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Abstract – Small capillaries can provide strong binding to fluids confined within them. We
analyze this behavior with a simple microscopic theory, considering two geometries, a slit pore
and a cylindrical pore. A goal is to achieve the maximum possible capillary rise (H) within each
type of pore. The attraction for very small capillaries can result in a large value of H, exceeding
100 km in a number of cases (e.g., hydrogen, methane and water in cylindrical graphitic pores).
The specific value of H depends on the details of the pore and the fluid-surface interaction.
It is maximized in the case of small cylindrical pores, strong interactions and small adsorbate
mass. Explicit calculations are presented for graphite and MgO substrates. Experimental tests are
possible with an ultracentrifuge, where the high effective gravitational field reduces H.

Copyright c© EPLA, 2008

Introduction. – The traditional derivation of capillary
rise (H) in a cylindrical tube (radius R) evaluates H using
macroscopic theory and parameters. In the case of a tube
that is wet by the fluid, these are the liquid-vapor surface
tension (γ) and the mass density (ρ) of the fluid. This
treatment results in the venerable Jurin’s law [1]:

Hmacro =
2γ

ρgR
, (1)

where g= 9.81ms−2 is the gravitational acceleration.
This equation predicts the capillary rise to be of order

a centimeter for typical experiments (R≃ 1mm) used to
determine the value of γ. A curious student might ask
whether this relation makes sense when the value of R
is of atomic dimensions. For example, the formula yields
Hmacro ≃ 30 km for the case of water at 20 ◦C and R=
0.5 nm. Such a value of H seems both immeasurably large
and unreliable, since the derivation applies macroscopic
laws outside of their regime of validity. Moreover, at a
height of 30 km, the pressure of the hypothetical water
would be about twice the cavitation limit of water [2],
Pcav ≃−140MPa, so the water would be ultra-unstable.
Nevertheless, motivated by the student’s question, one can

(a)E-mail: caupin@lps.ens.fr

ask a related question: using more accurate, microscopic
physics, what is the maximum possible value of H for a
specified fluid?
This paper addresses this latter question. Because

the problem, at present, seems “academic”, we employ
a number of simplifying assumptions which yield semi-
quantitatively reliable conclusions. The most drastic of
these is the assumption that one can construct a regular
capillary tube of arbitrarily small R, with a value opti-
mized for the specific fluid. A more specific assumption
is that the host material can be treated as a continuum
in deriving the adsorption potential. With these approx-
imations, we derive for water a value of H that is even
greater than the näıve estimate Hmacro ≃ 30 km. However,
the physics entering this calculation is rather different;
the gas-surface interaction plays a critically important
role at the nanoscale, although it plays a relatively minor
role (sufficient attraction to achieve complete wetting) at
the macroscale.
It has already been seen experimentally that the capil-

lary rise in small (wetting) pores exceeds the prediction
from Jurin’s law [3]. Such behavior is understood to arise
from the fact that a wetting film reduces the effective value
of R, the radius of curvature of the meniscus [3]. Our treat-
ment is essentially an extrapolation of this physics to the
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limit when the pore space is of atomic dimensions. At the
nanoscale, additional information is needed in order to
characterize the interaction energies.
We first develop a microscopic description of fluid

uptake in slit pores and cylindrical pores, from which the
capillary rise is calculated. We then consider the relation
between our findings for this problem and for wetting of
a flat surface. Finally, we discuss the results and consider
experimental methods for testing them.

Analysis. – Traditional analyses yielding the macro-
scopic expression Hmacro use either a force balance or an
energy minimization. The energy analysis is equivalent to
one used conventionally [1,4] to determine the thickness
d(z) of a thick wetting film at height z on a vertical surface,
partially immersed in a fluid, which coats the wall when in
equilibrium with the bulk fluid. This determination of d(z)
is based on the equilibrium condition of uniform chem-
ical potential; it costs no free energy to make a virtual
transfer of a molecule from the bulk liquid surface (at
z = 0) to the film on the wall. At low temperature one
can replace the free energy with the energy, obtaining an
implicit expression for d(z) that is used often to charac-
terize thick film adsorption: the so-called “Frenkel-Halsey-
Hill relation” [5]:

Mgz+V [d(z)] = 0. (2)

Here M is the molecular mass and the second term
represents the gas-surface potential energy, V (x), provided
by the wall to a molecule at the surface of the film,
i.e. at distance x= d(z). This relation has been tested
experimentally using superfluid helium films, for example;
then, a film thickness d≃ 10 nm is observed typically at
z ≃ 10mm [5]. See also ref. [6] for a discussion of the
maximum height reached by a film climbing along a
vertical wall.
This energy analysis is a convenient way to address the

present capillary rise problem, thanks to a large body of
empirical and theoretical information about adsorption
energies. In particular, we determine the maximum height
H by finding the most negative energy per particle
that can be achieved, considering alternative possible
geometries and substrate materials. Let us call E the
corresponding optimal binding energy per molecule, while
Ebulk is the cohesive energy for the bulk material which
coexists, in equilibrium, at the base of the capillary. Then,
our working relation analogous to eq. (2) is obtained by
substituting E−Ebulk for the potential energy and H for
the height:

MgH =E−Ebulk. (3)

For a given attractive gas-surface interaction, we opti-
mize the pore geometry to find the largest value of E.
In exploring this optimization problem, we have consid-
ered simple models, such as pairwise additive poten-
tials (commonly used in modeling adsorption). Such an
approach omits many-body interactions, which have been

explored but are usually neglected [5,7,8]. Nevertheless,
the approximations facilitate the study of the many
systems we wish to examine and lead to at least quali-
tative accuracy.
The simplest geometries resulting in large binding of

adsorbed fluids are slit pores and cylindrical pores. In
discussing these, we make use of two quantities relevant
to the interaction V (x) between the molecule and a semi-
infinite flat surface. One quantity is D1, the well depth
of the potential provided by a single surface made of
the given material. For the case when one integrates a
Lennard-Jones (LJ) 6-12 pair potential over a continuum
substrate, of density n, the result is [9]

D1 =
2π

9

√
10n ǫgs σ

3
gs. (4)

Here ǫgs is the well depth of the gas-substrate intermolecu-
lar pair potential and σgs is the corresponding “hard-core”
parameter. The other quantity is the equilibrium distance
for the adsorption potential, V (x); this is xeq ≃ 0.86σgs.
The assumption of pairwise additivity means that the
adsorption potential energies in various geometries are
proportional to D1, for which experimental data are avail-
able; see table 1.
Considering first the slit pore, one recognizes that the

optimal binding occurs when the adsorbed molecules form
a two-dimensional (2d) monolayer film, occupying a plane
midway between the walls of the materials confining
the fluid. Maximum binding occurs when the spacing
L between the walls satisfies the relation L= 2xeq =
1.72σgs. For this choice, the molecules get the maximum
attractive energy (D1) from both adjacent media. Then,
the total cohesive energy Eslit includes contributions from
the two surfaces (2D1), plus the energy (E2d) per particle
from mutual interactions with nearby molecules of the
adsorbate:

Eslit = 2D1+E2d. (5)

The ground-state cohesive energy E2d of a 2d LJ
solid [10] has been found [7] to have the valueE2d = 3.382ǫ,
where ǫ is the well depth of the adsorbate-adsorbate
interaction [11]. The ground-state energy of a 3d classical
LJ solid is Ebulk = 8.6093ǫ [12]. However, the experimental
values [13] give different ratios Ebulk/ǫ: for instance,
they lie between 5.5 and 8 for noble gases. We choose
an intermediate value, Ebulk ≃ 6.7ǫ, bearing in mind the
uncertainty due to this choice. We obtain from eq. (3) the
height for the slit-pore geometry:

Hslit =
2D1+E2d−Ebulk

Mg
≃ 2D1− 3.3 ǫ

Mg
. (6)

One observes that a large value of Hslit occurs when the
substrate attraction greatly exceeds the intermolecular
interaction energy.
The analogous optimization problem can be addressed

in the case of a cylindrical pore, for which the maximum
adsorption potential occurs [9] within a pore of radius
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Table 1: Values of the parameters discussed in the text for various adsorbates in cylindrical and slit pores, listed in order of
decreasing Hcyl (also, decreasing Hslit) for graphite and MgO, as indicated. The decrease of the gravitational force with height
(described in the text) has not been taken into account. ǫ and σgg values are taken from Berry et al. [14], except for water, in
which case the “corresponding states” relations ǫ= kBTc/1.313 and nc = 0.317/σ

3
gg were used, where Tc and nc are the critical

temperature and critical point number density, respectively [15]. D1 values are taken from Vidali et al. [16]. σgs values (used
to compute Rcyl and L) are from table 2.1 of ref. [7], where provided, or else from a combining rule: σgs = (σgg+σCC)/2,
where σCC = 0.34 nm. Quantum corrections for Hcyl and Hslit, not included, are significant for

4He and H2, as described in
the text.

Graphite MgO
Substance M ǫ σgg D1 Hcyl Hslit Rcyl L D1 Hcyl Hslit

(amu) (meV) (nm) (meV) (km) (km) (nm) (nm) (meV) (km) (km)
H2 2 3.0 0.293 52 857 463 0.277 0.511 48 785 423
CH4 16 13 0.382 130 249 133 0.336 0.621 135 260 140
H2O 18 42.5 0.309 161 191 99.3 0.302 0.558
4He 4 0.95 0.256 17 140 75.9 0.255 0.471 7.5 54.5 29.2
N2 28 8.2 0.370 104 118 63.6 0.331 0.611
O2 32 10 0.358 102 97.8 52.6 0.325 0.600
Ar 40 10 0.341 96 72.8 39.1 0.317 0.585 72 51.1 27.3
Ne 20 3.6 0.275 33 49.6 26.6 0.280 0.516 23 31.5 16.8
Kr 84 17 0.360 125 42.5 22.7 0.319 0.588 95 29.6 15.7
Xe 131 24 0.410 162 34.5 18.4 0.317 0.585 121 23.2 12.2

R= 0.932σgs. The imbibed phase is a 1d “axial phase”,
a line of particles on the cylinder’s axis. The adsorption
well depth (i.e., the potential on the axis of the cylinder)
for this radius satisfies |Vaxis|= 3.68D1, nearly twice the
magnitude of the potential energy at the midpoint of
the optimized slit pore (because of a higher coordination
within a cylindrical pore than within a slit pore). Taking
into account the fact that the mutual interaction energy
of the axial phase is 1.035ǫ [17], the total cohesive energy
of this phase is Ecyl ≃ 3.68D1+1.035ǫ. Then for this
cylindrical pore we find the capillary rise from eq. (3):

Hcyl ≃
3.68D1− 5.7 ǫ

Mg
. (7)

Comparing eqs. (6) and (7), we find that Hcyl >Hslit if
and only if D1/ǫ > 1.4.
For physical adsorption, it has been found experi-

mentally that graphite is the most strongly attractive
surface [16], so that substrate material is one chosen for
the numerical calculations in table 1. The other mate-
rial is MgO, which has also been the subject of many
adsorption studies. For every tabulated adsorbate and
both substrates, we find D1/ǫ > 5 (except for water which
gives 3.8); hence the cylindrical environment always yields
the higher capillary rise for these materials. The reason
is that these are weakly interacting fluids, with small ǫ,
which have a strongly attractive interaction with graphite
and MgO. The latter energy dominates the physics, in this
case, so the more attractive host (cylindrical pore) is more
attractive overall, resulting in a higher capillary rise.
The key ratios determining the rise areD1/ǫ andD1/M .

For graphite, H2 has (by far) the largest value of the latter
and the second highest value (after He) of the former.

Hence, among the various materials in table 1, H2 is seen
to rise highest, to more than 800 km, on graphite, with
CH4 and H2O having the second and third highest values
of both Hcyl and Hslit. These three adsorbate species are
all particularly light, which is one reason for their large
rises (M appears in the denominator of eq. (7)). Helium
is also light, but its well depth is by far the smallest of
the tabulated values, so its capillary rise ranks just fourth
in table 1. Note that the ratios Hslit/Hcyl all fall within
the interval [0.52,0.54]. The reason is that the ratios of
the coefficients of D1 and ǫ in their respective formulae
(eqs. (6) and (7)) are 0.54 and 0.58, respectively.
Not surprisingly, the optimal pore sizes Rcyl are compa-

rable to atomic dimensions; this is expected since then
the holding potential is the largest possible multiple of
D1. From a practical point of view, however, this geometry
might be impossible to achieve. Suppose, instead, that the
pore is significantly wider than Rcyl. Then, the capillary
rise would involve a different formula. In a first approxi-
mation, the binding energy and the cohesive energy would
become D1 and E2d, respectively, leading to Hcyl =Hslit =
(D1− 3.3ǫ)/(Mg). For H2O on graphite, a value of 11.3 km
would result, still an extremely high capillary rise, present-
ing a significant challenge to someone trying to test the
prediction.
We note in passing that the simple expression (Hmacro,

eq. (1)) neglecting the substrate attraction tends to
significantly underestimate the capillary rise found here.
For example, for the case of water in a cylindrical pore,
using the optimized value of the radius (Rcyl in table 1),
one obtains for graphite the value Hmacro = 44 km, while
for 4He, the value Hmacro = 2.1 km results. These are
factors of 4.3 and 67, respectively, smaller than those
shown in table 1.
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Fig. 1: Capillary riseH of H2 as a function of the well depthD1.
Bold full (dashed) curve denotes the rise for a cylindrical pore
without (with) spherical Earth correction of the gravitational
field. Lighter curves represent results for the slit-pore case.
The arrow indicates the threshold for wetting on a flat surface
(eq. (12)).
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Fig. 2: Same as fig. 1, except for H2O.

Figures 1 and 2 present the general dependence on well
depth of the capillary rise of H2 and H2O, respectively,
in slit and cylindrical pores. The range of plotted values
extends only over the values H > 0. Otherwise, imbibition
does not occur. To quantify and discuss this behavior,
we define a dimensionless adsorption well depth, D∗ =
D1/ǫ. The resulting threshold criteria are D

∗

cyl = 1.55 and
D∗slit = 1.65; below these values no nanocapillary uptake is
predicted to occur.

Relation to wetting. – In the Introduction, we
discussed the capillary rise for a fluid that (completely)
wets the surface, but we did not use that fact explicitly
in the calculations at the nanoscale. We may briefly
address the relationship between wetting and these latter
calculations. The threshold criterion for wetting has been
evaluated within the framework of a surprisingly accurate,

“simple model”, which yields [18]

(C3D1
2)1/3 � 3.33 γ/nliq. (8)

Here, nliq is the number density of the liquid and C3 is
the van der Waals coefficient of the asymptotic gas-surface
interaction, V (x)∼−C3/x3; for the case of a sum of LJ
pair potentials [7],

C3 =
2π

3
n ǫgs σ

6
gs. (9)

The law of corresponding states provides a scaled value
of γ/nliq at the triple point (see table III of ref. [18])

(γ/nliq)triple = (γ
∗/n∗)triple ǫ rmin

≃ 0.83 ǫ× 1.12σgg = 0.93 ǫ σgg. (10)

Here rmin is the equilibrium separation in the pair
potential, assumed to have the LJ form. Combining
eqs. (4), (8), (9) and (10), we derive an expression for the
minimum well depth needed for wetting to occur at the
triple point:

[D1]min = 3.2 ǫ σgg/σgs. (11)

As a very simple approximation, accurate to within 20%
for the tabulated systems, we take the ratio σgg/σgs ≃ 1,
resulting in the wetting criterion

[D∗]min ≃ 3.2. (12)

The corresponding values of D∗ are thus larger than those
derived above (D∗ ≃ 1.6) for a significant nanocapillary
rise. Thus, the large rise is a necessary concomitant of
wetting, as one might expect. However, a large rise can
occur even in the absence of wetting (if 1.6<D∗ < 3.2).
Thus, the well depth threshold for wetting on a flat surface
is more stringent than that of nanocapillary imbibition.
This is a consequence of the enhanced substrate attraction
in the pore compared to the single planar surface. An
example of this behavior is the case of water. While water
does not wet graphite at room temperature [19,20], it does
strongly adsorb in carbon nanotubes [21,22]. The reasons
are the higher coordination possible in the tube than on a
flat surface.

Discussion. – Using a straightforward model, we have
found that simple fluids should rise to remarkable heights,
due to their strong attractions to graphitic materials
and MgO. A key assumption used to create table 1 is
conventional in physical adsorption: the neglect of many-
body interactions. Confidence in the adequacy of this
assumption is based on experience with related substrates
(graphite, nanotubes and fullerenes) made of carbon.
For these, many-body interactions play a relatively small
role —typically 15% or less [23]. In contrast, another
assumption, the neglect of quantum effects, is questionable
for both H2 and He, for which gases more refined analyses
are possible. For H2, based on the quantum calculation
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of Kim et al. [9], one has Eslit ≃ 100meV, with Ebulk ≃
7meV, so the resulting rise on graphite would be Hslit ≃
480 km, much smaller than the tabulated value derived
classically. A third assumption is the use of simple LJ
interactions; this is particularly problematic for water,
for which long-range electrostatic interactions play an
important role [24]: as discussed by Zhao [20], these
interactions play a different role in adsorption, so that
the use of the present model for the capillary rise is more
problematic than for other fluids. Finally, we assumed that
the gravitational force is Mg, even at heights of 800 km.
In fact, at this height the force is ≃ 25% smaller than
Mg. The “corrected” value of the rise, H

′

, is given by
this equation: H

′

/H = 1/(1−H/REarth), where REarth =
6373 km is the Earth’s radius. This expression is valid only
when H <REarth; otherwise, the capillary rise extends to
infinity! For H2/graphite, the correction factor H

′

/H =
1.15 for the cylindrical-pore case and 1.08 in the slit-pore
case, as seen in fig. 1. Thus, from this correction alone, we
find a revised maximum rise of [Hcyl]rvsd = 990 km, for H2
within a graphitic medium.
An interesting question to address is how the predicted

capillary rise avoids the cavitation instability, which is
expected to occur for bulk water when it rises some
30 km above the Earth’s surface. The answer is that nega-
tive pressures are avoided completely in the porous envi-
ronment because the attractive binding within the pore
provides a compressional force, opposing gravity. Thus, the
equation determining the local pressure gradient, ∇P (r),
which involves the local number density n(r), has two
competing terms:

∇P (r) =−n(r)∇[Mgz+V (r)]. (13)

The presence of the strongly attractive substrate term
means that negative pressures are avoided in the capillary;
because of the competing forces, the pressure is elevated
within the pore (actually becoming a nondiagonal tensor
in the anisotropic porous environment). This behavior is
commonly found in films on graphite, where the nearest-
neighbor spacing is reduced below the value in bulk mate-
rials. This high-density film exploits the strong substrate
attraction, with an enormous 2d spreading pressure at
monolayer completion.
The present discussion has not addressed the kinetics

of filling these pores, which adds to the already daunting
problem of constructing an enormous nanocapillary. This
issue is not straightforward since relatively little is known
about the kinetics of quasi-2d [25] and quasi-1d films. In
macroscopic capillaries, the rise is described by the Lucas-
Washburn (L-W) equation [1,26]. This is a complicated
expression, in general; neglecting gravity, however, it
simplifies to the form

H(t) =

√

γRt

2η
, (14)

where η is the shear viscosity of the liquid. Both simu-
lations [27,28] and experiments [29,30] have been used

recently to investigate fluid uptake dynamics at the
nanoscale. The qualitative predictions of the L-W equa-
tion have been borne out, even for R≃ 1 nm capillaries.
Using this equation, we find for water (η= 10−3 Pa s,
γ = 72mNm−3, ρ= 103 kgm−3) and R= 0.332 nm a char-
acteristic capillary rise time t0 ≃ 5 · 109 years. This result
is discouraging since it is not amenable to experimental
testing.
One may then wonder about the possibility of any

experimental observation of the effect considered. We
propose to use a centrifuge. Indeed, in such an apparatus,
the apparent gravity (gappar) is increased by a factor
N , i.e. gappar =Ng. The capillary rise varies as 1/N ,
according to the Jurin equation, and the time varies
as 1/N2. These dependences have been confirmed in
centrifuge studies of the capillary rise in soils [31]. To reach
experimentally observable values in nanopores, one needs
a large value of N , corresponding to a high rotational
frequency Ω. This can be achieved with an ultracentrifuge.
More precisely, let r0 and r be the distance to the rotation
axis of the fluid reservoir and of the meniscus, respectively.
The equivalent height H is then

H =
(Ωr0)

2

2g

[

1−
(

r

r0

)2
]

=
Nr0
2

[

1−
(

r

r0

)2
]

, (15)

where N = r0Ω
2/g. With the characteristics of a swinging-

bucket rotor of Beckman Coulter1 (model SW 60 Ti,
r0 = 120.3mm, r= 63.1mm and Ω= 6 · 104 rpm) one finds
N = 4.8 · 105 and H = 21 km. Considering that a suitable
material for such an experiment could be a porous glass,
the well depth is smaller than graphite, and the pore size
larger than the tabulated value Rcyl. Then H would be
significantly smaller than its values in table 1, making the
experiment feasible.
As for the time scale, the previously cited value would be

divided by a factor N2 = 2.3 · 1011. The time scale would
then become of order seconds, especially if the pore radius
is larger than Rcyl. To give an idea, let us consider the
experiment on Vycor glass (average pore radius 5 nm) [30].
Water rises by 26.5mm in 2.7 · 104 s, which in the ultracen-
trifuge would become less than a microsecond. However,
such a rapid rise would exceed the velocity of sound!
Anyhow, we expect that the experimental time would then
be simply limited by the time required to accelerate the
centrifuge to a high Ω.

Conclusion. – The results described here are remark-
able, at first glance, because the magnitude of the
predicted capillary rise is so large. After some reflection,
however, the result becomes plausible because the driving
force for the rise (excess of adhesive binding energy
relative to the cohesive energy) is so large compared
to the very weak gravitational potential energy. While
the testing of these predictions in pores of altitude

1Beckman Coulter, Inc., 4300 N. Harbor Boulevard, P.O. Box

3100, Fullerton, CA 92834-3100 USA.
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approaching 106m is unlikely, the use of the centrifuge
method should facilitate their assessment. An obvious
question is whether this approach is relevant to the
venerable question of why sap rises in tall trees [32]. We
hope to address this problem in future work.
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