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This article reviews experiments on elasticity, plasticity and flow of solid 4He and 3He,
focusing on dislocations and other defects that are responsible for the unusual mechan-
ical behavior of such quantum crystals. Helium’s zero point motion prevents it from
freezing unless pressure is applied, and makes the solid extremely compressible, with
elastic constants orders of magnitude smaller than those of conventional solids. Tunnel-
ing allows defects to remain mobile at low temperatures so dislocations have much larger
effects on mechanical properties than in conventional solids. At temperatures below 400
mK, dislocations in hcp 4He are essentially undamped and, in the absence of pinning
by 3He impurities, glide freely in the basal plane. In this regime, dislocation motion
reduces the shear modulus by as much as 90%, an effect that has been referred to as
“giant plasticity” although it is reversible and so might be better described as “soften-
ing”. In this low temperature regime, macroscopic plastic deformation occurs via sudden
dislocation avalanches with a wide range of time and length scales. At higher temper-
atures, dislocation motion is damped, introducing dissipation in elastic measurements,
and thermally activated defect motion makes helium crystals extremely ductile, flowing
under millibar stresses near melting. During the last decade, most of the properties
of the dislocations that are responsible for the elastic effects described in this review
have been accurately measured: their orientation, density and length distributions, the
nature of their networks, and their binding to isotopic impurities. Despite this detailed
understanding of mobile dislocations, there remain open questions. Much less is known
about defects’ roles in the elastic and plastic behavior of hcp and bcc 3He crystals and
even in hcp 4He, almost nothing is known about other types of dislocations that are
immobile and so do not affect elastic properties. These might be responsible for recently
observed superfluid-like mass flow in 4He at low temperatures, although it is now clear
that the apparent mass decoupling seen in torsional oscillator experiments with solid
4He was due to the elastic effects described in this paper, not to supersolidity.
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I. INTRODUCTION

Helium is a uniquely quantum material. The most dra-
matic manifestation of its quantum nature is superfluid-
ity in liquid helium. Atoms of the common isotope, 4He,
are bosons and condense into a superfluid state below the
lambda temperature Tλ =2.176 K. The rare isotope, 3He
is a fermion and does not become superfluid until atoms
pair at much lower temperatures, around 2 mK, to form
complex superfluid phases. Quantum effects are usually
less significant in solids. In classical crystals, at zero tem-
perature atoms sit at lattice sites where the potential en-
ergy is minimized. Since they are localized, they can be
regarded as distinguishable particles and quantum statis-
tics are not important. In solid helium, quantum effects
change this picture in two important ways. First, he-
lium’s small mass and weak interatomic potential means
that atoms have large quantum zero point motion, rather
than sitting motionless at lattice sites. Secondly, tunnel-
ing allows helium atoms to exchange, so their Bose or
Fermi statistics remain relevant in this quantum solid.

The zero point energy due to localizing an atom within
a lattice unit cell can be estimated by considering a point
particle in a 3-dimensional box. Its ground state energy
is E0 = 3h2/8ma2, where h is Planck’s constant, m is
the particle’s mass and a is the size of the box, i.e. the
lattice parameter. A more realistic estimate for atoms
with a hard core diameter d would be to use (a − d)
rather than a as the distance over which atoms are con-
fined. This quantum mechanical energy is largest for light
atoms like helium and can be compared to the potential
energy of the solid, set by the depth ε of the interatomic
potential well. The “quantumness” of a solid can then be
characterized by the de Boer parameter Λ, whose square
is essentially the ratio of the zero point energy to the
potential energy:

Λ2 =
h2

ma2ε
. (1)

Even for a weakly interacting inert gas like argon, the
zero point energy is a small correction to the classical
potential energy, Λ2 ≈ 0.03. For solid 4He, with its
light mass and even weaker interactions, Λ2 ≈ 7, so
the quantum energy dominates. Neutron scattering mea-
surements (Adams et al., 2007) of solid 4He atoms’ zero
point kinetic energy give values around 25 K, substan-
tially larger than the depth of the potential well for he-
lium atoms, ε ≈ 11 K. Quantum effects are even more

important in solid 3He, which has the same potential but
a smaller mass.

The solid, liquid and vapor phases of materials are of-
ten displayed in pressure-temperature (P-T) phase di-
agrams like those in Fig. 1. The left panel (a) shows
the phase diagram for argon, a simple classical material
with a spherically symmetric interatomic potential and a
close-packed face centered cubic (fcc) crystal structure.
The solid (red) coexistence line in Fig. 1 (a) is the vapor
pressure curve, where the liquid and gas phases coexist
(or, below the melting point, it is the sublimation curve
where solid and gas phases coexist). The vapor pressure
curve ends at a critical point, above which the argon is
fluid but there is no distinction between liquid and gas
states. The dashed (black) line separating the solid and
fluid phases is the melting curve, which extends to high
pressure with a positive slope (the melting temperature
Tm increases slightly with pressure, the normal behavior
for materials where the solid phase is denser than the liq-
uid). These lines meet at the triple point, a unique point
in the phase diagram where all three phases can coexist.
These phases and transitions are familiar from other ma-
terials, e.g. water, ice and steam. For water, the triple
point occurs at a temperature Tc of 273.16 K (which was
used as a fixed point to define the kelvin scale temper-
ature) and a pressure of 612 Pa. Water is, however, a
complex material, with many different solid phases. It
is also unusual in that its solid phase, ice, is less dense
than liquid water, which results in a melting curve with
a negative slope.
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FIG. 1 Pressure-temperature (P-T) phase diagrams for (a)
argon and (b) 4He. Melting curves are shown as dashed black
lines, vapor pressure curves as solid red lines. 4He’s superfluid
transition (the “lambda line”) is the dotted blue line.

The phase diagrams of nearly all materials share these
features - coexistence lines between solid, liquid and gas
phases that meet at a triple point. The exception is he-
lium, for which quantum effects dominate in the liquid
and solid phases. The right panel (b) of Fig. 1 shows
the phase diagram of helium (for the common isotope
4He). In contrast to argon, and to all other materials,
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there is no triple point at which solid, liquid and gas can
coexist. Helium is the only liquid that does not freeze
under its own vapor pressure, a consequence of its large
zero point energy and its weak interatomic interactions.
4He can only be solidified by applying pressures greater
than 2.53 MPa, with the melting curve shown as a dashed
black line. At the lowest temperatures it crystallizes in
the hexagonal close packed (hcp) structure, but there is
a small region around 1.6 K where a body-centered cu-
bic (bcc) phase, with a more open structure and lower
zero point energy, is stable. Even higher pressures are
required to solidify the lighter 3He isotope (3.44 MPa
at zero temperature), and its bcc phase extends to low
temperatures. The solid and gas phases never coexist in
helium, so the vapor pressure curve (the solid red line)
extends to zero temperature. The existence of a quan-
tum liquid at arbitrarily low temperatures creates the
possibility of superfluidity in the Bose isotope, 4He. The
superfluid state appears below the dotted blue lambda
line in Fig. 1 (b).

Helium’s quantum nature affects its properties in the
solid state. The density of low pressure helium crystals
is less than half the value predicted for classical crystals
with the same potential. Even at the lowest tempera-
tures, helium atoms’ zero point motion extends over a
significant fraction of the unit cell (Arms et al., 2003;
Blackburn et al., 2007), in contrast to classical crystals
where thermal fluctuations are the only source of dis-
placements away from lattice sites. Solid helium is also
extremely compressible, with a bulk modulus less than
a third of the value expected for a classical crystal and
about five orders of magnitude smaller than that of a
typical metal.

In addition to expanding the lattice and softening the
crystal, helium’s zero point motion allows atoms to ex-
change by tunneling. This exchange means that, in con-
trast to other materials, helium atoms’ Bose or Fermi
statistics remain important in the solid phase. In solid
3He, for example, atomic exchange leads to magnetic or-
dering of spins at temperatures around 1 mK. In both
3He and 4He, it allows isotopic impurities to move easily
through the lattice, even at zero temperature. One in-
triguing possibility is that a quantum crystal could have
a finite vacancy concentration at zero temperature, cre-
ating an “incommensurate solid” with perfect periodic-
ity but fewer atoms than lattice sites. Delocalized “zero
point vacancies” (ZPV) would contribute to mass flow
and in 4He could even Bose condense to form a “super-
solid” with coexisting positional and superfluid order. At
present there is no clear evidence for zero point vacancies
but even in their absence, exchange could still produce a
supersolid in which translational symmetry breaking and
superfluidity coexist.

As well as revealing uniquely quantum phenomena
in solids, helium has advantages as a model system to
study material properties of solids. For example, at low

temperatures helium’s latent heat of melting disappears,
so melting and freezing become purely mechanical pro-
cesses. This allows the liquid-solid interface to be stud-
ied in detail, in contrast to conventional crystals where
the latent heat makes it difficult to achieve equilibrium.
Many of its unusual properties have been experimen-
tally studied, including its surface tension (Andreeva and
Keshishev, 1991; Babkin et al., 1995; Balibar et al., 1979;
Edwards et al., 1990; Gallet et al., 1984; Keshishev et al.,
1979; Rolley et al., 1989, 1995b), roughening transitions
(Alles et al., 2001; Gallet et al., 1984; Keshishev et al.,
1979; Landau et al., 1980; Rolley et al., 1986, 1989; To-
doshchenko et al., 2005; Tsepelin et al., 2001; Wagner
et al., 1996; Wolf et al., 1985), melting/freezing waves
(Bodensohn et al., 1986; Keshishev et al., 1981; Rolley
et al., 1995b) and wetting behavior. Helium also provides
unique opportunities to study fundamental properties of
defects like impurities and dislocations, and their roles
in elastic and plastic deformation (Balibar and Nozières,
1994; Balibar et al., 2005). Helium crystals of extraordi-
nary purity can be prepared since at low temperatures all
but isotopic impurities freeze out, and these have low con-
centrations. 3He concentrations in commercial 4He gas
are of order 10−7 and can be reduced to the 10−12 level
using a superfluid heat flush technique, or to essentially
zero by freezing at very low temperatures. High qual-
ity single crystals can be grown quickly and their density
can be varied over a substantial range with moderate
pressures. The complete temperature range is accessible,
from essentially zero up to the melting temperature.

In this paper, we review the current state of under-
standing of defects in solid helium, particularly their ef-
fects on these quantum crystals’ elastic and plastic prop-
erties. Many of the measurements we describe were in-
spired by Kim and Chan’s 2004 claim of the discovery of
supersolidity in torsional oscillator measurements (Kim
and Chan, 2004a,b). These torsional oscillator effects
are now understood as a manifestation of the unusual
elastic behavior of solid 4He (Day and Beamish, 2007b;
Haziot et al., 2013c), rather than as mass decoupling of
a supersolid (Beamish et al., 2012; Maris, 2012; Maris
and Balibar, 2011; Reppy et al., 2012). However, inter-
est in solid helium’s quantum and mechanical properties
began much earlier, and many experiments were spurred
by predictions of supersolidity and of unusual quantum
motion of diffusion of vacancies and impurities (Andreev
and Lifshits, 1969; Chester, 1970; Leggett, 1970).

Helium was discovered spectroscopically in the sun in
1868 and subsequently found on earth as a product of
uranium ore in 1895. It was first liquefied in 1908 but
it was not until 1926 that 4He was frozen by applying
pressures greater than 2.5 MPa (Keesom, 1926). The
crystal structure (hcp) was determined by x-ray diffrac-
tion (Keesom and Taconis, 1938) in the same year that
the superfluid nature of the He II phase of liquid 4He
was discovered. The rare isotope, 3He, is a decay prod-
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uct of tritium and became available as a byproduct of
thermonuclear weapons programs (Osborne et al., 1949).
Osborne et al. (1951) solidified 3He in 1951 and its bcc
and hcp structures were identified by Schuch et al. (1958).
Phase separation of solid 3He-4He mixtures at low tem-
peratures was observed in 1962 (Edwards et al., 1962).

Ultrasonic measurements on solid helium began with
longitudinal waves in bcc 3He (Abel et al., 1961) and in
4He (Vignos and Fairbank, 1961). The latter measure-
ments led to the discovery of the bcc phase of 4He, which
occupies a small region of its phase diagram. Shortly
after, transverse ultrasound was propagated in hcp and
bcc 4He (Lipschultz and Lee, 1965). During the first
half of the 1970s, elastic constants were measured in ori-
ented single crystals of hcp and bcc 4He (Greywall, 1971,
1976) and of bcc 3He (Greywall, 1975). The temperature
dependences of sound speeds were measured soon after
(Wanner et al., 1973; Wanner and Mueller Jr, 1974). In
1976, dislocations were identified as the source of low
temperature anomalies in ultrasonic velocities (Wanner
et al., 1976). Between 1979 and 1983, more complete
measurements of the ultrasonic velocity and attenuation
were made in hcp 4He (Iwasa et al., 1979; Iwasa and
Suzuki, 1980) and in bcc and hcp 3He (Beamish and
Franck, 1982, 1983; Iwasa and Suzuki, 1982). These
provided new information about the mobility and pin-
ning of dislocations in solid helium. During the same
period, there were a number of plastic deformation ex-
periments on helium, revealing “metallurgical” phenom-
ena like yield drops (Suzuki, 1973, 1977) and plastic
flow, at stresses much lower than in conventional crys-
tals (Sanders et al., 1977, 1978).

The study of defects in helium was less active dur-
ing the 1980s and 1990s, but work included direct x-ray
diffraction measurements of vacancy energies and con-
centrations (Fraass et al., 1989; Heald et al., 1984; Sim-
mons, 1994) and x-ray topography experiments that di-
rectly imaged dislocation arrays associated with low an-
gle grain boundaries (Iwasa et al., 1995). The liquid-
solid surface tension and wetting behavior of helium were
thoroughly studied (Balibar and Castaing, 1985; Balibar
et al., 1979). The non-wetting of many substrates by
solid helium was shown to suppress freezing in porous
materials which, for example, raised the freezing pres-
sure in the nanoscale pores of Vycor glass by more than
1 MPa (Adams et al., 1987; Beamish et al., 1983; Molz
and Beamish, 1995).

In 2004, interest in solid 4He was reinvigorated by the
apparent discovery of supersolid helium, based on tor-
sional oscillator (TO) measurements. The TO frequency
increased below 200 mK, which was interpreted as evi-
dence of a supersolid mass fraction decoupling from the
oscillator, in analogy to the classic Andronikashvili ex-
periment that measured the superfluid fraction of liquid
4He (Andronikashivili, 1946). The frequency shifts for
solid 4He were suppressed at high oscillation amplitudes,

which was taken as evidence of a superfluid-like criti-
cal velocity. Other features of the TO data were unex-
plained, but suggested defects were important. The tran-
sition was rounded, rather than sharp, and was accom-
panied by a dissipation peak. The amount of decoupling
varied by orders of magnitude in different experiments
and usually decreased when samples were annealed. The
transition temperature was extremely sensitive to 3He
impurities, decreasing by a factor of more than 2 when
the impurity concentration x3 was reduced from 3×10−7

to 10−9.

In 2007, low frequency measurements of polycrystalline
4He’s shear modulus µ showed very similar behavior (Day
and Beamish, 2007b). The shear modulus increased be-
low 200 mK, with the same dependence on tempera-
ture, 3He concentration and amplitude as the TO fre-
quency change. However, the shear modulus behavior
had a natural explanation in terms of mobile dislocations,
which softened the crystal at high temperature but were
pinned by 3He impurities low temperature. The ampli-
tude dependence was explained as stress-induced break-
away from the weak 3He pinning centers. It was clear
that the torsional oscillator and shear modulus behaviors
were closely related, but difficult to understand how the
shear modulus changes would affect different torsional os-
cillators. In 2012, several papers addressed this question
and it became clear that the stiffening of torsional oscil-
lators, due to shear modulus changes in solid helium in
the torsion rod (Beamish et al., 2012) or in other parts of
the oscillator (Maris, 2012; Reppy et al., 2012), was suffi-
cient to explain the observed TO frequency shifts. Since
then, a number of the original TO experiments have been
repeated in rigid oscillators designed to minimize the ef-
fects of the solid helium’s shear modulus. The frequency
shifts were essentially eliminated (Choi et al., 2015; Kim
and Chan, 2012), confirming that they were due to elastic
changes in the helium, not signatures of mass decoupling
in a supersolid.

However, the shear modulus changes themselves were
dramatic and unexpected. Further measurements on sin-
gle crystals showed that mobile dislocations could reduce
the shear modulus of hcp 4He’s by as much as 90%, or-
ders of magnitude larger than dislocation effects in con-
ventional materials (Alers and Zimmerman, 1965; Bauer
and Gordon, 1962; Thompson and Holmes, 1959). This
effect was described as “giant plasticity”. These experi-
ments identified the mechanism in hcp 4He as basal glide
(Haziot et al., 2013c), confirmed that thermal phonon
scattering was the source of dislocation damping (Haziot
et al., 2013a), identified a critical dislocation velocity
related to the propagation velocity of 3He impurities
(Haziot et al., 2013b), and extracted the dislocation
density and length distribution in 4He crystals (Feffer-
man et al., 2014). Measurements in polycrystalline hcp
3He identified an additional dislocation damping mecha-
nism associated with the 3He spins (Cheng and Beamish,
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2017). The effects of dislocations on the elastic behavior
of these quantum solids are now well-established.

Dislocations are also central to plasticity. Early plas-
tic deformation experiments (Sanders et al., 1977, 1978;
Suzuki, 1973, 1977) were done at high temperatures,
where thermal processes like vacancy diffusion control
the flow behavior. Recent measurements (Cheng and
Beamish, 2018b) at much lower temperatures showed a
crossover, from thermally activated creep above 400 mK
to sudden dislocation avalanches and acoustic emission
at lower temperatures.

Other experiments have studied mass flow in response
to pressure gradients across solid helium. At high tem-
peratures, flow can occur via motion of vacancies or dis-
locations (Day and Beamish, 2007a; Lisunov et al., 2014,
2015; Suhel and Beamish, 2011). This defect motion is
thermally activated, so flow rates decrease rapidly at low
temperatures. Inspired by the search for supersolidity,
a number of experiments (Bonfait et al., 1989; Day and
Beamish, 2006; Greywall, 1977b) looked unsuccessfully
for evidence of superflow in hcp 4He at low temperatures.
More recently, however, a group of experiments revealed
non-thermal flow that began around 0.6 K and extended
to temperatures below 100 mK (Cheng and Beamish,
2016; Hallock, 2019; Ray and Hallock, 2008; Shin et al.,
2017; Vekhov et al., 2014). This may be an example of
superflow associated with dislocations, but the flow chan-
nels have not been unambiguously identified and some
aspects of the experiments are not yet understood.

Our theoretical understanding of quantum solids has
also developed in recent decades. Classical calculations,
which worked well for heavy inert gas crystals (Beamish,
2001), greatly overestimated the values of solid helium’s
density, binding energy and bulk modulus. In fact, the
helium atoms sit at local maxima of the interatomic po-
tential, where classical lattice dynamics predicts imagi-
nary phonon frequencies. Early theories of solid helium
(Glyde, 1976; Klein and Horton, 1972; Werthamer, 1969)
incorporated quantum zero point motion but also had to
recognize the correlations between atoms’ positions due
to their hard core repulsion, leading to effective poten-
tials with renormalized force constants and sound speeds.
Phonon dispersion curves were calculated and the nor-
mal, albeit slow, propagation of sound waves in solid
helium was understood. Around the same time, it was
realized that quantum exchange of atoms via tunneling
would have dramatic effects on point defects like vacan-
cies and impurities, allowing them to propagate through
a helium crystal, even at low temperatures (Andreev and
Lifshits, 1969; Andreev, 1976). Exchange was also rec-
ognized as crucial to magnetic order in solid 3He at mK
temperatures.

The development of path integral Monte Carlo (PIMC)
techniques, combined with advances in computational
power, made it possible to do fully quantum mechanical,
first principles simulations for condensed helium using

accurate interatomic potentials (Ceperley, 1995). These
directly confirmed the importance and consequences of
quantum zero point motion and exchange in liquid and
solid helium. Early PIMC work included computing the
Bose condensate and superfluid fractions, and the tran-
sition temperature in liquid 4He (Ceperley and Pollock,
1986; Pollock and Ceperley, 1987). For solid helium, the
atomic exchange constants for bcc 3He were determined
(Ceperley and Jacucci, 1987), giving nearest neighbour
exchange frequencies of order 10 MHz and confirming
that next nearest neighbor and multiple exchanges are
also important. The calculated exchange frequencies for
hcp 4He were much smaller (Bernu and Ceperley, 2005),
of order 100 kHz near the melting density. This is still
significant but, given 4He’s lack of spin, there is no di-
rect experimental confirmation of the values. More re-
cent PIMC simulations involved defects in solid helium,
including studies of vacancies and interstitials in hcp 4He
(Boninsegni et al., 2006a; Clark and Ceperley, 2008). Fol-
lowing the development of a new PIMC “worm” algo-
rithm (Boninsegni et al., 2006b), simulations have been
expanded to larger particle numbers, allowing extended
defects like grain boundaries (Pollet et al., 2007) and dis-
locations (Boninsegni et al., 2007) to be studied.

The properties of helium, including its solid phases,
were comprehensively reviewed in the late 1960s in mono-
graphs by Wilks (1967) and by Keller (1969). A more
recent overview of 3He is available in a recent book by
Dobbs (2000). Other reviews have focused on specific
aspects of solid helium. These include theoretical and
experimental aspects of exchange and the diffusion of de-
fects (Andreev, 1982; Grigor’ev, 1997; Guyer et al., 1971),
vacancies in 4He (Burns and Goodkind, 1994), the surface
of helium crystals (Balibar et al., 2005), and magnetic
phases in 3He (Adams, 2004; Bennemann and Ketter-
son, 1976; Osheroff, 1992). Two recent papers discussed
aspects of plasticity (Beamish, 2019) and superflow (Hal-
lock, 2019) in solid helium. This review will focus on the
mechanical properties of solid helium, which have not
been comprehensively described since the 1972 review by
Trickey et al. (1972), written at a time when ultrasonic
measurements were just beginning and the effects of de-
fects on helium’s elastic and plastic behavior had not
been explored.

II. STRUCTURE, PHASE DIAGRAMS AND CRYSTAL
GROWTH

The phase diagrams of 4He and 3He include multiple
crystal structures at easily accessible pressures, and high
quality single crystals can be rapidly grown at low tem-
peratures. This provides unique opportunities to study
defects, and to distinguish between quantum and struc-
tural effects on their behavior. However, as for other
materials, the quality of helium crystals depends on their
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preparation.

A. Phase diagrams

Helium does not freeze under its own vapor pressure
so its phase diagram has no triple point and the solid
never coexists with low density gas. At zero tempera-
ture, a pressure of about 2.53 MPa (25.3 bar) is required
to freeze 4He. For 3He, with its larger zero point motion,
the minimum freezing pressure is 2.93 MPa (29.3 bar)
at 315 mK, and an even higher pressure, 3.44 MPa, is
needed at zero temperature. The melting pressures in-
crease at higher temperatures. For example, at 2 K the
melting curve pressures are about 38 bar for 4He and 77
bar for 3He. Figure 2 shows the pressure vs. temperature
(P-T) phase diagrams for 4He (Grilly, 1973; Grilly and
Mills, 1962; Hoffer et al., 1976; Straty and Adams, 1966a;
Vignos and Fairbank, 1961) and 3He (Grilly, 1971; Straty
and Adams, 1966b), at temperatures up to 4.2 K and
pressures to 20 MPa (200 bar). For both isotopes, there
are stable bcc and hcp phases. The bcc region is very
small for 4He (inset) and at zero temperature solid 4He
is in the close-packed hcp phase. The larger zero point
motion of 3He favors the more open bcc phase, which
occupies a much larger region extending down to zero
temperature. Not shown in Fig. 2 are the close-packed
face-centered cubic (fcc) phases found in both 4He and
3He at much higher pressures and temperatures (above
100 MPa and 15 K).
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FIG. 2 Pressure-temperature (P-T) phase diagrams for 4He
(left panel) and 3He (right panel). The inset is an enlargement
of the bcc region for 4He. The pressure scales are the same
for 3He and 4He, but are labeled in MPa (on the left axis)
and bar (on the right axis).

Figures 3 and 4 show the low pressure regions of the
phase diagrams for 4He and 3He, respectively. The P-T
diagrams (upper panels of the figures) show the melting
curves separating liquid and solid, as well as the hcp-
bcc coexistence line and the lambda line separating the

normal (He I) and superfluid (He II) phases of 4He. The
lower panels show the corresponding molar volume vs.
temperature (V-T) diagrams, with the different phases
and their coexistence regions.

The large compressibility of solid helium means that
measurements are usually made at constant volume and
density, since the pressure cells in which the solid is grown
are much more rigid than the helium. It also means that
helium can be frozen at constant mole number, since in-
creasing the pressure by about 20 bar compresses the
liquid to solid densities. If a cell containing high den-
sity liquid is cooled without adding or removing helium,
e.g. by blocking the fill capillary, the liquid begins to
freeze when the temperature reaches the melting curve.
It then follows the melting curve until all the helium is
frozen at a lower pressure. The solid then cools at nearly
constant pressure. Examples of such “blocked capillary”
freezing paths are shown as horizontal (constant volume)
dashed red lines in the lower V-T diagrams of Figs. 3
and 4. The upper panels show the corresponding P-T
paths. Depending on the starting density, the system
may pass through several phases and coexistence regions
during cooling. For example, for a starting pressure of
5.1 MPa, the molar volume of liquid 4He is 20.9 cm3. At
this density, the liquid would begin to freeze into the hcp
phase around 2.35 K. Upon cooling, the liquid-hcp mix-
ture would transfom to a hcp-bcc mixture at the upper
triple point of the bcc phase (1.772 K) and then follow
the hcp-bcc coexistence curve until the bcc phase disap-
pears around 1.50 K. The hcp solid would then cool at
a nearly constant pressure of about 2.7 MPa. Samples
at higher densities would go directly from liquid to hcp,
for example the freezing path for a molar volume of 20.5
cm3, shown as a dashed red curve in Fig. 3. At low densi-
ties (molar volumes larger than 21.0 cm3, corresponding
to starting pressures below 49 bar) the 4He remains par-
tially liquid at low temperatures, and the solid portion
transforms from hcp to bcc and then back to hcp again.

Helium crystals can also be grown at constant pressure,
by keeping the fill capillary open and adding helium as
the liquid freezes. This corresponds to vertical paths in
the V-T diagrams of Figs. 3 and 4. This method avoids
hcp-bcc crystallographic transformations and the crys-
tals experience much smaller stresses than during blocked
capillary growth, where there are large pressure and tem-
perature changes.

The minimum in the 3He melting curve shown in Fig. 4
(Pmin = 2.931 MPa at Tmin = 315 mK) is due to 3He’s
spin. Below 315 mK, the spin entropy of the solid is larger
than the total entropy of the liquid. This unusual situ-
ation means that the slope of the melting curve is nega-
tive below 315 mK and low density 3He crystals partially
remelt when cooled at constant volume, as indicated by
the dashed red lines in Fig. 4 which show a blocked cap-
illary path at a molar volume of 24.6 cm3.
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FIG. 3 P-T (upper panel) and P-V (lower panel) phase di-
agrams for 4He. The dashed red lines and arrows indicate
the path followed during blocked capillary freezing at molar
volume of 20.5 cm3.
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FIG. 4 P-T (upper panel) and P-V (lower panel) phase di-
agrams for 3He. The dashed red lines and arrows indicate
the path followed during blocked capillary freezing at a molar
volume of 24.6 cm3.

B. Crystal growth and quality

Since the discovery of solid 4He by W.H. Keesom
(1926), helium has been solidified using different methods
which produce either polycrystals or single crystals. The
orientations of single crystals can be determined using
diffraction or optical techniques. Keesom and Taconis
(1938) were the first to apply x-ray diffraction to helium,
using Laue diffraction to determine the crystal structure
of hcp 4He. As discussed by Greywall (1971), this tech-
nique has been used to find the orientation of crystals in
some experiments, while other authors have used inelas-
tic neutron scattering. Optical birefringence can also be
used to orient hcp helium crystals, as shown by Heybey
and Lee (1967). The facets that are visible during crystal
growth provide a more general way to orient crystals, if
optical access if available.

For their study of sound propagation in hcp 4He crys-
tals, Crepeau et al. (1971) grew single crystals by filling
a cell that was kept at constant temperature T . They
observed that below 1.45 K this led to single crystals
whose crystal orientations they determined using optical
birefringence. For his ultrasonic measurements of elas-
tic constants, Greywall (1971) used a constant pressure
growth method, which had been introduced by Shal’nikov
(1962) and improved by Mezhov-Deglin (1966). Freezing
slowly in a temperature gradient allowed him to grow
single crystals at various pressures P , whose orientations
were determined using Laue x-ray diffraction.

The blocked capillary method used to grow helium
crystals at constant volume has been shown by Sasaki
and Balibar (2008) to produce polycrystals because many
different crystallites nucleate on favorable sites on the cell
walls. Growing crystals from the superfluid liquid at con-
stant temperature, on the other hand, usually produces
a single crystal, or a few large crystals, at or close to the
liquid-solid equilibrium pressure. When grown below ∼1
K, the crystals have facets with edges that can be eas-
ily analysed to determine the crystal orientation (Haziot
et al., 2013c; Sasaki and Balibar, 2008).

1. Polycrystals

For low temperature measurements, the experimental
cell is usually attached to the lowest temperature stage
of a dilution refrigerator and the solid helium has to be
grown from the liquid phase inside a closed cell. For
blocked capillary growth, the first step is to admit helium
through a thin capillary until the cell is filled with normal
liquid 4He at high pressure (greater than about 4.8 MPa).
This is typically done at ∼3 K, to ensure that the helium
is liquid everywhere along the fill line. In order to cool
down, one usually starts by pumping on the refrigerator’s
4He pot, which rapidly cools to about 1 K. Since the fill
capillary is thermally anchored to this “1 K pot”, a plug
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FIG. 5 Images of 4He crystals, obtained in a transparent cell
by Sasaki and Balibar (2008) when using different growth
methods. Crosses visible in the lower right corner of the im-
ages were carved on the windows to help adjust the focusing.

of solid helium quickly forms there, isolating the mass
of helium inside the cell from the external helium supply.
Assuming that this plug does not move and blocks all flow
of helium, the amount of helium in the cell is essentially
constant when the cell is cooled and the helium freezes.
If the fill line volume is negligible compared to the cell
volume, freezing occurs along an isochore that first meets
the melting curve at a temperature Ti and leaves it when
the helium is completely frozen at a lower temperature
Tf .

Figure 5 shows examples of optical images of 4He crys-
tals obtained by Sasaki and Balibar (2008) for various
growth methods. The crystals were grown in an opti-
cal cell between two transparent glass windows closing
a 11×11 mm hole through the body of the cell (3 to 10
mm thickness). The windows were sealed with indium
O-rings. The crystal shapes and the quality of the solid
samples depended on the growth method. For exam-
ple, panel (a) of Fig. 5 shows the result of rapid pressur-
ization (over a time 140 ms in this example) of normal
liquid helium (here at 1.8 K). This produced irregular
“snowflakes” and a highly disordered solid.

Figure 6 shows blocked capillary growth paths on the

FIG. 6 Paths followed when 4He is solidified using the
“blocked capillary method”. The paths shown correspond
to isochores for different starting pressures: Path A (starting
pressure 6.2 MPa), Path B (5.1 MPa) and Path C (4.63 MPa).

P-T diagram of 4He. The images in panels (b) and (c) of
Fig. 5 correspond to slow crystallization (typically over
3 hours) for path B of Fig. 6, starting with liquid at 5.1
MPa. When the cell reached 2.36 K, freezing began on
the walls, which were colder than the center of the cell,
producing the disordered hcp crystal visible in panel (b).
The network of lines in the center part of the image cor-
responds to defects in a thin solid layer covering the front
and back windows. At 1.77 K, the upper triple point of
the bcc-hcp transition, the bcc phase appeared between
the hcp solid on the walls and the liquid in the center of
the cell, as shown in panel (c). Here again the network
of lines in the central part corresponds to grain bound-
aries in a thin layer covering the glass windows. Upon
further cooling, the bcc region expanded and the liquid
region shrank. The last liquid disappeared at 1.66 K.
The bcc region in the center then shrank and disappeared
completely by 1.59 K, leaving only hcp solid. Note that
this behavior differs slightly from that expected based on
4He’s V-T phase diagram (the lower panel of Fig. 3). The
initial pressure (5.1 MPa) corresponds to a liquid molar
volume of 20.9 cm3. At this density, all of the liquid
should freeze at a fixed temperature of 1.772 K, since the
three phases (liquid, bcc and hcp) can only coexist at a
triple point. Their coexistence over a range of tempera-
tures (between 1.77 and 1.66 K) indicates that there are
temperature and/or pressure gradients in the cell during
blocked capillary growth.

Solidification along the A or C isochores led to similar
images. The highest pressure sample (path A) started
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with liquid at 6.2 MPa and began freezing at Ti =2.58
K. Freezing was complete at Tf ≈1.95 K, at a pressure
around 3.6 MPa in the hcp phase. According to Fig. 3,
there should still have been some liquid in the cell at
1.95 K, suggesting that additional helium entered the
cell, despite the solid plug in the capillary. The lowest
pressure sample (path C) started at a pressure of 4.63
MPa and freezing into the hcp phase began at Ti =2.19
K. As the sample cooled along the melting curve, some
hcp solid converted to bcc near the triple point but the
three phases again appeared together until the hcp phase
disappeared at 1.70 K. On further cooling, the remain-
ing liquid froze, leaving only bcc solid by 1.56 K. At 1.46
K, the lower bcc-hcp triple point, the bcc solid suddenly
converted to the denser hcp phase, and some liquid reap-
peared. The liquid region shrank during futher cooling
along the melting curve but some remained even at 35
mK.

In all three cases, solidification began from the nor-
mal liquid and, in the absence of a controlled thermal
gradient, it was very difficult to obtain good quality sin-
gle crystals. For paths A and B, the phase transitions
between the hcp and bcc phases introduced additional
stresses and disorder. To grow high quality single crys-
tals such as those shown in panels (d), (e) and (f), a
different growth method is required.

2. Single crystals

By pressurizing liquid 4He at constant temperature in
the superfluid phase, one can obtain single crystals (Pan-
talei et al., 2010). This can be done by slowly injecting
helium from an external source into a cell at a regulated
temperature. The pressure in the cell rises until it reaches
the crystallization pressure, where it remains until the
cell is full of solid and the fill line spontaneously blocks.
It is surprising that this can be done even at tempera-
tures below 0.775 K, where there is a shallow minimum in
the 4He melting curve (Grilly, 1973; Straty and Adams,
1966a). One would expect the helium to crystallize in
the fill line at that temperature, preventing more liq-
uid from reaching the cell. However, helium remains in
a metastable liquid state, only crystallizing at pressures
about 10 mbar above the liquid-solid equilibrium curve
(Balibar et al., 1980, 2000; Grilly, 1973; Pantalei et al.,
2010; Ruutu et al., 1996; Tsymbalenko, 1992), so that
crystallization begins in the cell, not in the fill line. If
the capillary is large enough and the helium is injected
sufficiently slowly, typically over a few hours, the pres-
sure in the fill line does not increase enough to nucleate
solid and it remains open until the helium in the cell is
frozen.

Using this method, one usually obtains a single crystal
in equilibrium with the superfluid liquid (Balibar et al.,
2005). More than one crystal may nucleate on different

favorable defects of the cell walls but the largest crys-
tal grows at the expense of the smaller ones due to the
smaller curvature of its liquid-solid interface. Because the
temperature inside a superfluid is homogeneous, gravity
is relevant and when this single crystal grows to a size
larger than the capillary length lc ≈ 1 mm, it usually
falls to the bottom of the cell. This fall may damage
the crystal quality but it can be melted down to a much
smaller size and the crystal can then be regrown from
the small seed crystal at the bottom of the cell. By re-
growing the crystal slowly, the cell can be filled with a
large high quality single crystal like those shown in pan-
els (e) and (f) of Fig. 5. This procedure is only possible if
the cell has optical access so the crystal size can be con-
trolled. Furthermore, the moving liquid-solid interface
has a tendency to stick to defects on the walls, especially
at points where a facet touches the wall. In this case,
crystal growth proceeds by successive jumps, which cre-
ates defects.

Ruutu et al. (1998) were able to grow free standing
single crystals with no screw dislocations. Their study
showed the importance of screw dislocations in crystal
growth, with drastic differences between the growth rates
of faceted crystals with or without emerging screw dis-
locations. In an attempt to grow perfect crystals, Souris
et al. (2015) grew crystals very slowly in a carefully
machined and polished cell with a completely open ge-
ometry. However, even at growth velocities as low as
270 nm/s, they found it impossible to grow crystals with
fewer than 104 dislocations per cm2. Their crystals, as
well as those studied by Haziot et al. (2013a) and by Fef-
ferman et al. (2014), typically had dislocation densities
of order 105 to 106 per cm2. However, those disloca-
tion densities were determined from elastic measurements
that are only sensitive to the samples’ mobile edge dis-
locations, not screw dislocations like those measured by
Ruutu et al. (1998).

For many types of experiment it is important to realize
that liquid regions can remain, even when a cell appears
to be full of solid. A grain boundary can create a liquid
channel, with a triangular cross section where it meets
a wall. These are sometimes visible, as in panel (d) of
Fig. 5 (Sasaki et al., 2008), and provide channels for su-
perfluid flow. The size of such channels decreases with
increasing pressure, but some liquid remains as long as
the pressure is within about 10 bar of the liquid-solid
equilibrium pressure Peq. Liquid channels have also been
seen at grain boundaries in high pressure fcc 4He crys-
tals growing on sapphire windows (Franck et al., 1983).
The image in panel (d) of Fig. 5 also shows that the solid
phase does not wet the cell walls. The contact angle of
the liquid-solid interface, which is near 135 degrees, de-
pends on the wall material and shows hysteresis, as usual
for rough walls (Sasaki et al., 2008). A consequence of
this non-wetting is that the solid phase does not enter
corners nor fill narrow cavities or sharp grooves in the
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cell walls unless the pressure is significantly higher than
Peq. It can also allow a liquid layer to form between a
helium crystal and the cell wall (Dash and Wettlaufer,
2005) at low pressures.

The procedure described above produces nearly ran-
dom crystal orientations but it would be useful for many
experiments if the orientation could be controlled. Two
methods have been used to obtain oriented single crystals
of helium. Both work if the temperature is low enough
for the crystals to be facetted during growth (Balibar
et al., 2005). When a faceted crystal falls to the bottom
of a cell, it often has a flat shape, like a coin whose faces
are perpendicular to the c-axis of the crystal structure.
In that case, it often lands on a c-facet, i.e. on a hexag-
onal plane of the crystal. By trying this procedure a few
times, one can obtain a crystal with its 6 fold-symmetry
axis (c-axis) vertical, as was done by Rolley et al. (1994b)
for their study of the properties of stepped surfaces of he-
lium crystals. In order to nucleate and force the first seed
to fall down freely to the bottom of the cell, they used a
local electric field on top, a method that had been used
by Keshishev et al. (1979) and by Tsymbalenko (1995).

One can also grow oriented helium crystals by epitaxy
on a graphite surface (Balibar et al., 1980; Eckstein et al.,
1980; Ramesh et al., 1984; Sasaki and Balibar, 2008).
This can work if the graphite surface has been sufficiently
well cleaned (Sasaki and Balibar, 2008), but it is not al-
ways successful. Panel (e) of Fig. 5 shows a faceted
helium crystal that nucleated on the right side of the
V-shaped graphite piece at the bottom of the cell, and
is consequently oriented parallel to it. Panel (f), how-
ever, shows a crystal that nucleated somewhere else in
the same cell and when it fell down, it was misoriented
with respect to the graphite.

Even if crystal orientations cannot be controlled, di-
rect optical observation of growth shapes allows the ori-
entation to be determined rather easily. For refrigerators
with optical access through sets of windows, tempera-
tures are limited to about 10 mK due to the absorption
of light and RF radiation from the outer world. To im-
age crystals in the sub-millikelvin range, groups in Leiden
(Wagner et al., 1996) and in Helsinki (Manninen et al.,
1992) have used CCD cameras working at 65 K inside
the refrigerator.

3. 3He crystals

As with 4He, it is possible to freeze 3He using the
blocked capillary method. However, the deep minimum
in the 3He melting curve at Tmin = 315 mK means that
low density 3He crystals partially remelt when cooled at
constant volume, as indicated by the dashed red lines in
Fig. 4 for a molar volume of 24.6 cm3. To ensure that
3He is completely frozen at low temperatures, initial liq-
uid pressures greater than about 4.5 MPa are required

FIG. 7 3He crystal shapes obtained by Rolley et al. (1986,
1994a). Panel (a): equilibrium shape at T = 320 mK. Panel
(b): (110) facets on a growth shape of a bcc 3He crystal at 70
mK. Panel (c): dendritic growth obtained with high growth
rates (30 µm/s) at 100 mK.

when using this technique. Growing 3He crystals directly
into the high pressure hcp phase (not shown in Fig. 4)
requires starting pressures above 18 MPa.

The minimum in the melting curve also means that it
is not possible to grow single crystals of 3He by injecting
mass through a fill line, since the fill line will block near
Tmin. Instead, one has to use a cell with a deformable
membrane so that the liquid can be compressed. Using
this method, Rolley et al. (1986) grew 3He crystals at
temperatures as low as 60 mK. Figure 7 shows images of
these crystals coexisting with liquid 3He. Panel (a) shows
a crystal at the minimum of the melting curve minimum,
T = 0.32 K. This is above the roughening transitions in
3He and the rounded equilibrium shape, due to gravity
and surface tension, was analyzed by Rolley et al. to
measure the surface tension of 3He or, more precisely,
the liquid-solid interfacial tension (Rolley et al., 1989).
During slow crystal growth at 70 mK, they also observed
(110) facets of these crystals, shown in panel (b). At
much lower temperature, additional facets were discov-
ered by Wagner et al. (1996), by Alles et al. (2001) and
by Tsepelin et al. (2002).

III. DEFECTS IN SOLID HELIUM

Some defects in solids can exist in thermal equilib-
rium; others are produced during crystal growth or
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by subsequent deformation. They can be classified as
point defects (vacancies, interstitials and impurities), 1-
dimensional defects (dislocations), or two dimensional
defects (grain boundaries and stacking faults). As in
other materials, these defects affect many of the crystals’
properties. In particular, dislocations and their interac-
tions with other defects dominate the mechanical behav-
ior of crystals. Quantum effects in helium crystals can
make defects highly mobile at low temperatures, which
results in unique behavior.

A. Vacancies

Creating a vacancy corresponds to moving an atom

from an interior lattice site to the crystal’s surface. This

increases the energy, entropy and volume (or the pres-

sure, in the case of solid helium where the solid is held

at constant volume). The equilibrium vacancy concen-

tration at temperature T and pressure P is

xv(T ) = e
( sv
kB

)
e
−(Ev+Pvv

kBT
)
. (2)

where Ev, vv and sv are the vacancy formation energy,
volume and non-configurational entropy. The vacancy
concentration increases with temperature and decreases
under pressure. Since a crystal lattice is not perfectly
rigid, neighboring atoms relax inward when an atom is
removed and the vacancy formation volume vv is smaller
than the atomic volume va in a perfect crystal, typically
vv ≈ 0.5 − 0.7va (Cai and Nix, 2016). In classical crys-
tals, the formation energy, which reflects the energy of
broken bonds with atoms adjacent to a vacancy, can be
roughly estimated from the solid-liquid interfacial energy
σLS (Andreeva et al., 1989; Balibar and Castaing, 1985;
Edwards et al., 1991; Keshishev and Andreeva, 1991) and
the surface area of the removed atom. The formation en-
tropy, which is separate from the configurational entropy
of the vacancy, is associated with local changes in vibra-
tional frequencies and is of order kB .

The most direct way to determine the vacancy forma-
tion energy is to measure the temperature dependence of
xv, by comparing changes in the density of lattice sites
(measured by x-ray diffraction) to changes in the density
of atoms (from thermal expansion measurements). In the
case of helium crystals confined in a rigid cell, the number
of atoms and total volume are fixed, so the vacancy for-
mation energy and entropy can be determined from the
temperature dependence of the lattice parameters. The
lattice parameter changes are substantial, since vacancy
concentrations in solid helium are as large as ∼0.3% near
melting. Such x-ray measurements have been made for
the bcc and hcp phases of both 3He and 4He (Fraass
et al., 1989; Granfors et al., 1987; Heald et al., 1983,
1984; Simmons, 1994). Formation energies in 3He var-
ied from 2.3 K for the bcc phase at low density (molar

volume Vm=24.86 cm3, pressure P=2.98 MPa) to 21.4 K
in the hcp phase at Vm=18.8 cm3 (P=13.8 MPa). For
4He, measurements were made over a narrower density
range, with comparable formation energies, e.g. 9.6 K in
the hcp phase at Vm= 20.68 cm3 (P=3.14 MPa). The
bcc phase of 4He exists only over a narrow temperature
range so the formation energy (∼9 K) is less precise.

Vacancy formation energies can also be extracted from
their effects on properties like the pressure or heat capac-
ity, but this requires that the contributions of phonons or
other thermal excitations are accurately known. An anal-
ysis of heat capacity data in bcc 3He (Greywall, 1977c)
gave vacancy energies similar to x-ray values. Surpris-
ingly, there is no clear evidence of a similar vacancy
contribution to the specific heat of hcp 4He, although
it should be substantial (Gardner et al., 1973), perhaps
reflecting a wide vacancy bandwidth with a small density
of states at low energies (Fraass et al., 1989).

The motion of vacancies also contributes to diffusion in
helium crystals, dominating at high temperatures. NMR
can be used to probe the motion of atoms with spin and
has been extensively used to study diffusion of 3He in
helium crystals (Allen et al., 1982; Grigor’ev, 1997; Kim
et al., 2013). In solid 3He, self-diffusion activation en-
ergies have been measured with NMR. They agree quite
well with the direct x-ray values for vacancies in bcc 3He,
but are significantly larger in hcp 3He (Heald et al., 1984).
The activation energy for vacancy diffusion can be larger
than for formation if vacancies have to overcome an en-
ergy barrier in order to move. The agreement between
the two energies for bcc 3He suggests that vacancies move
by tunneling. The higher diffusion activation energy in
hcp 3He indicates that tunneling is less effective and dif-
fusion is largely due to classical activation over an energy
barrier of about 12 K.

Since 4He atoms do not have spin, NMR cannot be
used to study self-diffusion in solid 4He, but it can be used
to study the diffusion of 3He impurities in 4He crystals.
At high temperatures, the diffusion is thermally activated
with activation energies similar to vacancy formation en-
ergies from x-ray measurements, although there is large
scatter between activation energies from different NMR
measurements (Fraass et al., 1989).

Motion of vacancies can also be studied through the
associated mass transport, since moving a vacancy by
one lattice site is equivalent to moving a helium atom
the same distance in the opposite direction. Because of
the pressure dependence of xv in eqn. 2, a pressure gra-
dient in a crystal will produce a corresponding vacancy
concentration gradient. Thermal vacancies will diffuse
from high to low concentration (low to high pressure),
so mass will flow in the opposite direction, reducing the
pressure gradient. The deformation associated with such
vacancy diffusion flow is, for example, a limiting factor
in metals for high temperature turbine applications. For
helium, vacancy diffusion flow has been shown to explain
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the frequency-dependent ultrasonic relaxation for solid
4He confined in the nanoscale pores of Vycor glass, giving
vacancy activation energies similar to other techniques
(Beamish et al., 1991). Recent experiments studied the
pressure-induced flow of solid 3He (Lisunov et al., 2015,
2016) and 4He (Lisunov et al., 2014) along 6-8 µm diam-
eter channels through a 10 µm thick membrane. At high
temperatures the flow was thermally activated, with the
activation energies of vacancies. Although vacancy diffu-
sion can also relax pressure gradients in larger samples,
diffusion time constants scale with the square of the sam-
ple dimensions. In macroscopic crystals, vacancy diffu-
sion is an effective annealing mechanism only at tempera-
tures close to melting. Also, since vacancy activation en-
ergies increase with density, the vacancy concentration at
a particular temperature decreases rapidly at high pres-
sures and diffusion becomes much slower.

The quantum nature of helium crystals has important
consequences for vacancies. The small energy barrier for
exchange of a vacancy and a neighboring atom means
that quantum tunneling is rapid, and vacancies can dif-
fuse through helium crystals even at low temperatures.
In the periodic lattice potential of 4He crystals they can
propagate as quasiparticles known as “vacancions” (An-
dreev and Lifshits, 1969; Burns and Goodkind, 1994;
Grigor’ev, 1997). Vacancies in solid 3He are also delo-
calized but, in contrast to 4He, are not expected to prop-
agate coherently. At temperatures above a few mK, the
3He is in a paramagnetic state, with disordered spins.
Exchange of a vacancy and a 3He atom changes the lo-
cal spin configuration, so the lattice potential through
which a vacancy moves is random, not periodic, and the
vacancy motion is diffusive (Bernier and Hetherington,
1989).

Exchange in helium crystals gives vacancies a band-
width which, if sufficiently large, creates an intriguing
possibility that some vacancies in helium crystals could
have negative energies. This would lead to a finite va-
cancy concentration at zero temperatures, i.e. an “in-
commensurate solid” with perfect periodicity but fewer
atoms than lattice sites. In 4He crystals, these zero point
vacancies (ZPV) would propagate and contribute to mass
flow. They could even Bose condense to form a “va-
cancy supersolid” with coexisting positional and super-
fluid order. This mechanism was initially suggested as
an explanation of apparent mass decoupling seen in tor-
sional oscillator measurements on solid 4He (Kim and
Chan, 2004a,b) but it is now clear that the apparent
mass decoupling was caused by the extraordinary elas-
tic effects described later in this paper, rather than be-
ing evidence of supersolidity (Beamish et al., 2012; Maris,
2012; Reppy et al., 2012). At present, there is no convinc-
ing experimental evidence for ZPV or for supersolidity in
perfect crystals of 4He. This conclusion is supported by
PIMC simulations on hcp 4He (Boninsegni et al., 2006a;
Prokof’ev and Svistunov, 2005) that find a vacancy ac-

tivation energy of 13 K, consistent with experimentally
measured values. The vacancies cluster and phase sepa-
rate at low temperatures, leaving a defect-free solid with
no zero point vacancies or evidence of superfluidity. How-
ever, PIMC simulations suggest that the vacancy activa-
tion energy in 4He may drop to zero in the presence of
large strains (Pollet et al., 2008), such as those near dis-
locations or grain boundaries.

B. Impurities

Because of the low temperatures at which helium crys-
tals are studied, most impurities present in helium gas
freeze to the walls, leaving only isotopic impurities (3He
impurities in 4He, or 4He impurities in 3He). These
are chemically identical to the atoms of the host crys-
tal but have different effective sizes. The lighter 3He
atoms occupy larger volumes in a 4He lattice because
of their greater zero point motion, while 4He impurities
are smaller than the host atoms in a 3He crystal. The
isotopic impurities sit at lattice sites as substitutional
impurities since interstitials are high energy defects in
helium (Boninsegni et al., 2006a).

Commercial helium gas has a 3He concentration x3
of about 10−7 (100 ppb). However, this varies from
about 25 to 300 ppb, depending on the source of the
gas (Oxburgh et al., 1986; Souris et al., 2014). Lower
3He concentrations can be achieved by distillation (∼1
ppb) or by a superfluid heat flush technique (x3 .10−12)
(Hendry and McClintock, 1987). It is, however, challeng-
ing to measure such low concentrations. This is most
commonly done using dedicated helium mass spectrom-
eters, which have resolution limits for x3 of about 1 ppb
(Amidon and Farley, 2010), although this can be ex-
tended to measure 3He concentrations in the 10−12 range.
Accelerator mass spectroscopy has been used for mea-
surements at even lower concentrations, down to 10−14

(Mumm et al., 2016). The rarer and more expensive iso-
tope, 3He, is harder to purify since distillation is not
straightforward and the superfluid heat flush technique
is not available. Impurity concentrations as low as x4 ≈
10−6 are possible, although not widely available.

Much purer 4He crystals can be produced in situ if
they are in contact with liquid 4He at low temperatures,
since 3He impurities are more tightly bound in the liq-
uid. The difference in binding energies is 1.36 K (Ed-
wards and Balibar, 1989), so the equilibrium 3He con-
centrations are very different at the low temperatures
of many experiments, e.g. a ratio greater than 1020 at
20 mK (Pantalei et al., 2010). However, defects in the
solid provide sites where 3He impurities may be prefer-
entially bound. Shear modulus measurements (Haziot
et al., 2013b; Syshchenko et al., 2010) on hcp 4He show
that edge dislocations are immobilized at low tempera-
tures by 3He impurities, which bind to them with an en-
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ergy EB ≈0.7 K . Since this is smaller than 3He’s binding
energy in liquid 4He, 3He impurities would still migrate
to the liquid at low temperatures, but the binding sites
in the solid may make it difficult to achieve equilibrium
between the 3He concentrations in the solid and liquid.
There may also be other locations in the crystal with
even larger binding energies, e.g. nodes where disloca-
tions meet or grain boundaries, so some 3He may remain
attached to defects at low temperatures. However, 4He
crystals can be grown from the superfluid at tempera-
tures as low as 20 mK, where all the 3He impurities will
remain in the liquid. This produces 4He crystals contain-
ing essentially no 3He (Pantalei et al., 2010), although
3He impurities do accumulate at the 4He liquid-solid in-
terface, with a binding energy estimated as 3 to 4 K
(Rolley et al., 1995a; Treiner, 1993; Wang and Agnolet,
1992).

At high temperatures, the motion of impurities is dom-
inated by thermally activated vacancies, since the bar-
rier for vacancy-impurity exchange is small. However,
direct exchange with host atoms allows impurities to
move, even in the absence of vacancies. At low tem-
peratures this quantum tunneling allows 3He atoms to
propagate as “impuritons” in the periodic 4He lattice.
These quasiparticles have a bandwidth zJ34 and group
velocity v3 = zaJ34, where z is the number of near-
est neighbors (12 for hcp crystals) and a is the atomic
spacing. NMR measurements give a 3He-4He exchange
frequency J34/2π ≈ 0.8 MHz (Kim et al., 2013), which
implies that 3He atoms in solid 4He are very mobile at
low temperature, with velocities of order cm/s. Their
bandwidth ∆ = zJ34 is ≈0.5 mK, so 3He impuritons
are narrow band quasiparticles. This bandwidth is much
smaller than the potential wells or barriers produced by
elastic strains around dislocations or other 3He atoms,
which results in large elastic scattering cross-sections for
such defects (Andreev, 1982; Guyer et al., 1971). The
ballistic motion of 3He impurities is limited by 3He-3He
scattering, giving a mean free path inversely proportional
to the 3He concentration (Grigor’ev, 1997), of order 100
nm at the lowest concentrations x3 ≈60 ppm.

Less is known about the motion of 4He impurities in
solid 3He since, being spinless, their diffusion cannot be
studied directly with NMR techniques and, unlike vacan-
cies, impurities do not contribute significantly to mass
flow. The 4He impurities must be delocalized, with ex-
change rates comparable to those of 3He atoms in 4He
crystals but, as for vacancies, spin disorder in solid 3He
prevents them from propagating coherently.

C. Dislocations

Dislocations are one-dimensional structural defects
(Hull and Bacon, 2011) that can have edge or screw char-
acter, as illustrated in Fig. 8. The edge dislocation on the

left is simplest to describe and can be thought of as the
result of inserting a vertical half plane of atoms into the
lattice. The bottom boundary of the half plane, the solid
blue line in Fig. 8, is the edge dislocation. In the core
region very close to the dislocation the crystal is highly
distorted but far away the lattice deformations are small
and can be described by linear elasticity. A dislocation is
characterized by its Burgers vector, ~b, the lattice vector
defined by the gap in a path that makes a circuit around
the dislocation that would close in a perfect crystal. For
an edge dislocation, the Burgers vector (shown as a short
black line above the diagram) is perpendicular to the dis-
location line and to the added half plane that created it,
i.e. horizontal in Fig. 8. A screw dislocation, illustrated
on the right in Fig. 8, can be thought of as the result of
cutting a slit partway through a a crystal and shifting the
atoms on one side in the direction parallel to the border
of the slit. For a screw dislocation, the Burgers vector
(the short black line below the diagram) is parallel to the
dislocation line (the edge of the slit, i.e. the solid blue
line near the center of the diagram).

b

FIG. 8 Deformations around edge (left) and screw (right)
dislocations. The dislocations are the lines near the centers of
each diagram (shown in blue). The short black lines at the top
(bottom) of the left (right) diagrams are their corresponding
Burgers vectors b.

If a shear stress σ is applied to a crystal containing
a dislocation, the dislocation experiences a force propor-
tional to the stress and can move via a process known
as glide. An edge dislocation moves in the glide plane
defined by the dislocation line and its Burgers vector. If
the dislocation moves horizontally through a crystal, the
top half of the crystal is displaced with respect to the
bottom half over the slipped region, by an amount equal
to the Burgers vector. This is illustrated in the left panel
of Fig. 9. The dislocation shear strain εdis adds to the
elastic strain εel that the shear stress would produce in
a perfect crystal, increasing the total strain ε and there-
fore reducing the solid’s effective shear modulus µ = σ/ε.
Since glide involves only local rearrangements of atoms
near the core of a dislocation, plastic deformation can
occur at much smaller stresses than would be needed to
displace the entire plane of atoms in a perfect crystal.
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The energy of a dislocation depends on its position, so
it moves in a “Peierls potential” with the periodicity of
the lattice (Friedel, 1964; Suzuki et al., 2013). The height
of the energy barrier between neighboring minima is the
Peierls energy (per unit length), EP , and the minimum
stress required to move a dislocation over this barrier is
the Peierls stress, σP = 2π

b2 EP . The Peierls stress de-
pends on the crystal structure and on the glide direction,
and is usually smallest for glide in close-packed crystal
directions. It also depends on the detailed structure of
the dislocation core, decreasing exponentially with in-
creasing dislocation width (Hull and Bacon, 2011), and
is difficult to calculate accurately although there are gen-
eral trends. In hcp and fcc materials, the dominant glide
directions are usually in the close-packed planes. This
leads to anisotropic slip behavior in hcp crystals where
the slip occurs in the basal plane. General plastic defor-
mations require slip in multiple directions so the stress at
which they begin may be controlled by the largest Peierls
barrier, not by the easy slip direction.

For dislocations that lie along crystallographic direc-
tions, the glide described above corresponds to moving
the entire dislocation line from its low energy configura-
tion along a lattice direction, over the Peierls barrier to
the next lattice row. In fact, dislocations are not usu-
ally perfectly aligned with a lattice direction, which in-
troduces “grown in” or “geometric” kinks, i.e. locations
at which the dislocation line crosses between neighbor-
ing minima of the Peierls potential, as illustrated in the
left diagram of Fig. 9. If such a kink moves along the
full length of the dislocation, the entire line is displaced
by one lattice constant. The one-dimensional periodic
potential seen by a kink moving along the dislocation is
generally smaller than the Peierls potential for moving an
entire dislocation line, so glide may proceed by motion of
kinks along dislocations. Even in the absence of geomet-
ric kinks, kink-antikink pairs can be thermally excited at
high temperature, and dislocations can glide when these
pairs separate and the kinks and antikinks move in differ-
ent directions along the dislocation. In a quantum solid
like helium, it is possible that these pairs could be cre-
ated by tunneling, which would effectively eliminate the
Peierls barrier and delocalize the dislocation.

In an hcp crystal, the primitive unit cell has a basis
of two atoms. A perfect edge dislocation in the basal
plane corresponds to inserting the vertical planes corre-
sponding to both sets of atoms and has a Burgers vector
b equal to the lattice spacing in the basal plane. In-
serting a single plane involves less lattice distortion, but
the corresponding displacement is not a lattice vector of
the hcp crystal. Instead it creates a “partial dislocation”
with a Burgers vector bp = b/

√
3 at an angle ± 30◦ with

respect to the perfect dislocation. The perfect disloca-
tion could split into two such partials which, being of the
same sign, repel each other elastically. Since the elas-
tic energy of a dislocation is proportional to the square

FIG. 9 Kinks (left diagram) and jogs (right diagram) on edge
dislocations. An edge dislocation (the solid red line) corre-
sponds to the edge of a vertical half plane inserted into the
lattice. Its Burgers vector, indicated by the red arrow at
the bottom of each diagram, is perpendicular to the disloca-
tion line. The dislocation line and its Burgers vector define
the horizontal glide plane, outlined by the dashed blue lines.
The shaded regions of the glide plane are the portions of the
crystal where slip has occurred. The kink (left panel) is a
horizontal step in the dislocation line, in the direction of the
Burgers vector. The jog (right panel) is a vertical step in the
dislocation line, perpendicular to the Burgers vector.

of its Burgers vector, splitting into two widely separated
partials would lower the total elastic energy by a third.
However, this creates a stacking fault in the two dimen-
sional region between the two partial dislocations (Hull
and Bacon, 2011). The energy of this stacking fault is
proportional to its area, i.e. to the separation D between
the partials, so there is an attractive force between them.
The balance between these forces determines the equilib-
rium separation D of the partials, roughly proportional
to µa2/γ, where γ is the stacking fault energy per unit
area. For the edge dislocation that glides in the basal
plane of hcp crystals, the stacking fault corresponds to a
layer of fcc structure. The hcp and fcc structures have
the same number of nearest neighbors and very similar
energies so γ is small and this dislocation is expected to
split into widely separated partials. In hcp crystals there
are no stable stacking faults in other directions so edge
dislocations with, for example, Burgers vectors along the
c-axis do not split into partials.

In addition to glide, which does not require mass trans-
port within the crystal, an edge dislocation can move in a
direction perpendicular to its Burgers vector (vertically
in Fig. 8) via a process known as climb. This involves
adding or removing atoms at the edge of the inserted
half plane, so requires mass flow to or from the disloca-
tion. At high temperatures this can occur via diffusion of
thermal vacancies. Dislocations do not climb as a straight
line but rather form vertical jogs, as shown in the right
hand diagram of Fig. 9. The jogs move along the dislo-
cation when atoms are removed, allowing the dislocation
to climb vertically. Jogs are essentially short sections of
dislocations with a perpendicular orientation. If, as often
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happens, the Peierls stress in that direction is large, jogs
may pin the dislocations and prevent them from gliding.

For an edge dislocation like that shown in Fig. 8, the
lattice is compressed above the dislocation and expanded
below it. For screw dislocations, there is no compression,
only shear distortions. Within the cores of dislocations,
atomic displacements are large and depend on details of
interatomic interactions, but at distances larger than a
few lattice constants the deformations can be described
as elastic strain fields. The energy per unit dislocation
length associated with this elastic field can be computed
by integrating the strain energy from the radius r0 of
the dislocation core region to a cutoff distance R that is
roughly the separation between dislocations (Hirth and
Lothe, 1982; Hull and Bacon, 2011), giving

Eedge =
µb2

4π(1− ν)
ln
R

r0
; Escrew =

µb2

4π
ln
R

r0
(3)

for edge and screw dislocations, where µ and ν are the
crystal’s shear modulus and Poisson ratio (the crystal is
assumed to be elastically isotropic). The dislocation’s
total energy includes the core energy, which is difficult
to estimate, but is usually small compared to the elastic
energy.

Dislocations cannot simply end within a crystal but
two dislocations can join to form a third dislocation as
long as the total Burgers vector is preserved. Dislocations
form a network of connected dislocations, characterized
by the dislocation density Λ (total length of dislocations
per unit volume) and the average distance between nodes,
known as the network length LN . These parameters are
not independent - when the dislocation density is high
the probability of intersecting is larger and the network
length is smaller. If dislocations formed a perfect cu-
bic network of intersecting dislocations, they would be
related by ΛL2 = 3. Networks in real crystals are disor-
dered, of course, with, a distribution of network lengths.
Also, if dislocations are somehow aligned to avoid cross-
ing, e.g. parallel dislocations in a low angle grain bound-
ary or non-intersecting 2D networks, then ΛL2 can be
much larger, as we will see for helium.

Defects like dislocations and impurities interact elasti-
cally through their strain fields. For example two parallel
dislocations of the same sign (Burgers vectors in the same
direction) repel each other, while dislocations of opposite
sign attract. Similarly, an impurity with a radius (1+δ)ra
that is larger than ra of the host atoms (e.g. a 3He atom
in a 4He crystal) will be attracted to the expanded region
on one side of an edge dislocation. A smaller impurity
(e.g. a 4He atom in a 3He crystal) will be attracted to
the opposite side, where the lattice is compressed. The
binding energy can be estimated as EB ∼ µδ va where δ
is the misfit parameter and µ is the solid’s shear mod-
ulus. The small value of µ for helium results in very
small estimates of binding energies for isotopic impuri-
ties, e.g. EB ∼0.6 K for hcp 4He (Iwasa and Suzuki,

1980), similar to the binding energy inferred from elas-
tic measurements, ∼0.7±0.1 K (Fefferman et al., 2014;
Syshchenko et al., 2010). Using PIMC techniques, Cor-
boz et al. (2008) have computed a binding energy of 0.8 K
for a 3He atom on a screw dislocation in hcp 4He, but this
has not been experimentally confirmed. The calculations
required modifications of standard PIMC techniques and
the origin of impurity binding is not obvious since there
are only shear deformations around screw dislocations.

An impurity bound to a dislocation acts as a pinning
center, since impurities normally can move through the
lattice only via diffusion. However, individual impuri-
ties are relatively weak pinning centers and dislocations
will break away from them at large stresses, leaving only
the much stronger network pinning at nodes where dis-
locations meet. The impurity pinning length is inversely
proportional to the concentration of impurities bound to

the dislocation, xdisi = xi e
EB
kBT , and in contrast to con-

ventional solids where impurity motion freezes out during
cooling, impurities in helium remain mobile at low tem-
perature, so the dislocation and bulk impurity concen-
trations can quickly reach equilibrium. At low temper-
atures, xdisi can be much larger than the bulk impurity
concentration xi0, e.g. by a factor of more than 108 at 50
mK for EB = 1 K. When Li = a/xdisi becomes compara-
ble to the network length LN , impurity pinning reduces
the dislocations’ mobility. At lower temperatures, impu-
rities can saturate dislocation lines (Li ∼ a), completely
immobilizing them.

The effects of gliding dislocations on a solid’s elastic
behavior were analyzed by Granato and Lücke (1956), in
order to interpret measurements of ultrasonic velocities
and attenuation in metals. They treated dislocations as
mobile strings of length L, the distance between pinning
points. The elastic energy per unit length in eqn. 3 acts
as a line tension C. When a stress is applied to the crys-
tal, a dislocation loop experiences a force per unit length
F = σb, where σ is the component of the shear stress
in the dislocation’s glide plane, in the direction of its
Burgers vector. It moves in response to this force, bow-
ing out between pinning points. For a static stress, the
average displacement (Granato and Lücke, 1956) of the
dislocation is ξ0 = (16b/π5C)σL2. Over the area swept
out by the dislocation line, ξ0L, the crystal has slipped
a distance b. The strain produced by a density Λ of dis-
locations of length L is εdis = Λbξ0. The total strain is
the sum of this dislocation strain and the elastic strain
εel that would occur in a dislocation-free crystal. The
resulting shear modulus, µ = σ/(εel + εdis) is reduced
from its intrinsic value in a perfect crystal, µ0 = σ/εel,
i.e. dislocation motion softens the crystal. Its shear mod-
ulus is reduced by a factor proportional to ΛL2 so a few
long dislocations can have the same effect as many short
ones.

To extend this model to the high frequencies used in
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ultrasonic measurements, the inertia and damping of dis-
locations had to be considered. A dislocation gliding
through a crystal at speed vd carries with it a strain field
that accelerates nearby atoms, giving the dislocation an
effective mass per unit length πρb2. The moving disloca-
tion is damped, for example by the scattering of thermal
phonons, which gives a resistive force (per unit length)
proportional to its velocity, Fd = −Bvd. Phonon scatter-
ing from a dislocation’s static strain field gives a damp-
ing B ∝ T 5. However, the absorption and re-emission of
phonons by mobile dislocations is a more effective scat-
tering mechanism at low temperatures. The damping
coefficient for this “fluttering” mechanism has been cal-
culated (Ninomiya, 1974) as

B =
14.4k3B
π3~2c3

T 3 (4)

where c is the Debye sound speed of the solid.
The Granato-Lucke equation of motion for the dis-

placement ξ(x, t) at time t and position x along a dis-
location line driven by a stress σ(t) is

Aξ̈ +Bξ̇ − C ∂
2ξ

∂x2
= bσ (5)

where A = πρb2 is the effective mass and C is the line
tension from eqn. 3. In acoustic applications, the stress is
periodic, σ0e

iωt. For small damping, e.g. at low tempera-
tures, a dislocation loop of length L has a sharp resonance
at an angular frequency

ω0 = 2πf0 =

√
2

1− ν
vt
L

(6)

where vt =
√
µ/ρ is the shear sound speed in the solid.

For a 10 µm long dislocation in solid 4He, this occurs at
f0 ∼ 10 MHz. At acoustic frequencies well below f0, the
dislocation motion and associated strain εdis are in phase
with the applied stress, so the shear modulus is reduced
from its purely elastic value. At frequencies above f0,
the dislocation’s inertia dominates and the dislocation
strain is out of phase with the applied stress, increasing
the shear modulus. If the crossover frequency can be
measured, the loop length between pinning points can
be determined.

Of course, the Granato-Lucke model of dislocations
contains a number of assumptions. It assumes that the
dislocations move freely like strings, i.e. that they are
not affected by the lattice Peierls potential. This is plau-
sible for dislocations with easy glide directions, e.g. in
the basal plane of hcp crystals. It assumes that pinning
points are static, but 3He impurities are highly mobile
in solid 4He and may not be very effective pinning cen-
ters. It also oversimplifies a number of aspects of the
dislocations’ response to stresses. Some are easily fixed,
e.g. by including an orientation factor R to account for
the component of the applied stress in the dislocation’s

glide plane. Others are more complicated, e.g. writing
the dislocation’s properties in terms of the crystal’s elas-
tic constants Cij rather than using a shear modulus and
Poisson ratio for an isotropic medium. However, the ef-
fects of including elastic anisotropy are modest compared
to other approximations in the model.

An important limitation when using this model to ex-
tract dislocation densities from ultrasonic or acoustic
data is that dislocation loops in real crystals are not
all the same length. Although it may be reasonable
to assume an exponential distribution of lengths Li for
random impurity pinning, the dislocation network itself
is disordered, with an unknown distribution of network
lengths LN . Integrating over an assumed distribution of
loop lengths affects the calculated dislocation densities,
particularly in the case of short loops that make very
little contribution to elastic properties. Also, it is impor-
tant to remember that not all dislocations are mobile,
e.g. edge or screw dislocations in glide planes with large
Peierls barriers do not respond to small shear stresses
and will not be detected in acoustic measurements.

D. Grain boundaries and stacking faults

As shown in Fig. 5, freezing can nucleate at more than
one location, producing multiple helium crystals with dif-
ferent orientations. Samples grown by rapid injection or
using the blocked capillary technique have smaller crys-
tallites and more grain boundaries. These grain bound-
aries can affect a solid’s mechanical behavior, for exam-
ple by acting as sources and sinks for dislocations and
vacancies. They may also include disordered or liquid-
like layers where superflow could occur in solid 4He sam-
ples, as suggested by PIMC studies that identified some
grain boundaries in 4He as superfluid (Pollet et al., 2007).
Close to the melting curve, thicker superfluid films can
appear at grain boundaries and superfluid channels ap-
pear where three grain boundaries meet, or where grain
boundaries meet a wall (Franck et al., 1983; Sasaki et al.,
2007).

When crystals with similar orientations meet, the re-
sulting grain boundary is essentially an array of edge
dislocations with spacing inversely proportional to the
angle between the crystals. Such low angle grain bound-
aries can be detected via the line broadening (“mosaic
spread”) they produce in diffraction measurements. Syn-
chrotron x-ray measurements on hcp 4He crystals grown
at constant pressure (Burns et al., 2008) showed single
crystals of cm dimensions, although faster freezing pro-
duced multiple crystals with sizes of a few mm. However,
the mosaic angle (typically about 6.5×10−4 rad) within
these large crystals indicated that they contained low an-
gle grain boundaries corresponding to arrays of disloca-
tions separated by about 1500 b. At high temperatures
(above 0.7 Tm), these boundaries were not fixed. Their
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motion appeared to be driven by stress gradients and
increased with temperature. Earlier neutron diffraction
experiments (Pelleg et al., 2006) showed similar motion
of low angle boundaries in bcc 4He, but not in the hcp
phase. Sub-boundaries have been directly imaged in x-
ray topography imaging studies on 4He single crystals
(Iwasa, 2002; Iwasa et al., 1987, 1995), although individ-
ual dislocations could not be resolved.

Another type of 2-dimensional defect can be produced
during crystal growth or by vacancies and dislocations.
A stacking fault (Hull and Bacon, 2011) occurs where
the sequence of atomic planes of a perfect crystal is dis-
rupted. For example, an fcc crystal is made up of close-
packed planes arranged in an ABCABCABC order, while
an hcp crystal consists of the same close-packed atomic
planes alternating in an order ABABABAB. If the reg-
ular sequence is disrupted, for example a crystal with
stacking sequence ABABCBCB, two hcp regions are sep-
arated by a stacking fault that is essentially a layer of fcc
structure. The hcp and fcc structures have the same
coordination number and configuration of nearest neigh-
bors. They differ only in the arrangement of atoms at
larger distances so their energies are similar.

In helium, the hcp/fcc energy difference and the cor-
responding stacking fault energy per unit area, γ, are
very small. For 4He, γ can be roughly estimated using
the measured latent heat for the hcp-fcc transition at
113 MPa (Franck, 1980), which gives a value of about
γ ≈10−5 J/m2. However, γ is expected to be much
smaller at pressures around 2.5 MPa where most mea-
surements on solid 4He have been made and stacking
fault energies γ ∼ 2×10−6 J/m2 have been computed by
Borda et al. (2016) using PIMC methods. Stacking fault
energies are much larger in conventional materials, typi-
cally around 0.1 J/m2, and even for an inert gas crystal
like krypton (Keyse and Venables, 1985) they are about
three orders of magnitude larger than in solid helium.

Stacking faults can be created during thermal quench-
ing, when vacancies condense and create voids which then
collapse, leaving prismatic dislocation loops. They are
also created when a perfect dislocation separates into
two partial dislocations. Whether a particular disloca-
tion splits, and the spacing D between the partials, de-
pends on the stacking fault energy. The small value of γ
leads to large splitting of edge dislocations in the basal
plane of hcp 4He. Borda et al. (2016) estimate an elas-
tic splitting of about 43 nm, i.e. more than 100b. Their
PIMC simulations confirmed that these dislocations are
split by at least 11b, a lower limit set by the size of the
simulation box.

IV. ELASTIC PROPERTIES OF SOLID 4HE AND 3HE

A. Sound modes and elastic constants Cij

Inert gases interact via weak, spherically symmetric
Van der Waals potentials and form simple crystal struc-
tures at low temperatures, making them an attractive
testing ground for calculations of elastic properties. Clas-
sical lattice dynamics gives a good description of the
heaviest gases, but the behavior of helium is dominated
by quantum effects. Nonetheless, sound propagates nor-
mally in solid helium crystals and their elastic constants
have been determined from ultrasonic and inelastic neu-
tron scattering (INS) measurements of sound speeds.

Single crystals are anisotropic and their full set of
elastic constants is needed to calculate sound speeds
and polarizations in different crystallographic directions.
When appropriately averaged, these give the shear and
bulk moduli for polycrystalline samples (Maris and Bal-
ibar, 2010). Elastic constants have been measured near
the melting temperatures for all three crystallographic
phases of 4He (bcc, hcp and fcc), but only for the bcc
phase of 3He. Cubic crystals (e.g. bcc and fcc) have
three independent elastic constants (C11, C12 and C44).
Under hydrostatic pressure they compress isotropically,
with a bulk modulus B = 1

3 (C11 + 2C12). Hexagonal
crystals (e.g. hcp) have five independent elastic constants
(C11, C12, C13, C33 and C44). Their elastic properties are
isotropic about the c-axis, but under hydrostatic pressure
the strain parallel to the c-axis can differ from that in
perpendicular directions, so the expression for the bulk
modulus is more complicated. However, in hcp 4He the
c/a ratio, which is very close to the 1.633 value for ideal
close packing, is known to be essentially independent of
pressure (Franck and Wanner, 1970). This implies that
C11 + 2C12 ≈ C33 + 2C13, which gives a simplified ex-
pression for hcp 4He’s bulk modulus B ≈ 1

3 (C33 + 2C13).

Table I gives measured values of the elastic constants
of solid helium. In 4He, the bcc phase exists only over a
narrow range around a molar volume of 21.0 cm3. This
corresponds to the pressure (2.8 MPa) at which its bcc
elastic constants are listed in Table I (Greywall, 1976).
The ultrasonic measurements (Greywall, 1971, 1977a) for
hcp 4He extend over a molar volume range from 20.97 to
19.28 cm3/mol (pressures from 2.6 to 5.8 MPa). Recent
quantum mechanical calculations of the zero temperature
elastic constants of hcp 4He (Cazorla et al., 2012; Pessoa
et al., 2012) are in good agreement with the experimen-
tal values. Inelastic neutron scattering measurements
(Eckert et al., 1977, 1978; Reese et al., 1971; Thomlin-
son et al., 1978) have also provided some information on
elastic constants of hcp 4He at pressures up to 370 MPa
(molar volume 9.41 cm3) and of fcc 4He at a pressure of
493 MPa (molar volume 9.03 cm3).

The bcc phase is stable over a wider range in 3He,
from 24.9 to 18.9 cm3/mol (pressures from 2.93 to 13.7
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isotope (bcc) Vm (cm3) P (MPa) C11 (MPa) C12(MPa) C44 (MPa) B (MPa) A

4He 21.00 2.8 31.1±.7 28.1±.6 21.7±.2 29.1±.6 14±6
3He 24.45 3.3 20.16±.2 16.73±.4 9.29±.1 18.0±.3 5.3±1
3He 21.66 6.5 38.0±.5 34.5±.8 19.8±.3 35.9±.7 11±4

isotope (fcc) Vm (cm3) P (MPa) C11 (GPa) C12(GPa) C44 (GPa) B (GPa) A

4He 9.97 292 1.56±.07 1.06±.07 0.79±.02 1.23±.07 3.2±1
4He 9.43 380 2.17±.02 1.62±.03 1.00±.02 1.80±.03 3.6±0.4
4He 9.03 453 3.13±.23 2.24±.23 1.19±.05 2.54±.23 2.7±1.5

isotope (hcp) Vm (cm3) P (MPa) C11 (MPa) C33(MPa) C12 (MPa) C13(MPa) C44 (MPa)

4He 20.97 2.6 40.5±.4 55.4±2 21.2±.4 10.5±1 12.4 ±.2
4He 20.55 3.2 46.6±.2 60.4±4 26.1±.4 NA NA
4He 20.32 3.6 55±2 71±3 29±1 13.1±1 14.0 ±1
4He 19.5 5.3 64.1±4 87.3±6 34.9±.3 NA NA
4He 19.28 5.8 76±3 98±4 42±2 19.8±1 19.6 ±1
4He 16.00 21.4 170±30 240±20 95±20 NA 50 ±10
4He 11.61 160 1130±70 1260±40 NA NA 240 ±10
4He 9.41 370 2820±80 3200±60 NA NA 5660±10
3He 18.77 15.0 [135±14] [156±16] [43±4] [39±4] [36 ±4]

TABLE I Elastic constants of solid helium in its different crystallographic phases: bcc (top), fcc (middle) and hcp (lower
panel). The first three columns give the isotope (4He or 3He), the molar volume and the pressure. For the bcc and fcc phases, the
other columns give the three elastic constants of cubic crystals, the bulk modulus B and the anisotropy A. For the hcp phases
they give the five hexagonal crystal elastic constants. Data are from ultrasonic velocity measurements (Crepeau et al., 1971;
Greywall, 1971, 1975, 1976, 1977a) or, for pressures above 20 MPa, from inelastic neutron scattering measurements (Eckert
et al., 1978; Reese et al., 1971; Thomlinson et al., 1978). The hcp 3He elastic constants (in square brackets) are calculated
values (Schoffel and Muser, 2001) since there have been no experimental measurements for the hexagonal 3He phase.

MPa), and extends to zero temperature. Its elastic con-
stants have been measured at densities between 21.66 and
24.45 cm3/mol (Greywall, 1975). The elastic constants
of hcp 3He have not been measured but Table I includes
calculated values for a molar volume of 18.77 cm3/mol,
computed using path integral techniques (Schoffel and
Muser, 2001). These hcp elastic constants are expected
to be quite accurate since the corresponding elastic con-
stants computed for the bcc phase of 3He agree well with
experimental values.

The ultrasonically determined elastic constants in Ta-
ble I were measured near the crystals’ melting points.
The neutron scattering measurements were made at tem-
peratures between 4.2 and 10 K (for hcp 4He) and be-
tween 19 and 22 K (for fcc 4He). At pressures below 20
MPa, the variations of the elastic constants with temper-
ature are smaller than their experimental uncertainties.
For the highest pressure fcc 4He sample, with a melting
temperature of 38.5 K, the elastic constants decrease by
more than 10% at the melting point.

At low pressures, solid helium has extremely small elas-
tic constants, for example a bulk modulus about 35 and
140 times smaller than those of neon and xenon, respec-
tively (Beamish, 2001). Although some of this difference

is attributable to helium’s weak interatomic attraction,
much of it is the result of its large zero point motion.
This expands solid helium’s lattice and makes it about
25 times more compressible than a classical crystal with
the same interatomic potential. Its large compressibil-
ity means that applying the maximum pressure shown
in Table I (453 MPa) changed 4He’s density by a factor
of 2.3, which increased its elastic constants by a factor
of 100. Helium’s small elastic constants also mean that
sound propagates very slowly, at speeds as low as 75 m/s
for transverse waves at low pressures.

Figures 10 and 11 show the density dependences of
the elastic constants of the bcc and hcp phases of he-
lium. The shear elastic constants C44 of bcc 3He and
4He fall on a common curve, in contrast to C11, C12

and the bulk modulus B = 1
3 (C11 + 2C12), which are

significantly lower for 4He. This is not surprising since
the zero point energy is larger for 3He, which increases
its pressure and bulk modulus compared to 4He at the
same density. Zero point motion also affects helium’s
elastic constants in other ways. Compared to crystals of
the other inert gases (which have the fcc structure), the
anisotropy parameter A = 2C44

(C11−C12)
is unusually large

for bcc helium (Beamish, 2001). This results in ultra-
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sonic beam deviations as large as 60◦ and consequent dif-
ficulties in observing the transverse modes in some crys-
tallographic directions (Wanner, 1971). In bcc and fcc
crystals, where atoms sit at centers of inversion symme-
try, the elastic constants should obey the Cauchy relation
C12 − P = C44 + P , where P is the pressure, provided
that thermal and quantum motion can be neglected. De-
spite the importance of zero point motion in helium, this
relationship holds as well in bcc and fcc helium as in the
fcc crystals of the heavier inert gases (Beamish, 2001).

In hcp crystals, atoms do not sit at centers of inversion
symmetry so there are no equivalent Cauchy relations.
The empirical relation C11 + 2C12 ≈ C33 + 2C13, which
follows from the constant c/a ratio of hcp 4He, holds
within the uncertainty of the measurements, so the bulk
modulus is quite accurately given by B ≈ 1

3 (C33 +2C13).
This bulk modulus is plotted in Fig. 11 (circles).
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FIG. 10 Elastic constants and bulk modulus of bcc helium
from ultrasonic measurements (Greywall, 1971, 1975, 1976).
C44 (diamonds), C12 (squares), C11 (triangles) and bulk mod-
ulus B (circles) for bcc 3He (open symbols) and 4He (solid
symbols at left).

B. Intrinsic temperature dependence

Even in defect-free crystals, elastic constants and dis-
sipation depend on temperature because of the anhar-
monicity of the lattice. The anharmonicity is also re-
sponsible for thermal expansion or, in the case of helium
crystals that are confined in a rigid cell at constant vol-
ume, the temperature dependence of the pressure. This
intrinsic temperature dependence is related to u(T ), the
crystal’s internal thermal energy per unit volume, by a
Gruneisen equation P (T ) = P0 + γu(T ). The Gruneisen
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FIG. 11 Elastic constants and bulk modulus of hcp 4He (solid
symbols) from ultrasonic measurements (Crepeau et al., 1971;
Greywall, 1971, 1977a), and of hcp 3He (open symbols) from
path integral simulations (Schoffel and Muser, 2001). C44

(diamonds), C12 (squares), C11 (triangles) C13 (crosses) C33

(hexagons) and bulk modulus B (circles).

constant γ is often nearly independent of temperature
so that at low temperatures the thermodynamic pressure
increase in a dielectric crystal (due to thermal phonons)
is proportional to T 4. The elastic constants Cij have a
similar temperature dependence (McGreer and Franck,
1990)

Cij(T ) = C0ij − Γiju(T ) (7)

where Γij are related to the crystal’s generalized
Gruneisen constants. Elastic constants and sound speeds
are therefore expected to decrease as the temperature in-
creases, by amounts proportional to u. The Debye tem-
peratures of helium crystals are much higher than their
melting temperatures (Trickey et al., 1972), so the de-
creases are expected to be roughly proportional to T 4.

Figure 12 shows the transverse mode elastic constant
Ĉ0 = ρv2t that McGreer and Franck (1990) calculated
from ultrasonic measurements of the speed vt of 3 MHz
shear waves in single crystals of hcp 4He. This crystal was
grown at high pressure (15 MPa) and the measurements
were made between 7 and 15 K. As expected, the decrease
in this elastic constant was linearly related to the crystal’s
total thermal energy u(T ).

A T 4 variation of sound speeds is also seen in helium
crystals at lower pressures, at temperatures near melting.
However, as described in the next section, dislocations in
helium become mobile and make additional contributions
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FIG. 12 Effective elastic constant Ĉ0 for transverse ultra-
sound in hcp 4He at high pressure (15 MPa), plotted vs. total
internal energy u (McGreer and Franck, 1990).

to the sound speeds at low temperatures. These disloca-
tions can be pinned by impurities, immobilizing them
and restoring the crystal’s intrinsic temperature depen-
dence. The expected frequency independent T 4 variation
was seen in longitudinal sound velocity measurements on
hcp 4He crystals containing 1% of 3He impurities (Iwasa
and Suzuki, 1980). The top panel of Fig. 13 shows data
at 10, 30 and 50 MHz; the solid lines are the expected
T 4 dependence. Similar behavior has been seen in 3He
crystals (Beamish and Franck, 1983). Figure 14 shows
the variation of the longitudinal sound speed in an hcp
3He crystal containing 0.5% 4He, with the expected de-
pendence due to thermal phonons.

Note that the intrinsic sound velocity changes in the
hcp crystals of Figs. 13 and 14 are small, corresponding
to elastic constant decreases of less than 1% at the melt-
ing temperature. In low density bcc 3He crystals, the
changes are even smaller, but include contributions from
thermally excited vacancies as well as phonons (Iwasa
and Suzuki, 1982). The 12% changes in the high pressure
4He crystal of Fig. 12 reflect the much higher tempera-
tures in those measurements. The maximum tempera-
ture in the measurements of Fig. 12 correspond to about
15% of the crystal’s Debye temperature, Θ ≈ 100 K
(Trickey et al., 1972). This can be compared to the max-
imum temperatures in Figs. 13 and 14, which are only
about 6% of the crystals’ Debye temperatures (around

FIG. 13 Longitudinal sound velocity (upper panel) and atten-
uation (lower panel) in an hcp 4He single crystal containing
1% of 3He (Iwasa and Suzuki, 1980). The sound frequen-
cies are 10 MHz (circles), 30 MHz (triangles) and 50 MHz
(crosses). Solid lines are fits of the velocity data to the ex-
pected thermal phonon dependence V0 − AT 4 and of the at-
tenuation to the ωT 4 dependence expected for “zero sound”
at low temperature (Maris, 1971).

30 and 40 K, respectively), with correspondingly smaller
changes in elastic constants. For comparison, the elastic
constants of the heavier inert gas crystals (Ar, Kr, Xe)
decrease by more than 30% at their melting temperatures
(Beamish, 2001).

The lower panel of Fig. 13 shows the ultrasonic atten-
uation at 10, 30 and 50 MHz. It is roughly proportional
to ωT 4 below 1 K, the attenuation expected from three-
phonon scattering processes in dielectric crystals (Maris,
1971). At high temperatures, the phonon scattering time
τ decreases, giving approximately constant attenuations
in the regime above 1 K where ωτ < 1. A T 4 dependence
was also observed at GHz frequencies in Brillouin scatter-
ing measurements on hcp 4He crystals (Berberich et al.,
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FIG. 14 Temperature dependence of the longitudinal sound
speed in an hcp 3He single crystal containing 0.53% 4He im-
purities. The solid line is a fit to the intrinsic thermal phonon
dependence (Beamish and Franck, 1983).

1975). In purer crystals, dislocations are mobile at low
temperatures and add to the attenuation, overwhelming
this intrinsic behavior.

At temperatures below 100 mK, the heat capacity of
low density 3He is dominated by spin exchange, and the
internal energy has the 1/T dependence characteristic of
a paramagnet. The corresponding low temperature de-
crease in sound speed has been observed by Fartash and
Goodkind (1986), who made measurements on a 24.1
cm3/mol bcc 3He crystal at temperatures as low as 12
mK, which is still well above bcc 3He’s magnetic ordering
temperature TN=0.93 mK. In the magnetically ordered
state below TN , the thermal excitations are spin waves
with very low velocities (7.8 cm/s), so the spin wave en-

ergy u(T ) = π2~
15c3 (kBT~ )4 and corresponding sound veloc-

ity changes are large. Remarkably, this large T 4 depen-
dence has been measured in bcc 3He crystals at temper-
atures below 1 mK (Nomura et al., 2000), as shown in
Fig. 15. The velocity change below 0.93 mK is more than
0.01%, comparable to the total velocity changes below 1
K in Figs. 13 and 14.

C. Dislocation effects

Dislocations affect the elastic properties and sound
speeds if they move in response to stresses. This oc-
curs in helium crystals, where mobile dislocations often
dominate the temperature dependence of sound veloci-
ties. This first became clear when ultrasonic measure-

FIG. 15 Sound velocity (11 MHz longitudinal ultrasound) in
magnetically ordered bcc 3He single crystals in coexistence
with liquid 3He along the melting curve (3.44 MPa). The
different symbols correspond to crystals with different orien-
tations (Nomura et al., 2000).

ments on hcp 4He single crystals were extended to low
temperatures. Figure 16 shows data for five different sin-
gle crystals (curves A to E) grown at the same pressure.
Below about half the melting temperature (TM ≈1.9 K),
the longitudinal sound speeds deviated from the intrinsic
T 4 dependence that described the data at higher tem-
peratures (Wanner et al., 1976). The deviations were
smooth, with magnitudes as large as 0.3%, comparable
to the intrinsic velocity changes. The size and sign of the
velocity anomaly varied from crystal to crystal, consis-
tent with the random variations expected for dislocation
networks produced during crystal growth.

Surprisingly, since dislocations are usually thought of
as softening crystals, the velocity anomalies in Fig. 16
were positive in more than half the samples. As dis-
cussed in Section III C, mobile dislocations act as vi-
brating strings, pinned at nodes where they intersect
with other dislocations. If the damping is not too large,
these strings have a resonance at a frequency f0 given
by eqn. 6. For sound frequencies below f0, dislocations
move in phase with the applied sound stress and the dis-
location strain adds to the elastic strain, softening the
crystal and reducing the ultrasound velocity. At frequen-
cies above the dislocation loops’ resonance resonant fre-
quency, however, the dislocation motion is out of phase
with the sound stress, stiffening the crystal and increas-
ing the sound speed. In Fig. 16, the longitudinal sound
speeds were measured at 8 MHz for crystals D and E,
which showed negative velocity deviations at low tem-
peratures, and at 12 MHz for the other three crystals,
which showed positive deviations. This suggests that the
anomalies were due to dislocation loops with resonance
frequencies around 10 MHz, corresponding to lengths
between pinning points of about 10 µm. The authors
noted that real crystals would have a distribution of loop
lengths and showed that the velocity anomalies could be
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FIG. 16 Ultrasonic velocities in hcp 4He single crystals at
3.6 MPa (Wanner et al., 1976). The curves labeled A (top)
through E (bottom) correspond to different crystals grown
under the same conditions. Solid lines are fits to the high
temperature intrinsic behavior.

explained by considering just two different loop lengths.
Although the Granato-Lucke model could describe the

velocity at a single frequency, the dislocation densi-
ties derived from the fits varied from crystal to crystal,
from 0.7×105/cm2 to 4.3×105/cm2, and the average loop
lengths varied between 6 and 11 µm. A more stringent
test of the model requires measurements at multiple fre-
quencies. Such measurements were first made by Iwasa
et al. (1979). Figure 17 shows longitudinal sound speeds
at frequencies of 10, 30 and 50 MHz in an hcp 4He crystal
grown from natural purity helium gas (less than 1 ppm of
3He impurities). The velocity anomaly was positive and,
as expected, depended strongly on frequency, confirming
the resonant nature of the dislocation interaction. Simi-
lar measurements were soon made on hcp and bcc single
crystals of 3He (Beamish and Franck, 1982). The veloc-
ity anomalies, after subtracting the high temperature in-
trinsic dependence, are shown in Fig. 18. By using lower
frequencies, these measurements unambiguously showed
the crossover from low frequency softening at 3 MHz to
high frequency stiffening at 9 MHz, convincing evidence
of a resonance between 3 and 9 MHz. This is consistent
with the 4He measurements of Fig. 17, where the posi-
tive anomaly indicates a dislocation resonance frequency
below 10 MHz.

To describe the frequency and temperature depen-
dence of the sound velocities, and of the accompanying
sound attenuation (shown in the lower panels of Figs. 17
and 18), a distribution of dislocation loop lengths was

FIG. 17 Dislocation fit of the frequency dependent longitu-
dinal sound velocity (upper panel) and attenuation (lower
panel) in hcp 4He (Iwasa et al., 1979). The sound frequen-
cies are 10 MHz (circles), 30 MHz (triangles) and 50 MHz
(crosses). c©(1977) The Physical Society of Japan.

needed. In the Granato-Lucke model, the contributions
to the sound velocity and attenuation from a unit density
of loops with length l (resonance frequency ω0) are

∆v(l)

v0
= −4v20

π3

ω2
0 − ω2

(ω2
0 − ω2)2 + (Bω/A)2

(8)

and

α(l) = −4v0
π3

ω2
0B/A

(ω2
0 − ω2)2 + (Bω/A)2

. (9)
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FIG. 18 Dislocation fit of the frequency dependent longitu-
dinal sound velocity (upper panel) and attenuation (lower
panel) in hcp 3He (Beamish and Franck, 1982). The sound
frequencies are 3 MHz (squares) and 9 MHz (circles).

For a distribution of loop lengths N(l), the total velocity
change and attenuation are

∆v

v0
= R

∫
∆v(l)

v0
lN(l)dl (10)

and

α = R

∫
α(l)lN(l)dl (11)

where R is a numerical factor, of order 0.1, that de-
pends on the orientation of the crystal with respect to
the sound polarization. Since the crystal orientations
were not known in these ultrasonic experiments, only the
combination RΛ could be determined for each crystal,
not the dislocation density Λ itself. Both Iwasa et al.
(1979) and Beamish and Franck (1982) assumed expo-
nential distributions of loop lengths with average length
L and dislocation density Λ

N(l) =
Λ

L2
e−l/L. (12)

The temperature dependence in these equations comes
from the damping parameter B. In an insulating crys-
tal like helium, the main damping source is thermal

phonons, via the fluttering mechanism described by Ni-
nomiya (1974). This has a characteristic B = gT 3 tem-
perature dependence, with g given in eqn. 4. At the
MHz frequencies of ultrasonic measurements, the damp-
ing term Bω/A in eqns. 8 and 9 is large near melting.
At high temperatures the dislocations’ motion is heav-
ily damped and their contributions to the sound velocity
and attenuation are small, as seen in Figs. 17 and 18.
This means that elastic constants measured near sam-
ples’ melting points, such as those listed in Table I, are
the intrinsic values.

Dislocation parameters extracted from fits to the ultra-
sound velocities and attenuations were similar in hcp 4He
and 3He, and in bcc 3He. In most crystals the average
loop lengths L were between 3 and 12 µm, while the dislo-
cation densities Λ (assuming R =0.1) ranged from 2×103

to 106 per cm2. Lengua and Goodkind (1990) found sim-
ilar dislocation densities in hcp 4He crystals grown at
low pressures, but with longer loops. A range of dislo-
cation densities and lengths in different experiments is
expected, given the inevitable variations in crystal qual-
ity. Higher dislocation densities would be expected in,
for example, polycrystals grown with the blocked capil-
lary technique. However, the large sound scattering and
attenuation makes ultrasonic measurements difficult in
polycrystals, and there have been no comparable mea-
surements of their dislocation parameters.

Although dislocation effects are small at high temper-
atures, Tsuruoka and Hiki (1979) tried to extract dis-
location densities from ultrasonic attenuation measure-
ments in hcp 4He crystals near their melting tempera-
tures. Their calculated dislocation densities were orders
of magnitude larger than in other ultrasonic measure-
ments, up to 6×109/cm2. However, they used a very
different method to analyze their attenuation data and
subsequent reanalysis (Paalanen et al., 1981) showed that
their attenuation values were consistent with the much
smaller dislocation densities found in other experiments.

Although the temperature dependence of the sound
velocity and attenuation anomalies is due to the thermal
damping of dislocation motion, the resonance and strong
frequency dependence at ultrasonic frequencies makes it
impossible to confirm the phonon fluttering prediction of
Ninomiya (1974) by directly measuring the temperature
dependence of the damping B. However, it is clear from
the ultrasonic measurements that the damping increases
with temperature and the temperature dependence is
consistent with a temperature dependence B = gTn,
with n between 2 and 4, and with a value of g similar
that predicted by eqn. 4.

When high concentrations of isotopic impurities were
added to helium crystals, as in Figs. 13 and 14, the dis-
location anomalies were eliminated since impurities bind
to edge dislocations at low temperatures, pinning them
and eliminating their contributions to the ultrasound ve-
locity and attenuation (Beamish and Franck, 1983; Iwasa



24

and Suzuki, 1980). As expected, the effects of impurities
were strongly amplitude dependent, since stress-induced
breakaway from impurity pinning sites allows dislocations
to move at large ultrasonic amplitudes. Analysis of the
amplitude and temperature dependence of this unpinning
provided estimates (Iwasa and Suzuki, 1980) of the im-
purity binding energies (∼0.3 K) and the forces required
to detach such an impurity from a dislocation (∼10−14

N). Given their weak binding to dislocations, isotopic
impurity atoms are effective pinning sites only at low
temperatures and for small stress amplitudes.

The impurity concentrations for the crystals of Figs. 17
and 18 (<1 ppm 3He and 1.35 ppm 4He, respectively)
were not sufficient to pin the dislocations, even at the
lowest temperatures of these measurements. However,
recent ultrasonic measurements did observe pinning be-
low 200 mK in hcp 4He crystals containing 0.3 ppm of
3He mK (Iwasa and Kojima, 2017). As described in
the next sections, measurements at low frequencies show
qualitatively similar behavior, but the modulus changes
are much larger and imply longer dislocations loops and
stronger 3He impurity binding. Recent low frequency
measurements like those on single crystals described in
Section V.C. are much more direct and straightforward
to interpret, and allow dislocation parameters to be de-
termined more reliably than from the ultrasonic measure-
ments.

V. LOW FREQUENCY ELASTIC MODULUS AND
DISSIPATION

The effects of dislocations on ultrasound propagation
are complicated, since dislocations’ inertia, string ten-
sion and damping are all important at MHz frequencies.
Measuring the resulting frequency dependence is difficult,
since most ultrasonic measurements are limited to a few
frequencies, multiples of the fundamental resonance of
the transducers. Also, crystals are anisotropic, with lon-
gitudinal and transverse modes, so the directions of the
stresses acting on dislocations are often unknown. Even
if a crystal’s orientation is independently determined, ul-
trasonic stress amplitudes are difficult to estimate and
are seldom accurately known.

At low frequencies, well below the resonance frequency
of eqn. 6, dislocation effects are much simpler to inter-
pret. The inertial term in eqn. 5 can be neglected, and
the damping term is small. The elastic changes due to
dislocations can be much larger than at ultrasonic fre-
quencies, since all the dislocations move in phase with
the applied stress and contribute to the softening of the
crystal. In the static (zero frequency) limit, the disloca-
tions reduce the intrinsic shear modulus µ0 by an amount

δµ

µ0
=

αΛL2

1 + αΛL2
. (13)

Here α is a numerical factor (∼0.05) that includes the ori-
entation factor R, to account for the component of the
stress in the dislocations’ glide directions and the loga-
rithmic term in eqn. 3, which depends on the dislocations’
core size and separation. Long dislocations have a larger
effect than short ones, but the dislocation density Λ and
the pinning length L cannot be separately determined
from eqn. 13. Only the combination ΛL2, which reflects
the geometry of the dislocation network, can be found
from low frequency modulus measurements. For exam-
ple, a simple cubic network of dislocations with ΛL2 = 3,
would reduce the low frequency shear modulus by more
than 10%. Additional pinning, e.g. by impurities or jogs,
reduces the effective dislocation loop length and conse-
quently the magnitude of shear modulus softening.

At finite frequencies, dislocation damping produces
elastic dissipation. For frequencies ω well below the dis-
location lines’ resonance, the inertial term in eqn. 5 can
still be neglected, but the damping term introduces a
relaxation time τ = BL2/π2C. For ωτ �1, the shear
modulus is still given by eqn. 13, but the dissipation be-
comes

1

Q
=
δµ

µ0
ωτ =

δµ

µ0
ω
BL2

π2C
. (14)

The dissipation 1/Q depends on L more strongly than
the modulus change. If both can be measured, and the
damping coefficient B is known, then L and Λ can be
separately determined.

A. Early measurements

A number of experiments used frequencies in the kHz
range to study the elastic modulus and dissipation in
helium crystals. Tsymbalenko (1978, 1979, 1984, 1986)
used quartz resonators embedded in solid helium to mea-
sure its shear modulus and internal friction. Typical
results, measured at 80 kHz, are shown in Fig. 19 for
four different hcp 4He single crystals grown at 3.5 MPa
(dotted and dashed curves labeled 1, 3, 4 and 5). Dis-
locations are the only defects that can explain the large
shear modulus changes, up to 30%, which correspond to
ΛL2 ∼ 5. The solid lines in Fig. 19 are a fit of the dis-
location model described by eqns. 8 to 11 to the data
for crystal 4. The measured modulus changes are orders
of magnitude larger the changes observed in ultrasonic
measurements so longer loops, L ∼100 µm, were needed
to fit the modulus and dissipation data. The shear mod-
ulus (left panel) and the decrement (right panel) both
decreased below 1 K, confirming that dislocations were
more mobile and less damped at low temperatures. The
temperature dependence was consistent with a damping
B = gTn, with an exponent n close to 3, but to get sat-
isfactory fits it was necessary to include the inertial term
in eqn. 5.
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FIG. 19 Shear modulus G (left panel) and decrement δHe ∝
1/Q (right panel) for hcp 4He single crystals grown at 3.5
MPa. The dotted and dashed curves (labeled 1, 3, 4, and
5) are data for four different crystals grown under the same
conditions. The solid curves are dislocation fits to the data
of crystal 4. Reproduced from Tsymbalenko (1984), with the
permission of AIP Publishing

Paalanen et al. (1981) studied helium’s elastic proper-
ties at an even lower frequency (331 Hz), using a torsional
oscillator technique. In contrast to torsional oscillators
used to search for supersolidity, this oscillator’s inertial
element did not contain helium. The torsion rod, how-
ever, was filled with solid helium, whose shear modu-
lus and dissipation were determined from the frequency
and quality factor of the torsional oscillator. As shown
in the top panel of Fig. 20, the shear modulus changed
by up to 40% when the solid was cooled, from which
the authors inferred that ΛL2 = 2. However, the modu-
lus increased at low temperatures, implying that disloca-
tions were less mobile at low temperatures, in contrast to
the 30% decrease in the 80 kHz measurements of Tsym-
balenko (1984). The changes in shear modulus were ac-
companied by dissipation peaks (lower panel). Both the
modulus and dissipation depended strongly on the strain
amplitude and on the 3He concentration. The low tem-
perature stiffening in Fig. 20 is consistent with impurity
pinning, with an amplitude dependence and hysteresis
due to stress-induced breakaway of dislocations. From
the temperature dependence of the breakaway amplitude,
Paalanen et al. (1981) deduced an impurity binding en-
ergy EB=0.7 K.

There was some uncertainty in the 3He impurity con-
centration in the sample of Fig. 20. It was described as
“commercial 4He”, but its unpinning temperatures were
higher than in other samples, suggesting larger impurity
concentrations. The authors described it as having 3He
concentrations “probably less than 3 ppm”, about ten
times larger than is usually found in commercial helium

gas. In their samples with very low 3He concentrations
(x3 = 2.4×10−9) the shear modulus, shown in the upper
panel of Fig. 21, was independent of temperature, as ex-
pected if there is no impurity pinning. The dissipation in
the isotopically pure samples, shown in the lower panel of
Fig. 21, was relatively small, without the impurity break-
away peaks of Fig. 20. In the sample whose data are
shown as solid symbols, the shear modulus was small,
indicating that the dislocations were mobile. The cor-
responding dissipation increased roughly as T 2, weaker
than the T 3 dependence noted by Tsymbalenko, but the
fits to the dissipation were made over different tempera-
ture ranges. The other high purity sample, correspond-
ing to the open symbols, had a larger shear modulus and
negligible dissipation, indicating that dislocation effects
were much smaller in this sample, likely because of its ori-
entation. Paalanen et al. (1981) showed that their high
temperature dissipation values at 331 Hz were consistent
with those from earlier work by Tsymbalenko (1978) at
15 kHz and of Tsuruoka and Hiki (1979) at MHz ultra-
sonics frequencies, with no need for the large dislocation
densities assumed in the latter paper.

FIG. 20 Torsional oscillator measurements of the normalized
shear modulus (upper panel) and dissipation (lower panel) in
an hcp 4He polycrystal at 3.7 MPa. The measurement fre-
quency was 331 Hz and the data were taken at strain ampli-
tudes ε =10−7 (squares), ε =6×10−7 (triangles) and ε =10−5

(circles) (Paalanen et al., 1981).

The low frequency measurements were consistent with
many features observed in ultrasonic experiments. They
confirm that dislocations can soften the shear modulus,
are thermally damped at high frequencies and tempera-
tures, and are pinned by 3He impurities at low tempera-
tures and stresses. There are, however, significant differ-
ences between the low and high frequency results. Mod-
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FIG. 21 Torsional oscillator measurements of the period shift,
proportional to the shear modulus change, (upper panel) and
dissipation (lower panel) for isotopically pure (x3 =2.4 ppb)
hcp 4He crytals at 4.8 MPa. Open and closed symbols corre-
spond to two samples with different orientations. The mea-
surement frequency was 331 Hz and the data were taken at
strain amplitudes ε =6×10−7 (triangles) and ε =10−5 (circles)
(Paalanen et al., 1981).

ulus changes are much larger in the low frequency mea-
surements, up to 40%, compared to less than 1% in ultra-
sonic measurements. Some of this difference is due to the
inertial effects that limit dislocation motion at MHz fre-
quencies. However, the values extracted for the disloca-
tion network parameter ΛL2 were much smaller in the ul-
trasonic measurements (between ∼0.001 and 0.1) than in
the low frequency measurements of Paalanen et al. (1981)
and Tsymbalenko (1984) (between ∼2 and 6). The ex-
tracted dislocation densities Λ were comparable in the
ultrasonic measurements and the 80 kHz measurements
of Tsymbalenko (1984) (∼104 to 105/cm2 and ∼104/cm2,
respectively) but the pinning lengths were very different,
∼5 µm in the ultrasonic measurements vs. ∼100 µm
in the measurements of Tsymbalenko (1984). Some dis-
crepancies are expected since the crystal qualities may be
different in the various experiments, but the large differ-
ences in ΛL2 and L are puzzling. Also, although the ther-
mal damping in all the experiments appeared to be pro-
portional to Tn, with n between 2 and 4, the magnitude
of the damping B was about two orders of magnitude
larger in the measurements of Tsymbalenko (1984). This
is surprising, since B is an intrinsic property of individ-
ual dislocations and should not depend on their density or
lengths. More direct and detailed recent measurements
of damping in single crystals, described in Section V.C.,

show similar large modulus changes, but are not consis-
tent with the B values of Tsymbalenko (1984), instead
confirming the expected phonon scattering damping B.

This torsional oscillator technique has also been used
to study dislocation effects in bcc 3He. Miura et al.
(2000a,b, 1998) observed a dissipation proportional to
T 3, and shear modulus decreases as large as 60% at high
temperature, suggesting that ΛL2 was at least as large
as in hcp 4He. However, they were not able to determine
the dislocation densities or lengths separately.

B. Shear modulus measurements in polycrystals

To resolve discrepancies between the dislocation pa-
rameters determined by the high and low frequency mea-
surements, unambiguous measurements of the thermal
damping coefficient B were needed. As noted by Tsym-
balenko (1978), this requires measurements over a wide
range of frequencies. However, this is not practical with
resonant techniques like torsional oscillators and quartz
resonators, nor with ultrasonic methods. Non-resonant
techniques allow the frequency to be varied continuously
but are usually less sensitive. However, with modern
electronics that takes advantage of the reduced noise lev-
els at low temperatures, extremely sensitive non-resonant
measurements can be made on solid helium.

The low frequency shear modulus of polycrystalline
hcp 4He has been measured by Day and Beamish (2007b)
using such techniques. Helium crystals were grown in
a narrow gap (D =180 µm) between two parallel shear
piezoelectric transducers. A voltage V applied to one
transducer generated a shear displacement δx and a uni-
form shear strain ε = δx/D in the helium. This pro-
duced a shear stress σ and a corresponding charge q on
the opposite transducer, allowing the shear modulus of
the solid helium, µ = σ/ε to be calculated. To determine
absolute rather than relative values, the transducers were
calibrated at the low temperatures of the measurements
(Bukhari et al., 2014; Islam and Beamish, 2018). For
ac measurements, a lock-in amplifier also gave the dissi-
pation in the helium, which is related to the measured
phase lag φ between the stress and strain, 1/Q = tanφ.
With this technique, the measurement frequency could
be varied continuously up to 16 kHz, limited only by
mechanical resonances of the pressure cell and acoustic
resonances of the solid helium inside it. The lower fre-
quency limit, of order one Hz, was set by noise in the
stress measurements. Using this technique, which had a
stress resolution of 2×10−6 Pa at the highest frequencies,
solid helium’s shear modulus was measured at frequencies
from 0.5 Hz to 16 kHz (Haziot et al., 2013b; Syshchenko
et al., 2010), and at strains as low as 2×10−11 (Haziot
et al., 2013c).

Figure 22 (a) shows the changes in the shear modulus
of an hcp 4He sample with a nominal 3He impurity con-
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centration of 300 ppb (300 × 10−9). The polycrystalline
solid was grown using the blocked capillary technique,
with a final pressure of 3.33 MPa (Day and Beamish,
2007b). The shear modulus was essentially constant be-
tween the melting temperature (1.86 K) and 200 mK,
then increased at lower temperatures, reaching the solid’s
intrinsic value at the lowest temperatures (Day et al.,
2009). The total change, about 8%, is somewhat smaller
than the dislocation softening seen in some earlier low fre-
quency measurements on helium single crystals and cor-
responds to a network with αΛL2 ≈ 0.09 (eqn. 13). The
temperature at which the softening occurred depended
on the measurement frequency, as shown in Fig. 22 (a)
for frequencies of 20, 200 and 2000 Hz. It was also very
sensitive to the 3He impurity concentration, as shown in
Fig. 22 (b) for 3.3 MPa crystals with x3=1, 85 and 300
ppb. The measurements in Figs. 22 (a) and (b) were
made at very small shear strains (ε = 3×10−9, corre-
sponding to stress σ ≈ 0.05 Pa). As shown in Fig. 22
(c), the low temperature shear stiffening was reduced
at strains above 2×10−8. However, the shear modulus
above 200 mK was essentially independent of the strain
amplitude.

This is the behavior expected for a network of dislo-
cations that are pinned by weakly bound 3He impurities
at low temperatures. For a binding energy EB , the equi-
librium concentration of 3He atoms along the dislocation

is xdis3 = x3 e
EB
kBT . At high temperature, the 3He atoms

unbind and the impurity pinning length Li, which is in-
versely proportional xdis3 , increases. When Li becomes
comparable to the network length LN , the dislocations
are able to move and reduce the crystal’s intrinsic shear
modulus. In Fig. 22 (a) this occurs around 200 mK, but
the pinning length, and hence the softening temperature,
depends on the sample’s 3He concentration, as shown in
Fig. 22 (b). Assuming the three samples had similar net-
work lengths, this allows the 3He binding energy to be
estimated as EB ≈ 0.7 K, consistent with the value from
Paalanen et al. (1981). The amplitude dependence in
Fig. 22 (c) reflects dislocations breaking away from 3He
pinning sites when the force exerted by the applied stress
exceeds a threshold. In the high temperature regime,
where impurity pinning can be neglected, the shear mod-
ulus is independent of the stress amplitude, because the
network pinning is much stronger.

The frequency dependence of the softening shown in
Fig. 22 (a) can be well described by a thermally ac-
tivated relaxation process. The activation energy, 0.7
K, is essentially the same as expected if, for example,
the dislocation unpinning rate is controlled by thermally
activated unbinding of impurities. Alternatively, bound
impurities might move with dislocations and produce a
damping force proportional to their density, giving the
same activation energy.

The behavior is similar in 3He (West et al., 2009). Fig-
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FIG. 22 Shear modulus in a hcp 4He polycrystal at 3.33 MPa.
(a) normalized modulus at low strain ε =3×10−9 for frequen-
cies of 20, 200 and 2000 Hz (b) shear modulus changes at
low strain for samples with different 3He impurity concen-
trations, normalized to the total changes from low to high
temperature for each sample (c) amplitude dependence of the
shear modulus at 2000 Hz for strains (from top to bottom)
between 2×10−9 (top curve, black symbols) and 2×10−6 (bot-
tom curve, cyan symbols).

ure 23 shows the normalized shear modulus for an hcp
3He polycrystal at a pressure of 11.9 MPa. The tempera-
ture at which the modulus softens was higher than in hcp
4He, which is expected given the larger impurity concen-
tration in the 3He sample (x4=1.35 ppm). As for 4He, the
stiffening shifted to lower temperature and disappeared
at large strains, with a similar threshold for breakaway.
Neither the dependence on frequency nor on impurity
concentration was measured in these experiments, so the
4He impurity binding energy could not be determined,
but ultrasonic experiments extracted similar isotopic im-
purity binding energies in hcp 3He and 4He crystals. For
the bcc phase of 3He, dislocation effects were not obvi-
ous but were seen more clearly in subsequent experiments
(Cheng et al., 2016).

The origin of the modulus changes in solid helium was
confirmed by the effects of annealing, which is expected
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FIG. 23 Amplitude dependence of the shear modulus in a
hcp 3He polycrystal at 11.9 MPa measured at 2000 Hz. The
modulus is normalized to the value at the lowest temperature
and strain. Strain amplitudes for the different curves vary
(from top to bottom) from 7×10−9 (top curve, red symbols)
to 2×10−6 (bottom curve, cyan symbols) with the same strain
values as the corresponding curves in Fig. 22.

to reduce the density of defects like dislocations. Fig-
ure 24 shows the shear modulus changes for hcp 4He (up-
per pair of curves) and hcp 3He (lower pair of curves).
Samples were frozen using the blocked capillary tech-
nique, which produces samples with many grain bound-
aries and dislocations. The lower (black) set of data
in each pair of curves in Fig. 24 was measured when
the samples were first cooled, immediately after freezing.
The modulus changes were similar in the 3.33 MPa 4He
sample and the 11.9 MPa 3He sample, about 8% in each
case (Day et al., 2009). When the samples were annealed
for several hours near their melting temperatures, their
shear moduli increased by 1 or 2 percent. However, when
an annealed sample was subsequently cooled (upper red
set of data in each pair of curves), its shear modulus
returned to the pre-annealing value at the lowest tem-
perature, as expected when dislocations are completely
pinned by impurities. This confirmed that the values at
the lowest temperatures reflect the intrinsic shear moduli
of perfect crystals, unaffected by the now immobile dis-
locations. The changes in the dislocation network dur-
ing annealing reduced the high temperature softening by
about 20%. However, this is not a direct measure of dislo-
cation densities since the modulus change is proportional
to ΛL2. A decrease in density Λ is usually accompanied
by an increase in the network length L, which reduces the
modulus change due to annealing, or can even change its
sign (Day et al., 2009).

Large stresses can also change the dislocation network
(Cheng and Beamish, 2018b; Day et al., 2009). Figure 25
compares the shear moduli of hcp 4He samples with 3He
impurity concentrations of 300 ppb (upper pair of curves)
and 1 ppb (lower set of three curves). As for the helium
crystals of Fig. 24, the initial shear modulus of the high
purity (1 ppb 3He) sample (lowest curve, black symbols)
increased after annealing (middle of the three curves,

��������	���
��


�
 
�� 
�� 
�� 
�� 
�� 
��

m
/m

o


���


��



���

��



����
�
�����������

����
�
�����������

�
�
�������

�
�
�������

�


���

FIG. 24 Effect of annealing on the shear modulus softening
in helium polycrystals (Day et al., 2009). The upper pair of
curves shows the normalized modulus at 2000 Hz for hcp 4He
containing 0.3 ppm 3He impurities at a pressure of 3.33 MPa
(33.3 bar). The lower pair of curves are for hcp 3He containing
1.35 ppm 4He impurities at 11.9 MPa (119 bar). For each
sample, the lower (black) set of data is before annealing; the
upper (red) data is after annealing.

red symbols), but returned to the same intrinsic value
at the lowest temperature. When large acoustic strains
(ε ∼10−4) were applied to the annealed sample at low
temperatures, the shear modulus did not change. How-
ever, when the stressed sample was then warmed (up-
permost of the three curves, blue symbols) the modu-
lus behavior was different - it was clear that the large
stresses had affected the dislocation network. The upper
pair of curves show the same effect in a sample with a
higher 3He concentration. Counterintuitively, applying
the large stresses reduced the softening due to disloca-
tions. This suggests that the effect of the low temper-
ature stresses was to partially pin existing dislocations,
rather than creating new ones. Warming above 0.5 K re-
versed the effects of the acoustic stress and repeating the
process gave reproducible hysteresis loops. The ease with
which the stress effects were annealed suggests that the
new pinning sites may be jogs, which can be removed by
dislocation climb when thermal vacancies are available
(Hull and Bacon, 2011).

Even at lower stresses, where new dislocations and jogs
are not created, stress-induced breakaway from impurity
pinning sites leads to hysteresis when the strain ampli-
tude is cycled (Granato and Lücke, 1981). Fig. 26 shows
a hysteresis loop for hcp 4He at 36 mK (Day et al., 2010).
The open symbols show the increase in normalized shear
modulus when the strain amplitude ε was reduced from
4×10−6 (where dislocations have broken away from 3He
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FIG. 25 Effects of stressing and annealing on the shear mod-
ulus of hcp 4He with 300 ppb 3He (2.88 MPa, upper pair of
curves) and with 1 ppb 3He (3.33 MPa, lower set of three
curves). For each sample, the modulus is normalized to the
value at the lowest temperature. The various curves are dis-
cussed in the text (Day et al., 2009).

impurities) to 2×10−8 (where they are pinned). When
the strain amplitude was then increased (solid symbols),
the shear modulus remained at its large intrinsic value
up to strains of about 10−6, then dropped rapidly. This
type of hysteresis arises because the force pulling a dislo-
cation away from an impurity increases with the distance
between pinning points, as well as with the applied stress
(Iwasa, 2013; Kang et al., 2015). At sufficiently high
stress, dislocations are free of bound 3He so this loop
length is that between nodes of the dislocation network.
If the stress amplitude is gradually reduced below the
critical value, 3He atoms can bind to dislocations, begin-
ning with the shortest loops. This reduces the distance
between pinning sites, which allows more 3He atoms to
bind and quickly immobilizes this dislocation loop. As
the strain amplitude is reduced, successively longer loops
are pinned and the distribution of network lengths can
be inferred from the amplitude dependence of the shear
modulus (the open circles in Fig. 26). The hysteresis
arises because when one begins at low strain, the bound
impurities are closely spaced and do not break away un-
less much larger stresses are applied. A lower limit on
the time required to pin dislocations at low temperature
can be inferred from the fact that the impurities do not
pin the dislocations during the part of the ac cycle when
the stress goes through zero. The pinning time must be
longer than this millisecond scale.

At higher temperatures, where the unpinning from im-
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FIG. 26 Low temperature hysteresis due to impurity pinning
and unpinning in hcp 4He at 3.8 MPa (Day et al., 2010). Open
symbols show the shear modulus measured while decreasing
the strain; solid symbols are data taken while increasing the
strain.

purities is thermally assisted (Lücke et al., 1968), Kang
et al. (2013) showed that the hysteresis decreased rapidly,
disappearing around 70 mK. The combination of am-
plitude and temperature dependence produces compli-
cated elastic behavior that Kang et al. (2013) summa-
rized in the stress-temperature “hysteresis map” for poly-
crystalline hcp 4He shown in Fig. 27.

Similar behavior was seen in torsional oscillator mea-
surements (Pratt et al., 2011), where the amplitude
dependence was interpreted as a velocity dependence,
rather than a stress dependence. However, it is now clear
that these and other torsional oscillator experiments were
actually probing the shear modulus of solid helium, not
inertial effects that might signal supersolidity (Beamish
et al., 2012). The connection between a torsional oscilla-
tor’s frequency and damping and helium’s elastic proper-
ties has been directly confirmed in experiments in which
the solid helium’s shear modulus was measured simul-
taneously using piezoelectric transducers inside the tor-
sional oscillator (Kim et al., 2011; Shin et al., 2016).

The frequency dependence of the shear modulus seen
in Fig. 22 (a) is mirrored in the corresponding dissipation
1/Q. Figure 28 shows the low amplitude shear modulus
and dissipation for an hcp 4He polycrystal, measured at
frequencies between 2 and 2000 Hz (Syshchenko et al.,
2010). The open circles in Fig. 28 mark the midpoints
of the modulus change and the positions of the accompa-
nying dissipation peaks. The dissipation peaks coincide
with the midpoints of the modulus softening, as expected
for a Debye relaxation process. They shift to higher tem-
peratures with increasing frequency, suggesting that the
relaxation process is thermally activated. This is con-
firmed by the Arrhenius plots of Fig. 29, where the soft-
ening midpoint and dissipation peak positions are shown
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FIG. 27 Stress-temperature map of solid 4He from shear mod-
ulus measurement (Kang et al., 2013).

for the samples of Fig. 22 (a) and Fig. 28. The slopes,
shown by solid lines, correspond to activation energies of
approximately 0.7 K, consistent with the binding energy
estimated from the 3He impurity concentration depen-
dence.

For a Debye process with relaxation time τ and a small
relaxation strength δµ

µ0
�1, the modulus and dissipation

are given by (Nowick and Berry, 1972)

µ

µ0
= 1− δµ

µ0

1

1 + (ωτ)2
(15)

1

Q
=
δµ

µ0

ωτ

1 + (ωτ)2
(16)

where µ0 is the “unrelaxed modulus” (ωτ �1) and
µ0 − δµ is the “relaxed modulus” (ωτ �1). For dislo-
cations the relaxation time could, for example, be the
one associated with their damping by thermal phonons,
τ = BL2/π2C. Other relaxation processes could be ther-
mally activated, with τ(E) = τ0e

E/T where E is the ac-
tivation energy. The midpoint of the modulus crossover
and the dissipation maximum occur at the temperature
where ωτ = 1. However, a Debye relaxation with a single
activation energy (0.73 K) and an attempt time τ0 (25
ns), the values suggested by Fig. 29, gives a shear mod-
ulus crossover and dissipation peak (dashed blue lines)
much narrower than were observed, as shown in Fig. 30
(Syshchenko et al., 2010). The measured dissipation peak
was also much smaller than the expected Debye value
(1/Q)peak = 1

2δµ/µ0. However, the broadening of the
shear modulus crossover and dissipation could be ex-
plained if the relaxation process involved a distribution of
activation energies rather than a single value. The solid
red lines in Fig. 30 show a fit to the data with a distribu-
tion of activation energies with width W = 0.45 around
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FIG. 28 (a) Shear modulus in an hcp 4He polycrystal at 3.8
MPa, for frequencies between 2 and 2000 Hz. Circles mark
the midpoints of the modulus softening. (b) Corresponding
dissipation, with circles marking the peak values. Curves have
been vertically shifted for clarity. (Syshchenko et al., 2010)

an average value of 0.73 K. Mukharsky and Penzev (2012)
and Mukharsky et al. (2009) observed similar behavior in
measurements of uniaxial compression of polycrystalline
4He between 10 Hz and 4 kHz. The temperature and
frequency dependences were similar to those of the shear
modulus, as were the activation parameters (E ≈ 0.62 K,
W ≈ 0.71). This is expected since uniaxial compression
involves shear deformations and so is affected by disloca-
tion motion in the same way.

Kang et al. (2015) have shown that the complete tem-
perature and stress dependence, including the hystere-
sis when the stress amplitude is cycled, could be quan-
titatively reproduced with a Granato-Lucke dislocation
model that included impurity pinning and a distribution
of network lengths. The lower panels of Fig. 31 show their
measured shear modulus and dissipation in hcp 4He at
a frequency of 1000 Hz. The calculated values shown in
the upper panels (for a dislocation density RΛ = 2×10−6

cm−2 and network length L = 5 µm) agreed very well
with the data. The 3He binding energy used to fit the
data, E = 0.3 K, was smaller than inferred from the fre-
quency dependence in Figs. 22 and 29, but was based on
data at a single frequency. Their model did not include
a distribution of activation energies, which broadens the
modulus crossover and the dissipation peak, mimicking
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FIG. 29 Arrhenius plot of the crossover temperatures for the
3.8 MPa sample of Fig. 28 (lower black symbols and line) and
the 3.3 MPa sample of Fig. 22 (a) (upper red symbols and
line). Open symbols are the midpoints of the shear modu-
lus softening; solid symbols are the dissipation peak maxima
(Syshchenko et al., 2010).
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FIG. 30 Debye relaxation fits of (a) the normalized shear
modulus and (b) the dissipation at 200 Hz in the 3.3 MPa
4He sample of Fig. 29 .Dashed blue line is the fit for a single
activation energy EB =0.73 K. Solid red line is a fit using a
distribution of activation energies.

a smaller activation energy.

As shown in Figs. 22 to 24, the shear modulus changes
are similar in the hcp phases of 3He and 4He. However,
the dynamics of dislocation motion were significantly dif-
ferent in hcp 3He (Cheng and Beamish, 2017). In con-
trast to 4He, the shear softening in hcp 3He was indepen-
dent of frequency, as shown in Fig. 32 (a). This suggests

FIG. 31 Shear modulus (left panel) and dissipation (right
panel) for an hcp 4He polycrystal at 3.9 MPa, measured at
1000 Hz and stresses between 0.2 and 7.3 Pa. Upper panels
(a) are values calculated using an impurity binding energy
distribution as described in the text. Lower panels (b) are
measured values (Kang et al., 2015). Curves are ordered top
to bottom as in the corresponding legends for each panel.
c©(1977) The Physical Society of Japan.

that in hcp 3He, the 4He impurities act as static pinning
sites over the full frequency range, 22 to 5402 Hz. This
is different from the dynamic impurity behavior in hcp
4He, where 3He impurities appear to move with dislo-
cations, damping their motion and producing the strong
frequency dependence seen in the shear modulus and dis-
sipation of Fig. 32 (b). However, the shear modulus in
hcp 4He single crystals is also frequency independent at
high frequencies, when dislocation speeds exceed about
45 µm/s (Haziot et al., 2013b) and the 3He impurities
cannot move fast enough to follow the dislocations. The
essentially static nature of impurity pinning in hcp 3He
at frequencies as low as 22 Hz is consistent with the lower
mobility of impurities in hcp 3He, where disorder in the
3He spins prevents impurities from propagating ballisti-
cally. At sufficiently low frequencies and strains, diffu-
sive motion of 4He impurities should allow them to move
with the dislocations in solid 3He, like the dragging of the
Cottrell atmosphere of impurities around dislocations in
classical crystals (Takeuchi and Argon, 1979). The ex-
pected frequency dependence would occur in a regime
below that shown in Fig. 32 (a).

The dissipation in hcp 3He, shown in Fig. 32 (b) was
also quite different from that in hcp 4He. As expected for
static pinning, the thermally activated dissipation peak
associated with impurity unpinning in hcp 4He was ab-
sent in hcp 3He, or at least greatly reduced. Instead,
the dissipation in 3He extended over a broad tempera-
ture region. When the frequency was lowered, the mag-
nitude of the dissipation increased rapidly and its broad
maximum shifted to higher temperatures, the opposite
direction to that of thermally activated relaxation peaks
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like those in hcp 4He. This behavior suggests that the
dissipation in hcp 3He is not due to a damping force
proportional to the dislocation speed, as in the Granato-
Lucke equation 5. Instead, Cheng and Beamish (2017)
proposed that the dissipation may be due to a velocity-
independent, friction-like energy loss associated with re-
arrangements of spin configurations when a dislocation
moves through 3He. However, initial measurements on
bcc 3He polycrystals (Cheng et al., 2016) show frequency
dependent shear modulus changes and dissipation peaks
that resemble those in hcp 4He. This suggests that
4He impurities are much more mobile in the bcc phase,
despite the much larger spin exchange energies in bcc
3He (Ceperley and Jacucci, 1987). However, dislocation
structures and mobilities in bcc structures are very dif-
ferent from those of hcp crystals, e.g. they are usually
not split into partials and often have significant Peierls
barriers to gliding. Unfortunately, the narrow tempera-
ture range for the bcc phase of 4He means that there is
no way to directly compare the low temperature behavior
of dislocations in bcc 3He to that in bcc 3He.

Although many features of dislocation motion in he-
lium are clear from these experiments on polycrystals,
more detailed and quantitative information can be ob-
tained from similar measurements on single crystals.

C. Dislocations and giant plasticity in single crystals

The low frequency experiments described in the previ-
ous section involved polycrystalline samples grown using
the blocked capillary technique. There was little control
of sample quality and the measured shear moduli were
averages over different crystallite orientations. Although
dislocation behavior has been studied in ultrasonic and
elastic experiments on single crystals grown at constant
pressure, the crystal quality varied and their orientations
were not known. Measurements on oriented single crys-
tals can provide information on individual elastic con-
stants. If the sample cell and refrigerator have windows
for optical access, crystal orientations can be determined
from the facets seen during growth, and there can be
more control of crystal growth and quality, e.g. by melt-
ing and regrowing from small seed crystals. Rojas et al.
(2010) used an acoustic resonance technique in such an
cell to study the elastic behavior of oriented single crys-
tals of hcp 4He. However, measurements were limited to
the solid helium’s acoustic resonance around 18 kHz, and
depended in a complicated way on all the crystal’s elastic
constants.

To measure the shear modulus of 4He single crystals,
Haziot et al. (2013c) used the transparent cell shown in
Fig. 33. It was made from a copper plate with an ap-
proximately hexagonal hole in which the helium crystals
were grown, closed by two sapphire windows. The cell
was attached to a dilution refrigerator whose base tem-
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FIG. 32 Frequency dependence of the normalized shear mod-
ulus µ/µ0 and dissipation 1/Q in helium polycrystals. Upper
panels (a) and (b): hcp 3He at 11.9 MPa. The magnitude
of the dissipation in hcp 3He decreases monotonically as the
frequency increases from 22 Hz (upper orange curve) to 5402
Hz (lowest dashed black curve). Lower panels (c) and (d):
hcp 4He at 3.8 MPa. The shear modulus crossover and the
corresponding dissipation peak in hcp 4He shifts to higher
temperatures as the frequency increases from 20 to 2000 Hz.
(Cheng and Beamish, 2017)

perature was 15 mK, even with the windows that pro-
vided the optical access for the external camera used
to record crystals’ growth shapes (Balibar et al., 2005;
Haziot et al., 2013c; Sasaki and Balibar, 2008). The cell
contained two parallel, transversely polarized PZT trans-
ducers, mounted with their piezoelectric shear axes ver-
tical. Oriented single crystals of 4He were grown in a 0.7
mm wide vertical slit between the two transducers and
their shear modulus was measured using the same tech-
nique as described in the previous section. The sensitiv-
ity and the stability of this setup allowed measurements
to be made for strains ε in the range 10−10 to 10−6 and
for stresses as small as 10−9 bar. The transducers were
carefully calibrated to give an absolute measurement of
the shear modulus in the crystallographic direction per-
pendicular to the transducer polarization. Using a lock-in
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FIG. 33 The experimental cell used to measure mechani-
cal properties of 4He crystals at ENS (Paris) (Balibar et al.,
2016). Single crystals were grown from the bottom up, in-
side the 0.7 mm slit between two vertical transducers in the
center of the cell. Crystal orientations were obtained from
photographs of facets when they began growing in the bot-
tom part of the cell (see Fig. 35).

amplifier, both the amplitude of the shear modulus and
the dissipation could be measured at frequencies between
1 Hz and 20 kHz.

1. Elastic constants and basal glide of dislocations

Figure 34 shows measurements by Haziot et al. (2013c)
of the shear modulus for a crystal oriented with its six-
fold symmetry axis (the “c” axis of the hcp structure)
nearly vertical. This particular crystal was grown us-
ing isotopically purified 4He with a 3He concentration of
0.4 ppb. Around 0.2 K, dislocation motion reduced the
elastic modulus by 43% from its intrinsic value of 127 bar
(calculated from the ultrasonically measured high tem-
perature elastic constants in Table I). The large shear
modulus reductions like that seen around 0.2 K were re-
ferred to as “giant plasticity” but, despite their dislo-
cation origin, they had most of the features of elasticity.
The softening occurred at strains as small as ε ∼ 2×10−11

(corresponding to stress σ ∼ nbar) and the response was
essentially linear and reversible. This indicates that the
Peierls barrier for dislocation motion is extremely small,
perhaps zero, for the dislocations responsible for shear
softening in hcp 4He. The modulus increase below 0.1 K
was due to 3He impurities binding to dislocations and
limiting their motion. Above 0.3 K, dislocation motion
was damped by collisions with thermal phonons. These
processes introduce frequency dependence and dissipa-
tion into the crystal’s mechanical response, behavior that
is sometimes referred to as “anelasticity” (Nowick and
Berry, 1972). The macroscopic irreversibility and hys-
teresis that are commonly associated with plasticity oc-

FIG. 34 In a temperature domain around 0.2 K, this isotopi-
cally pure crystal shows “giant plasticity”: its shear modulus
is highly reduced with respect to its intrinsic value (127 bar,
indicated by the red bar on the vertical axis).

cur at much larger strains where new dislocations are
created.

This behavior can be compared to that of classical
crystals, where dislocations move only at high enough
temperature and under sufficiently large stress. This is
because dislocation lines can overcome the periodic lat-
tice’s Peierls barriers only by thermal activation of point
defects (kinks or jogs) or at large stresses which reduce
the barrier height. Dislocation motion in classical crys-
tals induces only a small softening that is highly depen-
dent on temperature and stress amplitude, in contrast to
4He where the softening is large and, in the absence of
impurities, independent of temperature below 0.3 K.

Figure 35 shows the measured shear modulus for a
number of crystals with different orientations. Crystal
X15 was grown from the same isotopically purified 4He
(x3 =0.4 ppb) as the crystal in Fig. 34, but the others
were grown from commercial 4He gas with a 3He concen-
tration of 25 ppb. In the isotopically purified crystals, the
remaining 0.4 ppb of 3He impurities was not sufficient to
completely pin the dislocations, even at the lowest tem-
perature of 15 mK. For the other crystals, there were
enough 3He impurities to immobilize all the dislocations
and recover the crystal’s intrinsic elastic modulus below
60 mK. The intrinsic shear modulus depends strongly on
the crystal orientation, since it is a function of all the
elastic constants Cij , but it could be calculated explic-
itly since the crystal’s orientation with respect to the
deformation direction was known from the growth facets
shown at the right of Fig. 35. The colored ticks on the left
vertical axis indicate these intrinsic values, which agree
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FIG. 35 Shear modulus for hcp 4He single crystals. The pho-
tographs on the right show the orientations (from top to bot-
tom) of crystals X2, X3, X5, X6, X20, X15 and X21. The top
green curve that shows no softening is for crystal X3. Data
from crystal X20 lies directly below this (light blue line) and
shows a small softening. The next curve below (purple line)
is for a polycrystalline sample and shows similar softening to
the polycrystal and to crystal X5 immediately below it (red
line). Crystal X2 (dark blue line) has the largest high tem-
perature softening. Two other crystals, X6 (black) and X21
(green) have intermediate, nearly identical softening. The fi-
nal curve, for which softening occurs at much lower tempera-
ture, is for crystal X15, which was grown from 4He with a 3He
concentration of 4×10−10. The other crystals were all grown
from natural 4He gas containing 2.5×10−8 of 3He impurities.
(Haziot et al., 2013c)

with the low temperature values for the crystals grown
from commercial 4He gas, confirming that 25 ppb of 3He
is sufficient to completely pin the dislocations. Note that
the crystal X3, whose c axis was tilted by 45 degrees from
the vertical, had the intrinsic shear modulus value with
no measurable temperature dependence, and was used by
Haziot et al. (2013c) to calibrate their transducers.

The elasticity tensor of hexagonal crystals like hcp 4He
contains 5 independent elastic coefficients. Among these,
the coefficient C66 is associated with deformations of the
hexagonal symmetry in these basal planes (shown in case
(a) of Fig. 36), while the coefficient C44 relates the shear
stress and strain associated with basal planes gliding past
each other (the deformations shown in cases (b) and (b′)
of Fig. 36). For crystals like X3 that are oriented at 45 de-
grees, the measured shear modulus is essentially indepen-
dent of both C44 and C66, so the temperature indepen-
dent modulus shown in Fig. 35 suggests that one of these
coefficients is responsible for the softening seen in other
crystals. By analyzing the shear modulus changes for
other crystal orientations, Haziot et al. (2013c) showed

σ21= σ6
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σ31= σ4

σ13=σ4
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FIG. 36 Stresses and strains for shear deformations in hexag-
onal crystals. The case (a) in the top panel involves a defor-
mation of the hexagons in the basal planes, with stress σ given
by the corresponding elastic constant C66. The two cases (b)
and (b′) in the lower panel occur when the hexagonal basal
planes slide past each other, with stress given by the elastic
constant C44 (Balibar et al., 2016).

that it is C44, not C66, that changes. The data for all
the single crystals was consistent with C44 softening by
approximately 60%, as shown in Fig. 37, and all other
elastic constants remaining constant. This behavior was
attributed to the fact that dislocations have preferential
glide directions. A reduction in C44 means that the dis-
locations responsible for the softening must glide either
parallel to the basal planes, or along the prismatic planes
parallel to the c axis. In close-packed hexagonal mate-
rials, dislocations usually glide most easily in the basal
plane (Hull and Bacon, 2011). Legrand (1984) explained
that this is due to the splitting of edge dislocations into
two partial dislocations because the stacking fault energy
is very small for the close-packed basal planes. Such split
dislocations are really “atomic ribbons” rather than 1D-
lines, and glide easily parallel to the ribbon plane. This
easy basal glide is observed in many hexagonal metals
(e.g. Be, Mg, Co, Zn), although in some others (Zr,
Ti) glide occurs along prismatic planes. Such conven-
tional crystals do show behavior associated with disloca-
tion glide at high temperatures, but dislocation effects
are complicated by many other phenomena. The elastic
changes due to dislocations are much clearer in 4He crys-
tals. The softening can be very large - Souris et al. (2015)
observed reductions in C44 up to 90% in some cases.

Another unique feature of solid helium is the possi-
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FIG. 37 Variation of C44 for four of the single crystals whose
shear modulus is shown in Fig. 35, calculated from the data
using the known crystal orientations and assuming all other
elastic constants remain constant.

bility of removing all impurities from 4He crystals. Even
isotopic impurities (3He) can be removed using a method
reminiscent of the classical “zone melting” used to purify
metals and semiconductors. It is based on the fact that
impurities are usually more soluble in the liquid than in
the solid, where the strain field around each impurity
adds elastic energy. In the case of 4He, the difference
in potential energy between the liquid and the solid has
been calculated as -1.359 K per 3He atom (Edwards and
Balibar, 1989; Pantalei et al., 2010) so in equilibrium all
the 3He impurities are trapped in the liquid phase if the
temperature is low enough. During cooling, gently shak-
ing the dislocations by applying an oscillating stress helps
prevent 3He impurities from binding to dislocations so
they are free to diffuse out of the solid. Figure 38 shows
that when impurities were initially bound to dislocations
at low temperature (crystals X2, X5 and X6), applying
an oscillating strain larger than a few microbars detached
the impurities, allowing dislocations to move and reduc-
ing the shear modulus. This stress threshold is larger
when increasing the stress than when decreasing it, lead-
ing to hysteresis when the stress amplitude was cycled.
For crystal X4 where the impurities were detached before
cooling, the shear modulus was reduced by 80% from its
intrinsic value and stayed at this low value when the ap-
plied stress was cycled. Figure 39 shows the linear stress
vs. strain curve for this impurity free crystal, with a slope
corresponding to the reduced shear modulus with high
mobility dislocations. This contrasts with the non-linear
plastic behavior of classical crystals, which retain their
intrinsic defect-free elasticity at low stresses, and have
a reduced modulus when the stress exceeds the Peierls
stress for dislocation motion.

The low temperature softening of crystal X4 in Figs. 38
and 39 shows that, in the absence of 3He imurity pin-
ning, dislocations glide freely in the basal plane down to
the lowest applied shear strains (∼3×10−11). This cor-
responds to an extraordinarily small Peierls stress (the
minimum shear stress for dislocation glide at zero tem-
perature) of less than ∼0.3 mPa. Small yield stresses are
often observed in hcp and fcc metals, where they are due
to dissociated dislocations gliding in close-packed direc-
tions (Suzuki et al., 2013). However, only upper limits
could be placed on the Peierls stresses in those materials
since impurity pinning immobilized the dislocations at
low temperatures. The smallest observed yield stress (in
copper crystals) was 0.28 MPa, corresponding to σP /µ <
7×10−6 (Kamimura et al., 2013), although some disloca-
tion motion, often referred to as “pre-yield microplastic-
ity”, was seen at slightly lower stresses (Suzuki et al.,
2013). For the high purity hcp 4He crystal X4, the mea-
surements put an upper limit on the Peierls stress that is
nine orders of magnitude smaller than the experimental
limits for metals. Part of the difference is due to helium’s
smaller elastic constants, but even when the Peierls stress
is scaled by the shear modulus, σP /µ is still less than
2×10−11 for hcp 4He, more than 5 orders of magnitude
smaller than the corresponding upper limit for metals.

PIMC simulations (Borda et al., 2016) confirm that
the dislocations that glide in the basal plane of hcp 4He
split into partials with rather large core widths (about 4
lattice spacings for the edge dislocation partials). They
found that both the edge and screw dislocations glide
easily but the simulations involved much larger effective
stresses than those shown in Figs. 38 and 39 so could
not confirm the extraordinarily small Peierls stresses ex-
tracted from shear modulus experiments. The measured
Peierls stress limit of 0.3 mPa corresponds to an energy

barrier (Peierls energy per unit length) EP = b2

2πσP ≈
5×10−24 J/m (Hull and Bacon, 2011). This suggests that
a 100 µm long dislocation segment would be thermally
excited over the Peierls barrier even at µK temperatures.
Of course, glide is expected to occur via motion of geo-
metric or thermally excited kinks along the dislocation,
not by moving an entire dislocation over the Peierls bar-
rier. The observed mobility of dislocations at low stresses
presumably corresponds to the much smaller Peierls bar-
rier for kink motion. Since the experimental values of
the Peierls stress in solid helium are only upper limits,
it is possible that quantum effects completely delocalize
kinks and dislocations, i.e. reduce the Peierls barrier to
zero.

2. Phonon damping, dislocation lengths and impurity motion

In order to better understand the dislocation motion,
Haziot et al. (2013b,c), Fefferman et al. (2014) and Souris
et al. (2015) measured the dissipation 1/Q of hcp 4He
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FIG. 38 Normalized shear elastic constant C44 for four sin-
gle crystals at 20 mK, as a function of the resolved stress
projected on the basal plane. Above a threshold stress of a
few µbar, dislocations break away from 3He impurities. Crys-
tal X4 (the lowest green curves) was free of 3He impurities,
since they were detached prior to cooling, and so remained
soft over the entire range of stress, with no hysteresis (Haziot
et al., 2013c).

crystals as functions of temperature, frequency and strain
amplitude. The shear modulus increase seen in Fig. 34 at
temperatures above 0.3 K was attributed to damping of
dislocations due to scattering of thermal phonons, which
introduces a dislocation relaxation time τ = BL2/π2C in
the expressions for both the modulus and the dissipation,
eqns. 15 and 16. The dominant fluttering mechanism for
phonon scattering gives a damping force B = gT 3 so for
the elastic constant C44, the low frequency shear modulus
expression of eqn. 13 is

δC44

C0
44

=
αΛL2

1 + αΛL2
(17)

and the corresponding dissipation of eqn. 14 becomes

1

Q
=

αΛL2

1 + αΛL2
BL2ωT 3 (18)

As usual, Λ is the density of dislocation lines per unit vol-
ume and L is a typical length between nodes in the dislo-
cation network, while α = 0.019 and B= 905 s.m−2K−3

are the calculated values for hcp 4He at low densities
(Souris et al., 2014).

Figure 40 shows the measured dissipation in an hcp
4He crystal at temperatures above 0.3 K and frequencies
of 1.5, 3 and 9 kHz (Haziot et al., 2013a). The measure-
ments were made at relatively large strains (ε =10−7)
to suppress the effects of 3He impurity pinning. The
initial slopes agreed remarkably well with the predicted

FIG. 39 Stress-strain diagram for crystal X4 (the same data
as in Fig. 38), showing reversible linear behavior with a slope
corresponding to a shear modulus reduced by 80%. Black line
illustrates the non-linear elastic/plastic behavior expected for
classical crystals (Haziot et al., 2013d).

ωT 3 behavior, clear confirmation of the phonon scatter-
ing mechanism for dislocation damping in helium. Devi-
ations from linear behavior, like those above ωT 3 &104

K4 rad/s, just reflect the breakdown of the low frequency
approximation ωτ �1. Fefferman et al. (2014) were able
to fit the entire dissipation and shear modulus curves by
using the full expressions, eqns. 15 and 16, and integrat-
ing over a distribution of dislocation lengths L. However,
even assuming a single dislocation length L, the initial
linear region gave important information about the dis-
location network. Because the modulus softening and
the dissipation have different dependences on the dislo-
cation length (L2 and L4, respectively) and the phonon
damping is known, the dislocation network’s density Λ
and length L could be determined separately, something
not possible from low frequency modulus measurements
alone. Haziot et al. (2013a,b), Fefferman et al. (2014) and
Souris et al. (2015) found dislocation densities Λ between
104 and 106 per cm2, rather small values that confirm
the high quality of their single crystals. Their disloca-
tion lengths L were very large, between 63 and 230 µm.
These values are nearly macroscopic and, most interest-
ingly, are much larger than would be expected for a sim-
ple 3-dimensional network of dislocations. For example,
if dislocations formed a regular cubic lattice, Λ and L
would be related by the simple relation ΛL2 = 3. For
any three dimensional lattice of dislocations, the disloca-
tion density Λ should be of order 1/L2. The experiments
of Haziot, Fefferman, Souris et al. found that this is not
the case. In the 2013 experiment of Haziot et al. (2013b)
the product ΛL2 ranged from 17 to 57. When Souris
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FIG. 40 Dissipation 1/Q in hcp 4He, at a strain ε =10−7,
plotted vs. ωT 3. The frequency independent linear region for
small ωT 3 is the expected behavior for dislocation damping by
scattering of thermal phonons via the fluttering mechanism;
the dashed black line is a linear fit to the small ωT 3 data.
The 9 kHz data (green line) extends over the full range of the
graph; the 3 kHz (blue line) and 1.5 kHz (red line) extend to
about 2 and 0.9×104 K3 rad/s, respectively.

et al. (2015) tried to grow even better quality crystals,
they found ΛL2 values up to 471.

These very large values of ΛL2 imply that the dislo-
cations do not form a simple 3D-network. They must
avoid intersections, e.g. by forming 2D arrays of parallel
lines called “sub-boundaries”. Friedel (1964) explained
that the formation of such sub-boundaries can produce a
very large softening since the aligned dislocations in sub-
boundaries can glide in the basal planes in a cooperative
way. For 3D dislocation networks, on the other hand, the
maximum softening is about ∼10%, much smaller than
the 90% changes seen by Souris et al. (2015).

The shear softening in the direction parallel to the hcp
basal planes is analogous to that of a stack of sheets of
paper, which is easy to deform in directions where the
sheets slide past each other, but stiff in other directions
in which the individual sheets would have to deform. Of
course, in hcp crystals the whole atomic planes do not
slide, but rather the movement occurs near dislocations.
Furthermore, between paper sheets or in classical crys-
tals, there is friction so that the deformation in response
to stress is non-linear but, as shown in Fig. 40, in the
absence of impurities the dissipation associated with the
shear deformation in 4He approaches zero at low tem-
perature. One possible explanation of this non-classical
behavior is that quantum fluctuations make the kink en-
ergy vanish so that dislocation lines can move freely de-
spite the periodic lattice potential. Another possibility
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FIG. 41 Temperature variation of the low amplitude shear
modulus (a) and dissipation (b) in hcp 4He, at the frequen-
cies from 2 Hz to 16 kHz indicated in the legend (Haziot
et al., 2013b). The transition from stiff (at low T) to soft (at
higher T) and the accompanying dissipation peaks are associ-
ated with binding of 3He impurities to dislocations. The shear
softening and the associated dissipation peaks shift monoton-
ically to higher temperatures as the frequency increases.

is that kinks have a non-zero energy but the grown-in
“geometric kinks” move along dislocations by quantum
tunneling through a very small Peierls barriers. It would
be hard to distinguish experimentally between the two
possibilities.

The above paragraphs discussed the dissipation above
0.3 K, where it is a consequence of dislocations’ inter-
actions with thermal phonons. Below 0.2 K, a different
dissipation mechanism becomes important when 3He im-
purities are present. These progressively bind to dislo-
cations as the temperature decreases. In single crystals,
there is a clear dissipation associated with 3He, as shown
in Fig. 41 (Haziot et al., 2013b). When impurities started
binding, the dislocation motion decreased, stiffening the
crystal, and the dissipation increased. It reached a peak
at a temperature Tp near the midpoint of the modulus
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FIG. 42 Maximum dislocation speeds for dislocations, calcu-
lated from the length between nodes of their network and the
strain amplitude and frequency (Haziot et al., 2013b). From
left to right, the curves correspond to strains of 1.4×10−9

(purple), 2.7×10−9 (blue), 6.8×10−9 (red), and 9.5×10−9

(green). Two regimes appear: below 45 µm/s, the bound
3He impurities move with the dislocations; above this critical
speed, 3He impurities cannot follow the dislocations and act
as static pinning sites (see text).

stiffening, and vanished at lower temperatures where the
dislocations were fully immobilized.

Knowing the density and typical length of dislocations
in their crystals, Haziot et al. (2013b) could determine
the dislocations’ displacements and maximum speeds at
their midpoints, for a given strain amplitude and fre-
quency. The semi-log plot of Fig. 42 shows the maximum
speeds vs. the inverse of the dissipation peak tempera-
tures Tp. There were two different regimes. At high
speeds, the peak temperature was independent of speed,
behavior that was also seen at high frequencies in the
shear modulus data of Fig. 41. This is the expected be-
havior if impurities act as static pinning points: they
cannot move fast enough to follow dislocations’ motion
so they anchor the dislocations, giving a frequency in-
dependent shear modulus softening and a reduced dissi-
pation peak. However, at low speeds, below 45 µm/s,
the constant slope on this Arrhenius plot reflected a
thermally activated regime in which the dislocation mo-
tion decreased exponentially as impurities bind at low
temperatures. This means that 3He atoms are dragged
along with dislocations but the motion of the dislocations
dressed with impurities is damped. Assuming that this
damping force is proportional to the density of bound
3He, the slopes of the semi-log plots of Fig. 42 give the
binding energy EB of 3He impurities to the dislocation
lines, EB = 0.67 K for this particular crystal. The same
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FIG. 43 Arrhenius semilog plot of the relaxation time τ of
dislocations vs. the inverse temperature 1/T for crystals with
different orientations and with the impurity concentrations
indicated in the legend. Slight variations in slope show that
there is a narrow distribution in the binding energy EB of
3He impurities to dislocations (see text).

binding energy was found in subsequent measurements
by Fefferman et al. (2014). In a more detailed study,
Souris et al. (2014) confirmed that the dissipation was
proportional to the 3He concentration by comparing the
behavior of crystals grown from 4He gas with three dif-
ferent impurity concentrations, x3 respectively equal to
2.5×10−8, 3.8×10−7 and 2.32×10−6. Figure 43 shows
the relaxation times determined at the dissipation peak
temperatures, where ωτ =

√
1 + αΛL2 (Fefferman et al.,

2014). The 3He binding energies from the slopes for dif-
ferent crystals varied from 0.6 to 0.71 K, consistent with
previous values. The ∼0.1 K scatter in the slopes that
can be seen in Fig. 43 is within the width of the binding
energy distribution found in experiments on polycrys-
talline 4He (Mukharsky and Penzev, 2012; Syshchenko
et al., 2010).

Fefferman et al. (2014) determined the distribution
of network lengths in a single crystal by measuring the
strain dependence of the shear modulus at low temper-
ature. By applying a large oscillating strain (ε =10−6)
while cooling from 0.5 K, the 3He impurities were pre-
vented from binding to dislocations. When the strain am-
plitude was then reduced at 25 mK, 3He impurities began
to bind, increasing the shear modulus as shown in Fig. 44.
If there were a single network pinning length, there would
be a precise value of the applied strain at which all dis-
locations would get pinned and the shear modulus would
suddenly increase to the intrinsic value. However, short
dislocations move less than long ones and their break-
away stress is larger, so 3He impurities progressively bind
to and pin dislocations as the driving strain is reduced,
beginning with the shortest ones. The smooth transition
from soft to stiff that one sees in Fig. 44 is evidence that
there is a distribution of lengths. From the shape of the
transition Fefferman et al. (2014) found a broad distribu-
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FIG. 44 Shear modulus of an hcp 4He single crystal near
25 mK, measured while decreasing the driving strain. The
distribution of dislocation lengths between nodes of the net-
work was determined by analysis of the transition between
the unpinned soft state at large strain and the stiff intrinsic
state at low strain (Fefferman et al., 2014).

tion of network lengths, extending at least from 20 to 300
µm in this particular crystal. However, since a disloca-
tion’s contribution to the shear modulus is proportional
to L2, elastic measurements are not sensitive to shorter
dislocations and there may be significant numbers of dis-
locations shorter than 20 µm.

When Fefferman et al. (2014) tried to fit low ampli-
tude modulus and dissipation data sets like those shown
in Fig. 41, using their measured distribution of network
lengths, they found that they also had to include a dis-
tribution of 3He binding energies. To achieve good fits,
they needed a width of order 0.1 K around the average
value (about 0.7 K), consistent with the distribution of
binding energies from Fig. 43 (Souris et al., 2014). A dis-
tribution of binding energies is expected because disloca-
tions rarely have purely edge or purely screw character.
Depending on their orientation in the lattice, they can
have a mixed character and the binding energy can vary
between the value for an edge dislocation and that for a
screw dislocation, which is expected to be smaller.

VI. PLASTIC DEFORMATION AND FLOW

The shear modulus behavior described above occurred
at very small stresses and strains, where conventional
solids normally deform elastically, but it involved the
motion of dislocations, which are normally associated
with plastic deformation. Although the large modulus
changes were described as “giant plasticity”, the dislo-
cation strain was proportional to the applied stress and
returned to zero when the stress was removed. Such lin-
ear reversible behavior is more typical of elastic defor-

mations. However, dislocation damping and pinning af-
fected the dislocations’ mobility and introduced dissipa-
tion and frequency dependence in the response. Such be-
havior is sometimes referred to as “anelastic”, reserving
the term “plastic deformation” for much larger deforma-
tions above the solid’s yield point, where the crystal does
not return to its original configuration when the stress
is removed. This irreversible behavior involves the cre-
ation, multiplication and interaction of dislocations, not
just the dislocation glide used to describe the shear mod-
ulus softening (giant plasticity) in solid helium. Zhou
et al. (2013) have recently included these features in a
model for solid helium to describe its plastic deformation
in this regime. There can also be an intermediate region
below the macroscopic yield point, often referred to as
“microplasticity” (Maass and Derlet, 2018) in which the
existing dislocations move but not reversibly, for exam-
ple because they intersect with nearby dislocations and
create jogs or other pinning points, without creation of
significant numbers of new dislocations. In this section,
we describe experiments on plastic deformation and flow
of solid helium at large strains.

Dislocation glide and plastic deformation are responses
to shear stresses. Purely hydrostatic pressure changes do
not produce shear strains and therefore do not result in
plastic deformation. The measurements on single crys-
tals described in the previous section involved uniform
simple shear but shear deformations are also generated
by pressure gradients, by tensile strains in Young’s mod-
ulus measurements, or by uniaxial compression in longi-
tudinal sound waves. For solid helium confined at con-
stant density in a rigid cell, thermal expansion increases
the pressure when a sample is heated but if the ther-
mal expansion is isotropic, as in cubic crystals, the pres-
sure change is hydrostatic and no plastic deformation is
expected. In hexagonal crystals, the thermal expansion
coefficients parallel and perpendicular to the c-axis are
different, so warming or cooling a confined hcp helium
crystal will produce shear stresses which can plastically
deform it. These stresses will be small in hcp 4He since its
c/a ratio is nearly independent of pressure, i.e. its ther-
mal expansion is nearly isotropic (Franck and Wanner,
1970). However, in imperfect crystals there are micro-
scopic regions of shear stress around defects and, even
in cubic crystals, temperature changes can create pris-
matic dislocation loops if thermal vacancies precipitate
into platelets (Hull and Bacon, 2011).

The first attempt to observe macroscopic plastic flow in
solid helium involved growing an hcp 4He crystal around
a magnetically levitated metal sphere (Andreev et al.,
1969), which was then subjected to a magnetic force of
up to 250 times its weight. The ball’s position was mea-
sured using an optical technique with a resolution of 20
µm. At 0.5 K no displacement was seen, putting an up-
per limit of 2 nm/s on the ball’s velocity. Subsequent
measurements using larger forces and more sensitive dis-
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placement measurements succeeded in detecting the plas-
tic deformation of solid helium. Beginning in the 1970s,
several groups applied metallurgists’ standard techniques
(stress-strain curves, hysteresis loops, yield stresses and
rate-dependent creep) to study the plastic deformation
and flow of solid helium at higher temperatures.

A. High temperature plastic flow and creep

Suzuki (1973, 1977) made the first systematic mea-
surements of plastic deformation of solid helium. A ball
or cylinder was embedded in the helium and an attached
wire was used to pull it through the helium while measur-
ing the displacement and applied force. Figure 45 shows
typical force-displacement curves for hcp 4He. The cor-
responding shear stresses and strains can be roughly es-
timated from the geometry of the cell. The force (stress)
initially increased, with a slope corresponding to elastic
deformation of the helium, then dropped by as much as
40% above the helium’s yield point. The solid then con-
tinued to deform at lower stress. The yield stress and
the magnitude of the yield drop were smaller at higher
temperatures and for smaller strain rates ε̇. At a shear
strain rate ε̇ ∼ 2×10−3/s (corresponding to displacing the
cylinder at 0.005 mm/s) and a temperature of 1.5 K, yield
began at a shear stress (strain) σ ∼13 kPa (ε ∼ 0.04).
Above its yield point, the helium continued to deform,
at roughly constant flow stress (σ ∼ 10 kPa at T =1.5
K for ε̇ ∼ 2×10−3/s), with no indication of work harden-
ing even when the helium was deformed by 100%. This
suggested that the steady flow involved dislocations be-
ing created, piling up at grain boundaries and walls and
then being annihilated via climb. Suzuki found that the
creep rate at small stresses was thermally activated, as
expected since this process, known as Weertman creep, is
controlled by the vacancy diffusion required for disloca-
tion climb (Poirier, 1985; Weertman, 1955). For samples
at 3.2 MPa (molar volume 20.5 cm3), Suzuki found an
activation energy of 19.5 K, consistent with activation
energies for vacancy diffusion in hcp 4He measured with
other techniques (Fraass et al., 1989). The pronounced
yield drops were attributed to high Peierls stresses for
dislocations with Burgers vectors not lying in the hcp
basal plane. Plastic deformation in complex geometries,
or in polycrystalline samples, requires slip in multiple
directions and is controlled by the slip system with the
largest Peierls stress.

The same technique was used to study plastic defor-
mation in bcc 3He (Sakai et al., 1979). Flow stresses
were smaller in low density crystals, e.g. σ ∼ 1 kPa at
T = 0.6 K for ε̇ ∼ 2×10−3 in crystals at pressures around
3.5 MPa. This is consistent with the smaller vacancy ac-
tivation energies in bcc 3He. Also, plastic flow around an
embedded object should be easier for bcc crystals, since
dislocations can move in multiple slip planes, in contrast

FIG. 45 Stress-strain (force-displacement) curves for hcp 4He
at a pressure of 3.2 MPa (Suzuki, 1977). Left panel shows the
temperature dependence at a shear strain rate ε̇ ∼ 2×10−3/s.
Right panel shows the strain rate dependence at a tempera-
ture of 1.52 K. c©(1977) The Physical Society of Japan.

to hcp crystals where slip is confined to the basal plane.

Sanders et al. (1977) used a somewhat different tech-
nique in which a piston driven by a pressurized bellows
was used to compress and deform single crystals of solid
4He. A thin surface layer could be melted, largely elim-
inating the need for multiple slip systems since such un-
constrained crystals were free to shear at the cell walls.
Figure 46 shows stress-strain curves for an hcp 4He crys-
tal at a compressional strain rate ε̇ =10−4/s. For the un-
constrained crystal (solid circles), the flow stress was too
small to measure, less than 5 kPa. For the constrained
crystal (open circles), flow occurred at a uniaxial stress of
about 60 kPa. In contrast to the measurements of Suzuki
(1973, 1977), these experiments showed no evidence of a
yield drop. After the deformation ended, the stress re-
laxed (open triangles) but a residual stress of about 20
kPa remained for at least 20 minutes. Given the compli-
cated deformation geometry, which involved compression
of the solid as well as complex flow around the piston, it
is difficult to convert these uniaxial stresses to the corre-
sponding shear stresses relevant for plastic deformation.
The experimental cell included ultrasonic transducers,
which allowed Sanders et al. (1977) to monitor the den-
sity of dislocations via their contribution to the sound
attenuation. In both the constrained and unconstrained
crystals, the attenuation increased rapidly when defor-
mation began, indicating that plastic deformation was
accompanied by the expected dislocation multiplication.

Experiments on bcc 4He crystals (Sanders et al., 1978)
showed somewhat different behavior. The deformation
of constrained samples was similar to that for hcp 4He,
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FIG. 46 Stress-strain curves for constrained (open circles)
and unconstrained (solid circles) crystals of hcp 4He at a pres-
sure of 3.2 MPa and temperature of 1.8 K. Open triangles
show the stress relaxation when the strain is held constant
(Sanders et al., 1977).

although the flow stresses were several times smaller. For
unconstrained samples the flow stress was again too small
to measure. However, there was essentially no increase in
ultrasonic attenuation associated with deformation of bcc
crystals. This suggested either that bcc crystals deform
via mechanisms that do not involve dislocation multipli-
cation, or that any dislocations created do not contribute
to ultrasonic attenuation. The difference between hcp
and bcc crystals was confirmed in measurements on bcc
3He (Manning et al., 1986), which also deformed easily,
without significant sound attenuation changes in most of
the crystal.

Plastic deformation has also been studied by electro-
magnetically pulling a 80 µm diameter superconducting
wire through bcc 4He (Berent and Polturak, 1998). For
stresses below about 0.6 kPa, the wire’s velocity was lin-
ear in applied stress and its temperature dependence was
consistent with the activation energy of thermal vacan-
cies. This suggests that the flow was due to vacancy
diffusion (Nabarro-Herring creep). For larger forces, the
velocity depended non-linearly on stress and appeared to
involve dislocation motion controlled by thermally acti-
vated climb. This technique has recently been extended
to temperatures as low as 10 mK, but the stresses were
not large enough to generate motion below 1 K (Ahlstrom
et al., 2014). In hcp 4He above 1 K, the 55 µm diame-
ter wire moved in a series of apparently random jumps.
These involved large displacements (∼0.1 mm) at speeds
up to ∼1 mm/s. In the bcc phase at high tempera-
ture, the wire moved much more slowly (∼nm/s), but
smoothly, as in the earlier experiments of Sanders et al.
(1978).

The plastic deformation measurements described
above were made near samples’ melting points, where
thermal processes control plastic deformation. Recent
experiments (Cheng and Beamish, 2018b) have extended
the piezoelectric techniques developed for low frequency
shear modulus measurements to much larger strains.
The large strains required for plastic deformation were
achieved by using a stack of 18 transducers and increas-
ing the drive voltage from millivolts to hundreds of volts.
Uniform shear strains up to 0.4% could be produced, at
constant strain rates generated by applying a linear volt-
age ramp to the transducer stack. The shear stress in the
helium was measured in situ with a piezoelectric trans-
ducer, giving a sensitivity orders of magnitude higher
than was possible with the mechanical systems used in
earlier plastic deformation experiments. The uniform
shear strains in this simple geometry allowed stress-strain
curves to be quantitatively interpreted and the method
could be used at much lower temperatures, so plastic
deformation of solid helium could be studied in the non-
thermal regime.

Figure 47 shows measured stress-strain loops for poly-
crystalline hcp 4He at 3.4 MPa, at temperatures of 25
mK (solid lines) and 900 mK (dashed lines). Starting at
zero deformation, the strain was ramped at a constant
rate ε̇ = 8×10−6 s−1 to a maximum value ε = 0.065%. It
was then ramped in the opposite direction at the same
rate, to ε = -0.065%, and finally back to zero. At 25 mK
(solid lines), the stress-strain response was essentially lin-
ear and reversible, and the stress returned to zero, the
behavior of an elastic solid. At 900 mK (dashed lines),
the stress deviated from the elastic value for strains larger
than 0.01% and followed a different path when the strain
was ramped down. The resulting stress-strain loop did
not close at its starting point, the irreversible and hys-
teretic behavior that characterizes plastic flow.

Figure 48 gives an overview of high temperature plas-
tic flow (creep) in a polycrystalline hcp 4He sample.
Panel (a) shows the helium’s differential shear modulus
µdiff = dσ

dε at temperatures of 0.5 K and 0.9 K. Inte-
grating µdiff gives the corresponding stress σ shown in
the panel (b). Panels (c) and (d) show the corresponding
behavior at 1.2 K. For small strains, the stress is propor-
tional to the strain so µdiff is constant. At 0.5 K, the
elastic regime extends to ε ≈ 0.08%, where the helium be-
gins to deform plastically. At 0.9 K, plastic flow begins
at smaller strains, around 0.02%, and the flow stresses
are much smaller. The flow stresses increase with strain
ε, and with strain rate ε̇. At 1.2 K, the flow stresses are
essentially constant and are much smaller, less than 0.4
kPa at the lowest strain rate ε̇ = 8×10−6 s−1. Extrap-
olating to the sample’s melting point, 1.55 K, gives flow
stresses of less than 100 Pa. This is about four orders of
magnitude smaller than the yield stress of a very ductile
metal like indium near its melting point. It is also much
smaller than the flow stresses in earlier measurements on
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FIG. 47 Stress-strain loops for polycrystalline hcp 4He at 3.4
MPa and temperatures of 25 mK (solid lines) and 900 mK
(dashed lines). The corresponding solid and dashed arrows
show the directions of increasing or decreasing strain, starting
and ending at zero strain (Cheng and Beamish, 2018b).

hcp 4He at similar temperatures, e.g. those shown in
Figs. 45 and 46 (Sanders et al., 1977; Suzuki, 1977). The
differences may be due to the larger strain rates used in
those experiments, their crystals’ higher pressures (3.2
MPa vs. 2.64 MPa), and their complex flow geometries
requiring multiple slip systems.

The variation of flow stress with strain rate depends on
the creep mechanism, but is often described by a power
law ε̇ ∝ σn. Vacancy diffusion gives a creep rate propor-
tional to the pressure gradient and resulting stress, ε̇ ∝ σ,
i.e. n= 1, but the creep rates in Fig. 48 (d) depend much
more strongly on stress, with n ≈ 3.4, as shown in the in-
set. Previous measurements gave similar exponents, with
n ranging from 3 to 5 in hcp 4He (Suzuki, 1977; Tsym-
balenko, 1976), ∼3.5 in bcc 4He (Berent and Polturak,
1998) and ∼4 in bcc 3He (Manning et al., 1986; Sakai
et al., 1979)). Exponents between 3 and 4 are charac-
teristic of dislocation mechanisms like Weertman creep
(Poirier, 1985; Weertman, 1955) where creep rates are
controlled by depinning of dislocations via vacancy diffu-
sion and climb.

B. Low temperature slip and dislocation avalanches

The plasticity described above involved measurements
above about half the samples’ melting temperatures.
Plastic deformation is quite different at low temperatures
where thermally activated processes freeze out. This
regime is particularly interesting in a quantum solid like
helium where zero point motion dominates, tunneling
allows defects like vacancies and impurities to propa-
gate ballistically, and dislocations can move freely. To
study non-thermally activated deformation mechanisms,
much lower temperatures were required. Although there

0.0 0.1 0.2 0.3 0.4

0

2

4

6

0.0 0.1 0.2

0

2

4

6

 

 [%]

a

T=0.9 Kdi
ff [

M
Pa

]

T=0.5 K

elastic limit

0.0 0.1 0.2 0.3 0.4
0

5

10

15

20
  = 3.78*10-5 s-1

  = 2.94*10-5 s-1

  = 1.67*10-5 s-1

  = 8.37*10-6 s-1

 

T=0.9 K

T=0.5 K

elastic limit

 [k
Pa

]

 [%]

b

 
di

ff [
M

Pa
]

  [%]

T = 1.2 K

c

0.0 0.1 0.2
0.0

0.2

0.4

0.6

 
 [k

Pa
]

 [%]

d

2.6 2.7 2.8-5.2

-5.0

-4.8

-4.6

-4.4

 

 

lo
g 10

(
  [

s-1
])

log10(  [kPa])

FIG. 48 Plastic creep in a 2.64 MPa hcp 4He sample (Cheng
and Beamish, 2018b). Differential shear modulus (panel (a))
and corresponding stress (panel (b)) measured for different
strain rates, at temperatures of 0.5 and 0.9 K. Panels (c) and
(d) show the corresponing data at 1.2 K. The strain rates
are given in the legend of panel (b). In each panel, the lowest
(blue) curve corresponds to the lowest strain rate, 8.37 ×10−6

s−1, and the higher curves to successively larger strain rates.
Inset in (d) shows the relationship between shear stress σ and
strain rate ε̇.
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were a few early experiments below 0.5 K (Levchenko
and Mezhov-Deglin, 1982, 1984), their plastic deforma-
tion measurements were indirect. Crystals of hcp 4He
were grown in a 1 mm diameter capillary and deformed
by bending the capillary, at temperatures as low as 0.45
K. This reduced the crystals’ thermal conductivity, an ef-
fect that was attributed to scattering of thermal phonons
from dislocations created during deformation.

The stress-strain measurements of Fig. 48 were ex-
tended to temperatures below 400 mK, where thermal
creep is negligible. Figure 49 shows µdiff (upper panel)
and σ (lower panel) for the same sample at 16 mK, for
a strain rate ε̇ = 3.8×10−5 s−1. The linear elastic region
extended to ε ≈ 0.3%, much higher than the 0.08% strain
at which plastic deformation began at 0.5 K. At higher
strains, plastic deformation involved abrupt stress drops
of as much as 5%.

The time over which the stress dropped appeared to
be about 2.5 seconds, but this was essentially the re-
sponse time of the current amplifier, so faster amplifiers
and data acquistion were used to resolve slip events. A
typical strain ramp is shown in Fig. 50 (a), with the cor-
responding stress current i (proportional to µdiff ) shown
in panel (b). A typical slip event, which was much faster
than the stress drops in Fig. 49, is shown on expanded
time scales in Figs. 49 (c) and (d). The event consisted of
a negative current pulse, followed by a 10 kHz oscillation
which decayed over about 40 ms. The oscillation was an
acoustic resonance (Day and Beamish, 2012) of the solid
helium filling the cell, triggered by the sudden stress re-
lease in the helium. The actual slip corresponded to the
initial negative current, with a duration of about 25 µs.

Similar behavior has been seen in metals, where the
slip events were identified as dislocation avalanches,
which begin when dislocations break away from pinning
sites, then move and multiply. A dislocation’s motion is
driven by the force bσ proportional to the shear stress,
and is opposed by the damping force B proportional to its
speed. This limits the dislocation’s speed to vf = bσ/B.
In metals, the damping is due to electrons and limits
vf to ∼10 m/s for MPa applied stresses (Gorman et al.,
1969; Schaarwachter and Ebener, 1990). Even at the ex-
tremely high strain rates in shock experiments, typical
dislocation speeds are much less than the sound speed
(Lebyodkin et al., 2009; Richeton et al., 2005; Shashkov
et al., 2012). In contrast, dislocations in helium move
freely at low temperatures, since the only damping is due
to thermal phonons, with B ≈ 1.5×10−8 T 3 Pa·s (Haziot
et al., 2013a). For a shear stress of 15 kPa, this would
limit dislocation speeds in 4He to about 30 m/s near the
melting temperature (Tm = 1.55 K). At 16 mK, however,
the phonon damping force would be negligible, even for
dislocations moving at the speed of sound (vt ≈ 200 m/s).
Even though solid helium has sound speeds an order of
magnitude slower than typical metals, its dislocations can
move and avalanches can propagate much faster, at close

to the speed of sound.
Dislocation avalanches are usually detected from the

sound waves generated by the sudden slip. In the helium
deformation experiments, this acoustic emission could be
captured with a digital oscilloscope, even for events much
faster than that shown in Fig. 50 (d). A typical example
is shown in Fig. 51 (a). The entire event occurred in less
than a microsecond and generated a sound pulse with
the spectrum shown in Fig. 51 (b), centered around 20
MHz. Since elastic deformations (including dislocations)
cannot move faster than the speed of sound, the acous-
tic emission frequencies provide an upper limit on the
size of slip events. This is less than 5 µm for the event in
Fig. 51, much smaller than the dimensions of the solid he-
lium sample (which was grown in a 170 µm gap between
the transducers). Dislocation avalanches can occur inside
the helium, away from the walls. The event in Fig. 49
was much larger, involving at least 5% of the gap area,
so must have had dimensions of several millimeters. The
size of the slip regions in these low temperature deforma-
tion experiments spanned many orders of magnitude.
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FIG. 49 Differential shear modulus and stress in hcp 4He
at 16 mK. Insets show the large slip event at ε= 0.32% on
expanded scales.

C. Pressure gradients, yield stress and annealing

In many applications the use of materials is determined
by their yield stress σc, the threshold at which plastic de-
formation begins. In solid helium, the yield stress limits
the pressure differences that can be maintained within
solid helium, for example during freezing of helium using
the blocked capillary method. Although helium’s yield
stress is small, in some geometries the pressure differ-
ences can be large. For example, a pressure difference
∆P between the ends of a cylindrical cell (of length L
and radius R) generates a net force πR2∆P on the he-
lium, which must be balanced by the force exerted by the
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FIG. 50 Dislocation avalanches and acoustic ringing in hcp
4He at 16 mK: (a) strain (b) measured current (proportional
to stress) (c) acoustic ringing over 20 ms following a typical
slip event (d) first 3 ms of the slip event showing the initial
negative stress change.
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FIG. 51 Acoustic emission from a localized slip event in hcp
4He at 16 mK: (a) acoustic signal (b) frequency spectrum of
acoustic signal and (c) schematic showing the localized event
in the gap containing solid helium and the acoustic emission
that is detected by the piezoelectric transducer.

side walls, 2πRLσw. If the shear stress at the wall, σw,
exceeds the yield stress, the helium will deform plastically
and flow, as in the extrusion process used to make wires.
The pressure at which this begins, ∆Pmax = 2σcL/R,
depends on the aspect ratio L/R of the cylinder. For
solid helium with a low temperature yield strength σc ≈
15 kPa, a cylinder with an L/R ratio of 250 (e.g. a 3
mm long channel with a diameter of 25 µm, or a 5 cm
long capillary with inner diameter 0.4 mm) could sustain
pressure differences up to 7.5 MPa (75 bar) before slip-
ping. This is the basis of the standard blocked capillary
technique for freezing helium. Note that large pressure
differences can occur not just in blocked capillaries, but
in any cell with a large aspect ratio (Suhel and Beamish,

2011). Examples include long cylinders (Ray and Hal-
lock, 2008), thin disks (Degtyarev et al., 2010; Rittner
and Reppy, 2009; Tsymbalenko, 1977), and narrow an-
nular gaps (Rittner and Reppy, 2007).

At high temperatures, or in open cells with L/R ∼ 1,
pressure differences are much smaller but may still be
significant. For example, Suhel and Beamish (2011) used
rapid thermal quenching to generate pressure gradients
in a cylindrical cell with length 30 mm and radius 15
mm (L/R = 4). A short current pulse was applied to a
heater embedded near one end of a solid 4He sample at 50
mK, partially melting it. The helium refroze and cooled
rapidly, reaching temperatures below 400 mK in as lit-
tle as 20 seconds. This produced pressure differences as
large as 35 kPa between in situ gauges at opposite ends
of the cell. This corresponds to σc ≈ 4.4 kPa, smaller
than the 15 kPa yield stress from Fig. 49, which suggests
that some of the initial pressure gradients relaxed at the
higher temperatures during the initial thermal quench.
Similar pressure differences have been observed in other
helium experiments using cells with multiple pressure
gauges (Birchenko et al., 2018; Ray and Hallock, 2009).

Annealing at high temperatures can remove some de-
fects and reduce internal stresses in crystals, as shown in
the experiments by Suhel and Beamish (2011). For a 3.1
MPa polycrystalline hcp 4He sample (melting temper-
ature of 1.79 K), the initial pressure difference between
opposite ends of the cell (≈ 26 kPa) was stable at temper-
atures below 400 mK. When the temperature was raised
above 500 mK, the pressure difference decreased at a rate
that increased with temperature. The data were consis-
tent with a thermally activated annealing process with
an activation energy of about 5 K. However, annealing
above 500 mK did not completely eliminate pressure dif-
ferences. When the temperature was held constant at
0.9 K, the pressure difference stabilized at 4.3 kPa after
9 hours. This corresponds to a static shear stress of ∼0.5
kPa, similar to the yield stress (∼1 kPa) at which creep
began at 0.9 K in Fig. 48. When the sample was warmed
above 0.9 K, the pressure difference decreased further, to
less than 1 kPa at 1.5 K. This is consistent with the de-
crease in yield stress at high temperatures (e.g. to ∼300
Pa at 1.2 K in Fig. 48).

It is clear that solid helium can support significant
pressure differences, which can only be eliminated by
warming the sample close to its melting temperature.

D. Flow in solid helium

1. Vacancy diffusion flow

Vacancies enable dislocations to climb and so play an
important role in plastic deformation by allowing disloca-
tions to move around obstacles or to annihilate. At high
temperatures, vacancies can also eliminate stresses via



45

Nabarro-Herring vacancy creep, which transports mass
directly, as discussed in Section III A. In contrast to
dislocations, which move in response to shear stresses,
vacancies diffuse in pressure gradients but do not re-
spond directly to shear deformations. The equilibrium
vacancy concentration given by eqn. 2 is proportional to

e
−(Ev+Pvv

kBT )
, so at temperatures high enough to create

thermal vacancies, a gradient in the pressure P creates a
gradient in the vacancy concentration gradient xv. Va-
cancies diffusing from low to high pressure regions pro-
duce a mass flow that reduces the pressure gradient.

However, the time scale for diffusive processes scales
with the square of the sample dimension, so pressure
relaxation via vacancy diffusion is very slow over large
distances. For example, the blocked capillary technique
relies on the flow of solid helium being negligible under
the pressure gradients along the capillary. An early ex-
periment searching for supersolidity in hcp 4He (Grey-
wall, 1977b) detected no flow and established very low
limits on pressure-induced flow at temperatures down to
30 mK. Diffusive vacancy flow is much more important
in small samples and at high temperatures. For helium
confined in the nanoscale pores of Vycor glass, ultra-
sonic measurements (Beamish et al., 1991) showed that
vacancy diffusion relaxed stresses within a pore on mi-
crosecond time scales at temperatures above 1 K. When
external pressure was applied to a Vycor sample contain-
ing solid helium (Day et al., 2005), mass flowed macro-
scopic distances into the pores at high temperatures, but
no flow was seen below 500 mK. In a similar experiment
in which a pressure difference of about 10 kPa was applied
across solid 4He in 3 mm long, 25 µm diameter channels,
mass flow through the channels equilibrated the pres-
sures at temperatures near melting (Day and Beamish,
2007a). Below 1 K there was no evidence of flow (Day
and Beamish, 2006), which is not surprising, given he-
lium’s yield stress and the channels’ large aspect ratio
(L/R = 240).

One experiment involving hcp 4He in a high aspect ra-
tio cell (a disk-shaped chamber of thickness 0.1 mm, ra-
dius 8.6 mm) did detect a very slow pressure relaxation at
temperatures as low as 19 mK (Rittner and Reppy, 2009).
The relaxation rate was compatible with a thermal acti-
vation process but the activation energy, ∼28 mK, was
very small and the flow mechanism was not clear.

The absence of non-activated flow at low temperatures
is consistent with the consensus that there are no zero
point vacancies in hcp 4He. However, thermal vacancies
cannot simply vanish when a solid is cooled. To disap-
pear, they must diffuse to a vacancy sink, i.e. to a crystal
surface or to internal defects like dislocations and grain
boundaries. Vacancies in helium might also phase sep-
arate into clusters (Boninsegni et al., 2006a), in which
case they would collapse to create prismatic dislocation
loops (Hull and Bacon, 2011). If thermal quenching is

fast enough, larger non-equilibrium vacancy concentra-
tions might survive. Unusual features in experiments
involving solid helium flow through a nozzle have been
interpreted in terms of flow of vacancies at large non-
equilibrium concentrations (Benedek et al., 2016).

FIG. 52 Flow velocity for solid helium in 6 to 8 µm diameter
channels through a membrane. Upper panel: data for two
polycrystalline hcp 4He samples (labeled “1” and “2”) with
molar volume 21.05 cm3/mol (Zhuchkov et al., 2015). Lower
panel: data for polycrystalline bcc 3He at samples with mo-
lar volumes (a) 24.43 and (b) 23.98 cm3/mol (Lisunov et al.,
2015).

Since the vacancy flow rate is directly proportional to
the pressure gradient, more sensitive measurements can
be made by applying pressure differences across shorter
channels. Zhuchkov et al. (2015) used a capacitative
technique in which a pressure difference was generated
across 6-8 µm diameter channels through a 10 µm thick
polymer membrane (L/R ∼3) embedded in solid 4He.
Flow velocities through the channels, determined from
the displacement of the membrane, are shown in the up-
per panel of Fig. 52. At high temperatures they observed
thermally activated flow with activation energies between
6.5 and 13.9 K, consistent with vacancy activation ener-
gies in 4He. Below 500 mK the temperature dependence
was much weaker, corresponding to activation energies
∼0.5 - 0.7 K. They attributed the high temperature flow
to thermally activated vacancy diffusion, but the origin
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of the very slow creep at low temperatures was unclear,
although it might involve motion of dislocation kinks.

Lisunov et al. (2015, 2016) made similar measurements
on bcc 3He, shown in the lower panels of Fig. 52. Above
200 mK they saw thermally activated flow, with activa-
tion energies between 2.3 and 3.1 K. These energies are
smaller than for hcp 4He, but are similar to vacancy ener-
gies in bcc 3He (e.g. 4.25 K at 35 bar (Heald et al., 1984)).
However, the flow rate for 3He did not continue to drop
below 200 mK, but instead approached a constant value
at the lowest temperature (100 mK). The authors sug-
gested that the high temperature flow involved motion
of dislocations via thermally activated creation of kink
pairs. The temperature-independent flow below 200 mK
indicated a quantum mechanism of mass transport, but
the mechanism was unclear.

A recent experiment on bcc 3He confined in a much
larger channel (3 mm diameter, with L/R ≈ 6) gave
similar results, shown in Fig. 53 (Cheng and Beamish,
2018a). A pressure difference applied between the ends
of the channel generated flow which was thermally acti-
vated above 100 mK, but approached a constant rate at
the lowest temperature (30 mK). However, the activation
energy was smaller (∼0.85 K) and the flow rates were
much larger than in the experiments of Lisunov et al.
(2015, 2016). This suggests that both the thermally ac-
tivated and the temperature-independent flow shown in
Fig. 53 involved dislocations, which would be more mo-
bile in this bulk geometry than in the small channels of
Lisunov et al., where they are expected to be pinned at
the walls.
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FIG. 53 Flow velocity (right axis) and rate of pressure change
(left axis) for polycrystalline bcc 3He in a 3 mm diame-
ter channel, at a pressure of 3.6 MPa (Cheng and Beamish,
2018a). Dashed line corresponds to a thermally activated pro-
cess with activation energy 0.85 K

2. Low temperature superflow in solid 4He

In addition to the creep and plastic flow described
above, recent experiments have shown intriguing low
temperature mass flow through cells filled with hcp 4He
(Hallock, 2015, 2019; Ray and Hallock, 2008). This flow
appeared below 0.6 K, with flow rates that were nearly
independent of the pressure difference across the solid,
and increased at lower temperatures. These features are
clearly not associated with thermally activated flows like
those described above, but are typical of superfluids. The
low temperature flow was very sensitive to 3He impuri-
ties, with concentrations x3 as small as 10−6 blocking the
flow below 100 mK (Cheng and Beamish, 2016; Vekhov
et al., 2014). This suggests that the flow occurs along low
dimensional channels, for example superflow in a network
of 1-dimensional dislocations (Shin et al., 2017; Vekhov
and Hallock, 2012), a possibility raised by PIMC simula-
tions (Boninsegni et al., 2007) that indicated that some
types of dislocations in hcp 4He have superfluid cores.
This topic has recently been reviewed by Hallock (2019).

VII. OPEN QUESTIONS AND FUTURE DIRECTIONS

The work reviewed in this paper makes it clear that
defects like vacancies, impurities and dislocations have
dramatic but well-understood effects on the mechanical
behavior of quantum solids like helium. However, it is
important to note that essentially all the experiments
upon which this understanding is based involve mobile
dislocations, primarily those gliding in the basal plane
of hcp 4He. There is no direct experimental evidence of
the properties (or even the existence) of other types of
dislocations in helium, despite their importance in plastic
deformation and flow. This contrasts with the situation
in metals and other conventional materials, where TEM
and x-ray techniques have been used to directly confirm
the properties of different types of dislocations, and to
determine their densities and network structures.

Although the high pressures required to grow helium
crystals rule out TEM imaging, it is possible that modern
synchrotron x-ray sources and techniques could provide
microscopic information about the structure of disloca-
tions, stacking faults and grain boundaries. It might also
be possible to take advantage of advances in “matrix iso-
lation” spectroscopy of atoms embedded in solid helium
to image or probe extended defects, in analogy to the im-
purity decoration techniques that have been used to im-
age vortices in superfluid droplets (Gessner and Vilesov,
2019; Gomez et al., 2014).

In the absence of direct imaging of dislocations, exper-
iments can only determine average properties associated
with networks having unknown distributions of orienta-
tions and loop lengths. The recent low frequency shear
modulus measurements on optically oriented single crys-
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tals have provided detailed and consistent information
about dislocation networks in hcp 4He. However, there
are significant discrepancies with, for example, the dis-
location densities and lengths inferred less directly from
high frequency ultrasonic measurements.

One possible approach to extract information about
specific dislocations would be to probe mechanical prop-
erties on a microscopic scale. Given the low dislo-
cation densities (Λ ∼104/cm2) and the loop lengths
(L ∼100 µm) inferred from shear modulus measurements
in high quality 4He crystals, it seems likely that there are
dislocation-free regions with dimensions of tens of mi-
crometers. There have been a few experiments involving
solid helium confined on this scale, including flow mea-
surements across an 8 micron gap (Shin et al., 2017) or
along 25 micron cylindrical channels (Day and Beamish,
2006), and shear modulus measurements on helium in
an 11 micron gap (Aoki et al., 2016). The smallest
avalanches detected in hcp 4He polycrystals (Cheng and
Beamish, 2018b) at low temperatures were of compara-
ble sizes and may have initiated at a single dislocation.
Submicron cavities have been used to probe superfluid
helium (Souris et al., 2017) and it may be possible to
apply micromechanical or optomechanical techniques to
study solid helium on samples small enough be free of
dislocations or other defects. Such measurements could,
for example, test predictions (Borda et al., 2014) of the
ultimate shear strength of perfect helium crystals, or al-
low dislocations to be introduced into perfect crystals to
test dislocation models of superflow.

Numerical simulations have provided a great deal of in-
formation about dislocations and their networks in con-
ventional solids. In quantum solids, PIMC simulations
have made remarkable advances, but they are still limited
to relatively small numbers of atoms, so cannot provide
the same level of detailed information about extended
defects and dislocation networks in helium crystals.

Neither PIMC simulations nor experiments provide ev-
idence for the existence of equilibrium zero point vacan-
cies in solid helium, but they may exist in regions of
large elastic strain (Pollet et al., 2008). It is also pos-
sible that nonequilibrium vacancies could be introduced
into solid helium by rapid deformation or flow (Benedek
et al., 2016). Rapid thermal quenching could also pro-
duce a finite concentration of vacancies at low tempera-
tures, given the large equilibrium vacancy concentration
(∼0.3%) near melting. Since these vacancies can only
disappear by migrating to a surface or a defect like an
edge dislocation, or by phase separating, a finite concen-
tration might survive rapid cooling to low temperatures,
particularly in 3He where they are expected to be less
mobile than in 4He.

One of the most intriguing phenomena in solid 4He is
the low temperature flow that appears around 0.6 K in
low pressure crystals (Hallock, 2019). The flow increases
upon cooling, but is blocked around 100 mK by very

small concentrations of 3He impurities. It has character-
istics of superflow but the nature and the location of the
flow channels are not yet certain (Cheng and Beamish,
2016). However, very recent experiments with partially
blocked channels do not appear to be consistent with
flow in 2D films (Rubanskyi and Hallock, 2019; Shin and
Chan, 2019). One dimensional flow along superfluid dis-
location cores, as predicted in PIMC simulations, is an
exciting possibility but experiments have not yet pro-
vided a “smoking gun” to confirm this scenario. This
is largely because there is no direct experimental evi-
dence for the types of dislocations that are predicted to
have superfluid cores (screw dislocations aligned along
the hcp c-axis; edge dislocations lying in the basal plane
and Burgers vectors along the hcp c-axis). The superflu-
idity predicted for these dislocations appears to be due
to the fact that they do not disassociate into partials and
so have large strains near their cores. This also results
in large Peierls barriers, which immobilizes them. The
mobile dislocations that can be detected in elastic mea-
surements (edge or screw dislocations gliding in the basal
plane) have essentially the opposite properties. They dis-
sociate into widely separated partials with small strains
and have no measurable Peierls barrier to their motion.

A number of experiments have recently been proposed
to more clearly distinguish the flow or superclimb associ-
ated with superfluid dislocations from other possible de-
formation or flow mechanisms (Kuklov, 2019). However,
clear confirmation of superfluid dislocations would re-
quire oriented single crystals which can be compressed or
sheared in specific crystallographic directions. Although
challenging, this could be done using the optical orien-
tation and crystal growth techniques that were used so
successfully in the low frequency shear modulus experi-
ments to provide detailed information on the properties
of mobile basal dislocations in 4He. Measurements with
optically oriented single crystals would have similar ad-
vantages for many other measurements, including plastic
deformation experiments.

The recent plastic deformation experiments by Cheng
and Beamish (2018b) showed that, at temperatures be-
low 0.4 K, large scale deformation in hcp 4He occurs via
dislocation avalanches. The avalanches had a wide range
of sizes and their accompanying acoustic emission pro-
vides opportunities to study the scaling laws that have
been observed in conventional solids, but in non-thermal
and quantum regimes. Similar experiments on bcc crys-
tals, with their different dislocation structures, multiple
slip systems and expected Peierls barriers, would be valu-
able. Although elastic measurements on bcc 4He and 3He
have shown some signatures of mobile dislocations, there
is presently much less information about their properties
than in the hcp phases of helium.

Vacancies appear to play a more important role in
the bcc phase of 4He, where plastic deformation occurs
smoothly (Ahlstrom et al., 2014) and does not seem to
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involve the creation of dislocations (Sanders et al., 1977).
To better understand the role of vacancies and disloca-
tions in deformation of bcc helium, measurements should
be made over a wide range, extending to low tempera-
tures where vacancies freeze out. This is not possible in
4He since the bcc phase does not exist below 1.5 K, but
can be done in the bcc phase of 3He, which is even more
quantum mechanical than the more thoroughly studied
hcp 4He.

Solid 3He also provides a unique opportunity to study
the effects of spin on dislocation motion. Low frequency
shear modulus measurements on hcp 3He (Cheng and
Beamish, 2017) were interpreted in terms of a new “spin
friction” mechanism of dislocation damping, an addition
to the known phonon and electron damping mechanisms
in other materials. Measurements at lower temperatures,
particularly in the spin-ordered magnetic phases below 1
mK, would confirm this and might provide insight into
dislocation motion in conventional magnetic solids.
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Granato, AV, and Kurt Lücke (1981), “Temperature depen-
dence of amplitude-dependent dislocation damping,” Jour-
nal of Applied Physics 52 (12), 7136–7142.

Granfors, PR, BA Fraass, and RO Simmons (1987), “Direct
measurements of thermal vacancies in bcc 4He,” Journal of
Low Temperature Physics 67 (5-6), 353–375.

Greywall, Dennis Stanley (1971), “Sound propagation in x-
ray-oriented single crystals of hcp helium-4 and bcc helium-
3,” Physical Review A 3 (6), 2106.

Greywall, DS (1975), “Elastic constants and Debye tempera-
ture of bcc 3He,” Physical Review B 11 (3), 1070.

Greywall, DS (1976), “Elastic constants of bcc 4He,” Physical
Review B 13 (3), 1056.

Greywall, DS (1977a), “Elastic constants of hcp 4He,” Phys-
ical Review B 16 (11), 5127.

Greywall, DS (1977b), “Search for superfluidity in solid 4He,”
Physical Review B 16 (3), 1291.

Greywall, DS (1977c), “Specific heat of bcc 3He,” Physical
Review B 15 (5), 2604.

Grigor’ev, VN (1997), “Diffusion in solid helium (a review),”
Low Temperature Physics 23 (1), 3–14.

Grilly, ER (1971), “Pressure-volume-temperature relations in
liquid and solid 3He,” Journal of Low Temperature Physics
4 (6), 615–635.

Grilly, ER (1973), “Pressure-volume-temperature relations in
liquid and solid 4He,” Journal of Low Temperature Physics
11 (1-2), 33–52.

Grilly, ER, and RL Mills (1962), “PVT relations in 4He near
the melting curve and the λ-line,” Annals of Physics 18 (2),
250–263.

Guyer, RA, RC Richardson, and LI Zane (1971), “Excitations
in quantum crystals (a survey of NMR experiments in solid
helium),” Reviews of Modern Physics 43 (4), 532.



51

Hallock, RB (2015), “Solid 4He: Progress, status, and outlook
for mass flux measurements,” Journal of Low Temperature
Physics 180 (1-2), 6–19.

Hallock, RB (2019), “Mass flux experiments in solid 4He:
some history, recent work and the current status,” Jour-
nal of Low Temperature Physics , 1–21.

Haziot, Ariel, Andrew D Fefferman, John R Beamish,
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