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The mechanical behavior of crystals is dominated by dislocation networks, their structure, and their interactions
with impurities or thermal phonons. However, in classical crystals, networks are usually random with impurities
often forming nonequilibrium clusters when their motion freezes at low temperature. Helium provides unique
advantages for the study of dislocations: Crystals are free of all but isotopic impurities, the concentration of
these can be reduced to the parts per 109 (ppb) level, and the impurities are mobile at all temperatures and therefore
remain in equilibrium with the dislocations. We have achieved a comprehensive study of the mechanical response
of 4He crystals to a driving strain as a function of temperature, frequency, and strain amplitude. The quality of
our fits to the complete set of data strongly supports our assumption of stringlike vibrating dislocations. It leads
to a precise determination of the distribution of dislocation network lengths and to detailed information about the
interaction between dislocations and both thermal phonons and 3He impurities. The width of the dissipation peak
associated with impurity binding is larger than predicted by a simple Debye model, and much of this broadening
is due to the distribution of network lengths.
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I. INTRODUCTION

We have taken advantage of the unique properties of 4He
crystals to determine the distribution of lengths between
nodes in their dislocation network and to study in detail
the interaction between dislocations and both impurities
and thermal phonons. We measured the shear modulus μ

and the dissipation Q−1 associated with dislocation motion
since such measurements provide detailed information about
crystal defects [1,2]. The interaction between dislocations and
impurity atoms is responsible for part of the dissipation but
its microscopic mechanism is often controversial in usual
materials [2,3]. Early models [4,5] proposed that the Cottrell
atmosphere of impurities, which immobilizes dislocations at
low temperature, can be dragged at high temperatures. The
resulting dissipation produces a relaxation peak in Q−1 that
is often broader than expected for a Debye process with a
single relaxation time, but it is difficult to distinguish between
the possible mechanisms for this broadening, e.g., impurity-
impurity interactions [6] or a distribution of activation energies
due to varying dislocation character [7]. The Q−1 peak
width is also increased by variations in dislocation lengths,
but the relevant network length distribution is very difficult
to determine quantitatively in usual crystals. Transmission
electron microscopy (TEM) [8] and etch pit images [9] provide
some statistical information about dislocation networks and
have been correlated with creep deformation. However, addi-
tional dislocations can be introduced when thin sections are
prepared for TEM studies [10] and etch pit measurements only
probe the dislocation network at the surface, which may be
different from that of the bulk crystal. Recently, nondestructive
measurements of dislocation numbers have been reported for
microcrystals [11], but these were limited to small numbers of
dislocations.

In hcp 4He crystals, we have shown that dislocations
move over large distances and produce exceptionally large
changes in the elastic shear modulus μ and dissipation Q−1.

Furthermore, the dissipation due to impurity binding is not
obscured by an overlapping dissipation peak due to kink-pair
formation, in contrast to measurements in, e.g., hydrogenated
nickel [12]. In 4He crystals, we detected no effects of the lattice
potential down to 20 mK [13]. In addition, the dissipation peak
associated with impurities can be clearly distinguished from
the dissipation from collisions with thermal phonons [14]. The
only impurity is 3He, whose concentration can be lowered far
below 1 ppm [15]. As a consequence, elastic measurements
in 4He crystals are extremely sensitive probes of interactions
between dislocations and either highly diluted impurities or
thermal phonons. Ultimately, the behavior of dislocations in
4He is of fundamental interest because of quantum effects
which could be responsible for the absence of a Peierls
barrier to dislocation motion, allowing them to glide freely.
Dislocation cores may even be superfluid, which would allow
“superclimb” [16] in addition to glide.

In this paper, we present the distribution N (LN ) of lengths
LN between dislocation network nodes in a 4He crystal and
a comprehensive and quantitative explanation for the effects
of phonon and impurity damping on the vibrations of its
dislocations.

II. EXPERIMENT

We grew single crystals from 4He with a 3He concentration
x3 = 0.3 ppm inside a 5 cm3 cell, which was made from
a hexagonal hole in a 15 mm thick copper plate closed
by two sapphire windows. The orientation of the crystal
was determined from facets that appeared during growth at
600 mK [17] (Fig. 1). In this work, we chose a crystal with its
sixfold axis of symmetry close to z, with spherical coordinates
θ = 9.6◦ and φ = 4.7◦, where θ is the polar coordinate mea-
sured relative to z and φ is the azimuthal coordinate measured
relative to x (Fig. 1). After establishing the orientation of the
crystal, we regrew it from the superfluid liquid at 1.4 K so
that any small liquid regions in the cell were solidified during
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FIG. 1. (Color) Three recordings of the shear modulus measured
while decreasing the driving strain near 25 mK. By analyzing the
shape of the transition toward the intrinsic shear modulus μelastic

at low strain, we have determined the width of the distribution of
network lengths. Insets: The experimental cell and the crystal as it
grew from a seed at the bottom of the cell. The transducer plates lie in
planes perpendicular to y and the motion of the left (drive) transducer
is along z.

subsequent cooling. The temperature of the crystal was then
maintained below 1 K so that it remained completely solid for
all of the elastic measurements. This was important because
small liquid regions would have trapped 3He impurities at
low temperature, leading to temperature variations of the total
amount of 3He in the crystal [15].

Inside the cell, two piezoelectric shear plates face each other
with a separation D = 0.7 mm, forming a narrow gap that is
filled with the oriented 4He crystal (Fig. 1). Applying a voltage
V to one transducer produces a shear strain ε = V d15/D in
the 4He in the gap, where d15 = 0.95 Å/V at the temperatures
of our measurements [13]. The resulting stress in the 4He in
the gap is σ = με, where μ is the shear modulus. This stress
acts on the opposite transducer and generates a charge d15Aσ ,
which is detected as a current iωd15Aσ = iωd2

15μV A/D,
where A = (1 cm)2 is the area of the transducers and ω is the
drive frequency. This current was measured using a current
preamplifier connected to a lock-in amplifier. In order to
determine the dissipation Q−1 in the 4He, which is the phase
difference between σ and ε, we subtracted the additional phase
shift due to the measurement electronics from the phase shift
between V and the output of the lock-in.

The piezoelectric transducers were mounted so that the
grounded sides were facing each other to minimize crosstalk,
but there was a residual background signal due to a capacitive
coupling inside the cell, probably between the wires soldered
to the drive and detect transducers. With liquid 4He in the cell
at a pressure just below the melting curve, this capacitance was
1.03 × 10−14 F. This is close to the mechanical coupling due to
the shear modulus of the crystal d2

15μelA/D = 1.6 × 10−14 F,
where μel = 123 bars is the maximum shear modulus for the
crystal orientation in the present work. We carefully measured
the pressure dependence of the capacitive background with

the cell filled with liquid 4He and found that it obeys the
Clausius-Mosotti equation [18]. Since the change in the di-
electric constant due to the change in density between the
liquid and solid phases at the melting curve is negligible
(less than 1%), we subtracted the background measured with
liquid just below the melting pressure Pm = 25.3 bars from
the results of elastic measurements of the crystal.

III. THEORY

A. Dislocation glide

Dislocations glide in response to stress, allowing the crystal
to slip on the glide plane [19]. This slip results in a strain εdis

that adds to the elastic strain εel that would be present in the
absence of dislocations, effectively reducing the shear modulus
of the crystal. In hcp 4He, dislocation glide only reduces the
elastic coefficient c44 [13]. We chose the orientation of the cry-
stal in the present work so that μ, the component of the
elastic tensor that we measured, was very nearly equal to c44

(Appendix A). In the absence of mobile dislocations and at our
working pressure Pm, μ takes the value μel = 123 bars [20].
The effective shear modulus μ = σ/(εdis + εel) is then given
by

μ = μel

1 + εdis/εel
, (1)

where μel = σ/εel. The dissipation is Q−1 = Im[μ]/ Re[μ].
In contrast to Zhou et al. [21,22], who assumed a large

Peierls barrier against dislocation motion and made predictions
that are inconsistent with experimental data [23], we model
the dislocations as elastic strings [24] that bow out between
pinning points in response to stress over our entire range
of temperatures and driving strain. This model implies the
equation of motion [24]

Aξ̈ + Bξ̇ − C
∂2ξ

∂x2
= bσ, (2)

where ξ (x,t) is the dislocation displacement as a function of
time t and position x between its pinning points, A = πρb2

is the dislocation’s effective mass per unit length in a material
with density ρ, the term in B is the damping force per unit
length, the term in C is the effective tension per length in a
bowed-out dislocation, and bσ is the effective force per length
acting on the dislocation. [Because of our choice of crystal
orientation, σ is very nearly equal to the resolved stress σ4

(Appendix A).] For an edge dislocation,

C = [μelb
2/4π (1 − ν)][ln(R/r)], (3)

where ν is Poisson’s ratio of the material in an isotropic
approximation, R is the distance from the dislocation beyond
which its stress field is canceled by neighboring dislocations
(approximately the distance between dislocations), and r is
the dislocation core radius [25]. In the present work, ν = 0.3,
ρ = 191 kg/m3, b = 3.7 Å, R ≈ 100 μm, r ≈ 1 nm, A =
8.2 × 10−17 kg/m, and C = 2.2 × 10−12 N.

The resonant frequency of a dislocation of length L between
pinning points is ω0 = π

√
C/A/L. It will be shown below that

almost all of the dislocations in our crystal have L < 300 μm.
Since ω0(L = 300 μm)/2π ≈ 300 kHz, the drive frequency
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ω in the present work is always much less than ω0, so that the
solution of Eq. (2) reduces to

ξ0

σ
= 16bL2

π5C

1 − iωτ

1 + (ωτ )2
, (4)

where ξ0 is the average oscillation amplitude along the length
of the dislocation and we defined a relaxation time

τ = BL2/π2C. (5)

The slip of the crystal due to glide of a dislocation is b times the
fraction ξ0L/Ag of the glide plane that has slipped, where Ag is
the area of the glide plane. The corresponding contribution of
the dislocation to the strain is ξ0Lb/V , where V is the volume
of the crystal. We let n(L)dL be the number of dislocations per
unit volume with pinning length in a differential range around
L so that the total contribution of all the dislocations to the
strain is

εdis = b

2

∫ ∞

0
ξ0(L)Ln(L)dL, (6)

where the factor of 2 comes from averaging over the three
possible 〈112̄0〉 orientations of the Burgers vector in the basal
plane of our hcp crystal. Substituting Eqs. (4) and (3) in Eq. (6)
and using μel = σ/εel yields

εdis

εel
= α

∫ ∞

0
L3 1 − iωτ

1 + (ωτ )2
n(L)dL, (7)

where α = 32(1 − ν)/π4 ln(R/r). We emphasize that L is a
generic dislocation pinning length and does not refer to a
particular pinning mechanism. We also note that, in the present
work, the elastic wavelength is greater than 1 cm, so that σ

and ε are nearly uniform in the 0.7 mm gap between the
transducers.

B. Impurity pinning

Dislocations in 4He can be weakly pinned by bound 3He
impurities or strongly pinned by network nodes. We refer to a
dislocation segment between network nodes as a network link
with length LN . Impurity binding occurs because the stress
field surrounding a dislocation can lower the elastic energy
associated with an impurity. The concentration of impurities
near a dislocation is modified from the bulk concentration by a
factor exp[−EB/T ], where EB is the binding energy [26].
In solid 4He, 3He impurities are only weakly bound to
dislocations, and it is possible to break a network link away
from bound 3He atoms at high stress.

If one starts at a high oscillating stress amplitude σ so
that the network links are free of bound 3He, the distribution
of network lengths can be inferred from the shear modulus
measured while decreasing σ . This argument is analogous to
the one made by Iwasa in the context of torsional oscillator
experiments [27]. As σ is decreased, binding of a 3He atom
to a network link is stable when σ reaches a critical value
σc. At this point, the bound 3He atom and the neighboring
network nodes balance the force σcbLN applied to the network
link, and the dislocation does not break away from the 3He
atom. The critical force Fc = σcbLN/2 is the corresponding
force on the 3He atom and is determined by the shape of the
binding potential. The bound 3He atom divides the network

link into two shorter segments that, by the same reasoning,
can also be pinned by a 3He atom at σc. 3He atoms are
available to do so because they are mobile even at zero
temperature [28]. Thus the number of 3He atoms pinning
the dislocation suddenly increases to the thermal equilibrium
value. The impurity-pinned network link no longer glides very
much in response to σ , so μ increases. If there is a distribution
of network lengths, the increase in μ due to impurity pinning
occurs over a range in σ .

In order to obtain an expression for the distribution of
network lengths N (LN ), we consider the case of very low
temperatures T � EB . We first simplify Eq. (7). Since 3He
is the only impurity in our 4He crystals, the critical force for
breaking a network link away from a single impurity is always
the same, and we can define a critical length Lc = 2Fc/bσ ,
which is the length of the network links that become pinned
when the decreasing stress reaches σ . At T � EB , the network
links with LN < Lc are fully pinned by 3He and do not
contribute to εdis/εel at all. Thus we can replace the lower
limit of integration in Eq. (7) with Lc(ε), which we write as
a function of ε = σ/μ because ε is the quantity we directly
control. The network lengths with LN > Lc have a length
distribution given by N (LN ), which is independent of σ

because the network nodes are strong pinning sites. Thus we
can also set L = LN and n(L) = N (LN ) in Eq. (7), yielding

εdis

εel
= α

∫ ∞

Lc(ε)
L3

N

1 − iωτ

1 + (ωτ )2
N (LN )dLN. (8)

The network links with LN > Lc are free of bound 3He
atoms, and measurements at different 3He concentrations [13]
demonstrate that the 300 parts per 109 (ppb) concentration of
unbound 3He in the present work is too small to significantly
limit εdis/εel. Damping by thermal phonons is also negligible
in the low temperature limit. Thus we must set τ = 0 in Eq. (8):

εdis

εel
= α

∫ ∞

Lc(ε)
L3

NN (LN )dLN. (9)

From Eqs. (9) and (1) we obtain

N (Lc) = 1

αL3
c

(
μ

μel

)−2
d

dLc

(
μ

μel

)
. (10)

The distribution of network lengths N (LN ) is obtained from
N (Lc) by renaming the argument.

IV. RESULTS

A. Strain dependence at low T and high ω

We measured μ while decreasing ε to determine the form
of N (LN ). In order to prepare for the measurement of μ

shown in Fig. 1, we started at 1 K where the crystal is soft
because this is above the 3He binding energy EB ≈ 0.67 K
(Sec. IV D). Thus the dislocations were only pinned at
network nodes and vibrated with large amplitudes [Eq. (4)].
We then cooled the crystal to a temperature near 25 mK
under a high strain ε = 6.8 × 10−7 at ω/2π > 3 kHz. The
crystal remained soft because the high strain prevented 3He
atoms from binding to the dislocations, even though the final
temperature was well below EB . Holding then the temperature
constant, we decreased the applied strain in steps and measured
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the equilibrium μ after waiting 1000 s at each step. We
repeated this measurement at the indicated temperatures and
frequencies (Fig. 1 legend), starting at 1 K each time, and μ(ε)
was reproduced to a high degree of accuracy.

The shear modulus gradually increased because 3He im-
purities progressively bound to the dislocations as ε was
decreased. If all the dislocations in our crystal had shared the
same network length LN , then μ in Fig. 1 would have jumped
to μel when ε reached a critical strain, as explained in Sec. III B.
The fact that the transition toward μel is spread over a rather
large range in ε demonstrates that there is a broad distribution
of LN . Figure 1 also shows that increasing the temperature
from 21 to 27 mK did not cause the stiffness of the crystal
to decrease. The concentration of 3He bound to dislocations
must have decreased upon increasing the temperature, but the
concentration was still high enough at T = 27 mK so that
the impurity-pinned dislocations could not move. Thus the
measurements of Fig. 1 were made in the low temperature limit
assumed in Sec. III B and Eq. (10) can be used to determine
N (LN ). To do so we need to convert μ(ε) (Fig. 1) to μ(Lc). This
is possible if we know Fc since ε = 2Fc/bLcμ. As explained
below, we determined Fc from μ(T ) and Q−1(T ) in the phonon
damping regime.

B. Temperature dependence at high ω and ε

Figure 2 shows μ and Q−1 measured while cooling from
1 K at ω/2π = 16 kHz. The strain ε = 6.8 × 10−7 was
chosen to be high enough so that no 3He atoms could bind
to the dislocations as the temperature decreased. Thus the
distribution of pinning lengths n(L) remained equal to the
distribution of network lengths N (LN ), and only thermal
phonons could damp the motion of the dislocations. The
observed decrease in μ and Q−1 on cooling occurred because
the number of thermal phonons decreased. After making the
substitutions L = LN , n(L) = N (LN ), and τ = τph in Eq. (7),

single length LN

LN distribution

data

FIG. 2. (Color online) Solid curves: The shear modulus μ and the
dissipation Q−1 measured while cooling from 1 K with an rms strain
ε = 6.8 × 10−7 at 16 kHz. Dotted curves: Calculations using a single
network length as in our previous work [14], with best fit values LN0 =
96 μm and � = 7.9 × 105 cm−2. Dashed-dotted curves: Calculations
using the length distribution from Eq. (10) and Fig. 1 after adjusting
the critical force Fc to 6.8 × 10−15 N.

we obtain

εdis

εel
= α

∫ ∞

0
L3

N

1 − iωτph

1 + (ωτph)2
N (LN )dLN, (11)

with τph = BphL
2
N/π2C from Eq. (5). In the low tempera-

ture limit, damping occurs because incident phonons cause
the dislocations to “flutter” and radiate elastic waves [29],
yielding Bph = 14.4k3

BT 3/π2
�

2c3, where c is the Debye sound
speed [30,31]. This is the reason why we plotted μ and Q−1

against ωT 3 ∝ ωτph in Fig. 2. The T dependence of μ and
Q−1 can be calculated by substituting Eq. (11) into Eq. (1).
Since N (LN ) could only be determined from the data in Fig. 1
up to the value of Fc, we take Fc as a fitting parameter. The
dashed-dotted curves in Fig. 2 show the calculated μ(T ) and
Q−1(T ) for the best fit value Fc = 6.8 × 10−15 N. We obtain
excellent agreement with our measurements over the entire
range in T , which supports the form of N (LN ) determined
from the data in Fig. 1.

Haziot et al. [14] had fitted μ(T ) and Q−1(T ) in the phonon
damping regime assuming a single length LN0 . In this case
N (LN ) = Ntotδ(LN − LN0 ), where Ntot is the total number
of dislocations per unit volume and δ(x) is the Dirac delta
function. Substituting this expression for N (LN ) into Eq. (11)
yields

εdis

εel
= α�L2

N0

1 − iωτph

1 + (ωτph)2
, (12)

where � = NtotLN0 is the total dislocation length per unit
volume. The black dotted curves in Fig. 2 show μ(T ) and
Q−1(T ) calculated using Eq. (12) with the values LN0 =
96 μm and � = 7.9 × 105 cm−2 chosen to optimize the
agreement with the data in the low temperature limit. These
black dotted curves depart from the data at high temperatures.
This is further proof that a broad distribution in network length
is necessary to understand the mechanical properties of 4He
crystals.

C. Network length distribution

Having determined Fc, we have now determined N (LN ).
The blue points in Fig. 3 show the shear modulus data at 27 mK
and ω/2π = 16 kHz from Fig. 1, now plotted as a function of
Lc = 2Fc/bεμ. The red curve is N (LN ) obtained from the blue
points using Eq. (10). We have only plotted N (LN ) over the
range 20 μm < LN < 300 μm corresponding to dislocations
that contribute significantly to the softening, i.e., the range in
Lc over which μ is varying (Fig. 3 blue points). Although there
may be a large number of dislocations with LN < 20μm, they
do not contribute measurably because of the L3

N dependence
of εdis/εel [Eq. (9)]. At the opposite extreme, there are very
few dislocations with LN > 300 μm. Extending the range
of integration beyond 20 μm < LN < 300 μm in any of the
calculations in the present work does not affect the results.
As expected, the single network length LN0 = 96μm obtained
from the simplified model of Ref. [14] is near the middle of
this range.
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FIG. 3. (Color) Blue points: The shear modulus at 27 mK and
16 kHz from Fig. 1 as a function of the critical length Lc = 2Fc/bμε

(see text). Red curve: The distribution N (LN ) over the range of lengths
that contribute significantly to the softening, derived from the blue
points using Eq. (10).

D. Temperature dependence at low ω and ε

Given these results, it is now possible to analyze the effect
of damping by bound 3He impurities. The data in Fig. 1 were
acquired in the low temperature limit, so that dislocations
with bound 3He atoms did not contribute to εdis/εel. Now we
present a temperature dependent measurement and study the
transition due to thermal binding of 3He to the dislocations.
Figure 4 shows μ(T ) and Q−1(T ) measured on cooling
at low frequencies and low strain ε = 5.4 × 10−9. At high
temperatures, at least up to 1 K, the crystal is soft with
a temperature independent μ, indicating that damping of
dislocation motion by thermal phonons is negligible at these
drive frequencies. The high temperature value of μ in Fig. 4
is the same as the low temperature value of μ in Fig. 2
since in both cases the dislocations vibrate freely between
network nodes. The difference in the temperatures at which
the dislocation motion is unaffected by both thermal phonons
and 3He comes from the difference in the drive amplitude
and frequencies. At low temperatures in Fig. 4, μ reaches
the intrinsic value μel. The behavior of μ(T ) and Q−1(T ) at
intermediate temperatures is frequency dependent: At each
frequency ω/2π , we observed a Q−1 peak at a temperature
Tp(ω) nearly coincident with the midpoint of the transition in
μ, and Tp(ω) increases with ω.

We expect εdis/εel in these measurements to be given by
Eq. (7). In this equation, binding of 3He to dislocations
can change εdis/εel by changing n(L) or τ . The frequency
dependence of Tp suggests that changes in τ dominate in the
measurements of Fig. 4. Figure 5 shows log ω plotted against
1/Tp(ω) for the measurements shown in Fig. 4 as well as
additional measurements of this type on the same crystal but
at different ε and ω. The measurements at ε = 2.7 × 10−9

show a transition between frequency dependent Tp at small ω

and frequency independent Tp at large ω. The measurements
at ε = 1.1 × 10−8 show the same transition, but at a smaller
ω. The transition, in fact, occurs at a critical dislocation
speed [32]. Below the critical speed, changes in εdis/εel result

0.1 5.050.0 0.2

0.1 5.050.0 0.2

FIG. 4. (Color) The dissipation (a) and the shear modulus (b)
measured while cooling from 1 K at low strain 5.4 × 10−9. Dashed
curves: Calculations using a single network length LN0 = 96 μm, a
dislocation density � = 7.9 × 105 cm−2, and a single binding energy
EB = 0.67 K.

from changes in τ , while above the critical speed, changes in
εdis/εel result from changes in n(L). This implies that below the
critical speed 3He atoms move with the dislocations and damp
their motion, while above the critical speed they approximate
static pinning sites. Figure 5 shows that the measurements in
Fig. 4 were made well below the critical dislocation speed.
Thus, for these measurements, the distribution of pinning
lengths remains equal to the distribution of network lengths
as the crystal is cooled from 1 K. Making the substitutions
L = LN , n(L) = N (LN ), and τ = τ3 in Eq. (7) yields

εdis

εel
= α

∫ ∞

0
L3

N

1 − iωτ3

1 + (ωτ3)2
N (LN )dLN, (13)

where τ3 = B3L
2
N/π2C from Eq. (5). We assume, as in

previous work [33], that the 3He damping force is proportional
to the concentration of 3He bound to the dislocations, so that
the damping constant has the form B3 = B∞

3 exp[EB/T ].
We can estimate the binding energy EB by considering

the case of a single network length LN0 . As in the derivation
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FIG. 5. (Color) Arrhenius plot of the driving frequency vs the
inverse temperature of the Q−1 peak at low strain ε. This shows the
transition from 3He damping at low dislocation speeds to 3He pinning
at high dislocation speeds [32].

of Eq. (12), we substitute N (LN ) = Ntotδ(LN − LN0 ) into
Eq. (13) to obtain

εdis

εel
= α�L2

N0

1 − iωτ3

1 + (ωτ3)2
. (14)

It is shown in Appendix B that Eq. (14) implies the following
Arrhenius equation relating Tp and ω:

ln ω = ln

(√
1 + s

τ0

)
− EB/Tp, (15)

where s = α�L2
N0

and τ0 = B∞
3 L2

N/π2C. We fitted Eq. (15)
to the low frequency, linear part of the data obtained at ε =
2.7 × 10−9 in Fig. 5 in order to obtain the initial estimates
EB = 0.67 K and B∞

3 = 2.6 × 10−9 N s/m2 for use in the
subsequent calculations.

In Fig. 4, we show μ(T ) and Q−1(T ) calculated using
Eqs. (14) and (1) with a single network length LN0 = 96 μm
and dislocation density � = 7.9 × 105 cm−2 (from Fig. 2), a
single binding energy EB = 0.67 K, and a damping coefficient
B∞

3 = 2.6 × 10−9 N s/m2. In Fig. 6, we show μ(T ) and
Q−1(T ) calculated using Eqs. (13) and (1) with N (LN ) from
Fig. 3 and the same values of EB and B∞

3 . The calculated and
measured Q−1 peak temperatures Tp(ω) are in good agreement
in both Figs. 4 and 6. The overall agreement between theory
and data is better in Fig. 6 than in Fig. 4, but it is not perfect
in Fig. 6: The magnitude and temperature width of the Q−1

peak were respectively 140% and 64% of the measured values.
In order to obtain an excellent fit, we had to account for
the distribution in binding energies that was first proposed
in Ref. [34].

One expects such a distribution because EB depends on
the screw and edge character of the dislocations [35], and
variations in the dislocation character were observed in x-ray
images of subboundaries of 4He crystals [36]. The large
softening that we observed, which implies large �L2

N , requires
the existence of such subboundaries [14]. Thus we add a

0.1 5.050.0 0.2

0.1 5.050.0 0.2

FIG. 6. (Color) Same data as in Fig. 4 compared with a calcu-
lation (dashed curves) using the length distribution of Fig. 3 and a
single binding energy EB = 0.67 K.

distribution of binding energies p(EB) to Eq. (13):

εdis

εel
= α

∫ ∞

0
L3

N

∫ ∞

0

1 − iωτ3

1 + (ωτ3)2
p(EB)N (LN )dEBdLN.

The distribution p(EB) must have an upper cutoff. In order to
effectively satisfy this constraint and to facilitate comparison
with earlier work [34], we choose a log-normal form,

p(EB) = exp[−(ln EB − m)2/s2]√
πsEB

, (16)

with mean 〈EB〉 = exp[m + s2/4] and variance
〈EB〉2[exp(s2/2) − 1]. We obtain an excellent fit to the
data with 〈EB〉 = 0.67 K and a standard deviation of 0.1 K
(dashed curves Fig. 7). As expected, 〈EB〉 is the same as the
binding energy determined in Ref. [32], where the distribution
of EB was not considered. Our best fit value of 〈EB〉 also
shows that our determination of Fc (Fig. 2) is reasonable,
since Fc is the maximum magnitude of the spatial derivative
of EB where the 3He atom is bound and it has a numerical
value ≈〈EB〉/4b. The quality of the fits in Fig. 7 is better
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(a)
0.1 5.050.0 0.2

(b)
0.1 5.050.0 0.2

FIG. 7. (Color) Same data as in Fig. 4 compared with a calcu-
lation (dashed curves) using the length distribution of Fig. 3 and a
log-normal distribution of binding energies EB with mean 0.67 K and
standard deviation 0.1 K.

than that of the fits to μ(T ) and Q−1(T ) in Ref. [37]. In that
work, unlike the present work, the frequency dependence was
not studied and the fits in the 3He binding regime were not
constrained by fits to measurements of phonon damping.

V. DISCUSSION AND CONCLUSION

As discussed in Ref. [32], there is a critical dislocation speed
below which 3He atoms move with the dislocations and damp
their motion. Above the critical speed, 3He atoms approximate
static pinning sites. We established above that the measure-
ments in Fig. 7 were made below the critical dislocation speed.
Some previous frequency dependent measurements of μ(T )
and Q−1(T ) in 4He polycrystals were interpreted in terms of
a Debye model with a distribution of activation energies [34].
The equations that yielded the best fits to μ(T ) and Q−1(T )
in that work are equivalent to the ones used to calculate μ(T )
and Q−1(T ) in Fig. 7 in the limit of small softening �L2

N and
a single dislocation network length. The standard deviation
of the distribution of binding energies that was determined in
Ref. [34] is 2.5 times larger than in the present work, perhaps
because the distribution of network lengths was not considered
in Ref. [34].

The resonant period of a torsional oscillator containing solid
helium decreases with the shear modulus of the helium [38].

Many if not all of the torsional oscillator results initially
explained by supersolidity of 4He can be explained by this
effect [39,40]. In Ref. [27], results of torsional oscillator
experiments were explained in terms of 3He pinning of
dislocations. This explanation could be consistent with the
model used in the present work if the dislocations were
moving faster than the critical dislocation speed in the torsional
oscillator measurements that were analyzed. To verify this,
it would be necessary to study the frequency dependence
of a torsional oscillator measurement at constant response
amplitude, analogously to Fig. 5. In Ref. [27], the distribution
of network lengths was determined, up to the critical force,
from the dependence of the period shift on the rim speed in the
torsional oscillator experiment of Ref. [41]. Thus the method
for determining the form of the network length distribution
was analogous to the one used in the present work. However,
it was apparently impossible to observe phonon damping in
the torsional oscillator measurements analyzed in Ref. [27],
and the critical force was left as a free parameter in the fit to
the temperature dependence of the period shift, unlike the fit
to the temperature dependence of μ and Q−1 in Fig. 7 of the
present work. After optimizing the value of the critical force,
the best fit period shift as a function of temperature was a
factor of 1.45 below the measured period shift in Ref. [27].

In conclusion, we used the unique properties of helium
crystals to measure the length distribution of a dislocation net-
work. We showed that it was necessary to account for this broad
distribution to obtain a complete, consistent, and quantitative
interpretation of the mechanical properties of these crystals as a
function of temperature, amplitude, and frequency of driving
strain in both the phonon and 3He damping regimes. In so
doing, we obtained detailed information about the interactions
between the dislocations and 3He impurities. We hope that
this work inspires calculations of the 3He binding energy as a
function of the screw and edge character of the dislocation to
which the 3He atom is bound.
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APPENDIX A: CRYSTAL ORIENTATION DEPENDENCE

For clarity of presentation in the equations of the main text,
we neglected the small angle between our crystal’s sixfold
axis of symmetry and the z direction defined in Fig. 1, but we
accounted for this small angle in our calculations. The elastic
coefficients of a hcp crystal can be labeled using Voigt notation,
where the subscripts 1,2,3,4,5,6 correspond to the coordinates
x ′x ′,y ′y ′,z′z′,y ′z′,x ′z′,x ′y ′ in a Cartesian coordinate system
where z′ is aligned with the sixfold axis of symmetry (the
elastic coefficients are invariant under rotations about z′). In
hcp 4He, c44 is the only elastic coefficient that is reduced by
dislocation glide [13], so that ε4 = (εdis + εel). Since c44 =
σ4/ε4, we can replace Eq. (1) by

c44 = cel
44

1 + εdis/εel
, (A1)
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where εel = σ4/c
el
44 and cel

44 = 124 bars is the value of c44 in
the absence of mobile dislocations at our working pressure of
25.3 bars [20]. The stress σ must be replaced by σ4 in Eqs. (2)
and (4), but we note that Eq. (7) remains the same due to
cancellation of the factor σ4. In order to obtain the theoretical
curves in the figures of the main text, we substituted Eq. (A1)
into

μ = 0.97c44 + 0.03cel
66, (A2)

where cel
66 = 96.0 bars. Equation (A2) follows from the

orientation our crystal (Sec. II) and the general expression
for μ given in the supplement to Ref. [13] for arbitrary crystal
orientation.

To fit the measurement of μ(ε) shown in blue in Fig. 3, we
substituted the fitting function

c44

cel
44

= tanh [c1(ln Lc + c0)]

c2
+ c3 (A3)

into Eq. (A2) and obtained best fit values c0 = 9.05, c1 = 1.83,
c2 = 3.36, and c3 = 0.703.

APPENDIX B: ARRHENIUS EQUATION

Substituting Eq. (14) into Eq. (1) yields

μ

μel
= 1 + s + (ωτ3)2 + iωτ3s

(1 + s)2 + (ωτ3)2
, (B1)

where s ≡ α�L2
N0

and τ3 = B3L
2
N/π2C. Since Q−1 =

Im[μ]/ Re[μ], we have

Q−1 = ωτ3s

1 + s + (ωτ3)2
. (B2)

The dissipation attains a maximum value Q−1
max = s/2

√
1 + s

for ωτ3 = √
1 + s. We defined the temperature at which Q−1

is maximized as Tp in the main text. Thus

ωτ0 exp[E/Tp] = √
1 + s, (B3)

where τ0 = B∞
3 L2

N/π2C. Rearranging Eq. (B3) yields
Eq. (15).
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