyle NL} \propto \ell_d^2 \propto R e^{-1/n}$$

Variable forward and backward fluxes

Instantaneous and time averaged fluxes

Strong fluctuations of the energy fluxes

Fields

E

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶

 $\mu \ll \mu_{\scriptscriptstyle NL}$

Vorticity

Current density

▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

DQC

E

 $\mu_{\scriptscriptstyle NL} \lesssim \mu \ll \mu_c$

Vorticity

Current density

▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

DQC

 $\mu_{\scriptscriptstyle NL} \ll \mu \ll \mu_c$

Vorticity

Current density

▲部 医・ ● 田 ト

 $\mu_{NL} \ll \mu \lesssim \mu_c$

Vorticity

Current density

- (母) (き) (き) (き

$$\mu = 0.21 \dots \lesssim \mu_c$$

Kinetic energy

Magnetic energy

- 4 □ → 4 □

$$\mu = 0.21 \cdots \lesssim \mu_c$$

Kinetic energy

Vector Potential

→ < Ξ →</p>

$$\mu = 0.26 \cdots \gtrsim \mu_c$$

Kinetic energy

Magnetic energy

< □ > < □ >

$$\mu = 0.26 \cdots \gtrsim \mu_c$$

Kinetic energy

Vector Potential

< /₽ > < ∃ >

- Transitions from forward to inverse cascades (IC) are common in turbulence
- The transition to IC can be critical
- In the absence of large scale dissipation (some) IC saturate at the marginal state for an IC
- 2D MHD is the first model to demonstrate that this transition happens through a critical point.
- New theoretical venues open for expansions around the critical point

Thank you for your attention!

A cartoon summary

- 4 □ → 4 □

→ < Ξ →</p>

990

Э

A cartoon summary I

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ト

A cartoon summary II

5900

3

《曰》《聞》《臣》《臣》

A cartoon summary III

・ロト ・部 ト ・ヨト ・ヨト

5900

э

A cartoon summary IV

《口》《聞》《臣》《臣》

A cartoon summary V

990

3

《曰》《聞》《臣》《臣》

A cartoon summary VI

5900

Э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Break down of the enstrophy conservation

HDR