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Abstract. Fritz London understood that quantum mechanics could show up at the macroscopic level, and, in 1938, he
proposed that superfluidity was a consequence of Bose-Einstein condensation. However, Lev Landau never believed in
London’s ideas; instead, he introduced quasiparticles to explain the thermodynamics of superfluid “He and a possible
mechanism for its critical velocity. One of these quasiparticles, a crucial one, was his famous “roton” which he considered
as an elementary vortex. AT the LTO conference (Cambridge, 1946), London criticized Landau and his “theory based on the
shaky grounds of imaginary rotons”. Despite their rather strong disagreement, Landau was awarded the L.ondon prize in 1960,
six years after London’s death. Today, we know that London and Landau had both found part of the truth: BEC takes place in
4He, and rotons exist.

In my early experiments on quantum evaporation, I found direct evidence for the existence of rotons and for evaporation
processes in which they play the role of photons in the photoelectric effect. But rotons are now considered as particular
phonons which are nearly soft, due to some local order in superfluid *He. Later we studied helium crystals which are model
systems for the general study of crystal surfaces, but also exceptional systems with unique quantum properties. In our recent
studies of nucleation, rotons show their importance again: by using acoustic techniques, we have extended the study of liquid
4He up to very high pressures where the liquid state is metastable and we wish to demonstrate that the vanishing of the roton

gap may destroy superfluidity and trigger an instability towards the crystalline state.
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This London prize lecture is an opportunity to review
some aspects of superfluid helium, a macroscopic quan-
tum system which surprises us since London’s time. Ro-
tons will be my guide because I wish to recall the con-
troversy which opposed Fritz London to Lev Landau
(Section 1). After this historical introduction, we shall
see that Landau’s famous quasiparticles are more or less
present in most of my own work: quantum evaporation
(Section 2), the surface of helium crystals (Section 3),
and the stability limits of liquid helium (Section 4).

1. FRITZ LONDON AND LEV LANDAU

Fritz London arrived in Paris in 1937. He was trying to
escape from the antisemitic Germany and Paul Langevin
had offered him a position at the Institut Henri Poincaré.
Langevin was a professor at the College de France and an
influent member of the “Front populaire”, the coalition
of political parties from the French left. In January 1938,
London had understood that the large molar volume of
liquid helium was a consequence of the quantum kinetic
energy of He atoms. He also realized that the superfluid
transition temperature, the “lambda” point TA =217 K,
was close to the temperature at which an ideal gas with
the same density would undergo a Bose-Finstein conden-
sation (BEC). He eventually noticed that the singularity

in the specific heat at 7, was similar to the one expected
at a BEC transition, although not quite the same as could
be expected since liquid helium is not an ideal gas. He
thus proposed that superfluidity was a consequence of
some kind of BEC[2].

One month later, Laszlo Tisza developed ILondon’s
idea and introduced his “two fluid model ’[3] to describe
the non-classical properties of superfluid helium which
had been discovered by J.F. Allen, in particular the foun-
tain effect [1]. Laszlo Tisza had been in a Hungarian jail
for 14 months after being accused of being a commu-
nist; after his liberation he went to Kharkov (1935-37) as
a post-doc in Landau’s group and finally arrived in Paris
where he found help from the same group of left intellec-
tuals around Langevin. He had a position at the College
de France, 300 m from Fritz London. When London first
heard about Tisza’s two fluid model, he could not be-
lieve that, in a liquid which was pure and simple, there
could be two independent velocity fields; this was indeed
quite a revolutionary idea. But the joined works of Lon-
don and Tisza explained most of the helium properties
which were known in 1938.

At the same time in Moscow, Piotr Kapitza had in-
vented the word “superfluidity” in analogy with super-
conductivity because he had the remarkable intuition that
these two phenomena should have a common explana-
tion [4]. As for Lev Landau, Stalin and Molotov had



put him in jail on the accusation of espionage. After a
heroic fight, Kapitza succeeded in liberating Landau [5].
In 1941, Landau published the famous article in which
he invented the concept of quasiparticle in quantum flu-
ids [6]. There had to be two kinds of quasiparticles to
describe superfluid “He, phonons and some others which
he called “rotons” because he thought that they were ele-
mentary vortices. Together with phonons, rotons formed
the normal component in a two fluid model which was
similar to the one first introduced by Tisza. However
Tisza had reasoned in the frame of gases and he thought
that the normal fluid was made of the atoms left out of
the condensate.

In his 1941 article, LLandau was very critical about his
former post-doc :
“the explanation advanced by Tisza not only has no foun-
dations in his suggestions but is in direct contradiction
with them”[6].
Furthermore, he never mentioned BEC and never re-
ferred to London. How could this be ? For a long time,
I thought that LLandau had an objection similar to the
critic raised by London himself: the properties of an ideal
gas could not apply to a liquid. We know how much
work was necessary to extend BEC to interacting sys-
tems. More recently, a rather likely explanation came to
me from a discussion with Lev Pitaevskii. The year 1941
was long before the BCS theory and the introduction
of Cooper pairs. Since Kapitza and Landau thought that
superfludity and superconductivity had the same origin,
and since “He atoms were bosons while electrons were
fermions, the quantum statistics could not be involved!

A few years later, when 3He became available, it was
crucial to see if liquid 3He was superfluid at tempera-
tures of order 1 K, also to verify if Landau’s rotons had
any reality. The first I'I' meeting took place at Cambridge
(UK) in 1946, and the opening talk was given to Fritz
London. He insisted on his explanation of superfluid-
ity, also on the fact that Peshkov’s early experiments on
thermal waves (second sound) could not distinguish be-
tween Tisza’s and Landau’s predictions. He must have
been also quite upset by Landau’s attitude to comment on
“Landau’s theory based on the shaky ground of rotons”
in the following way: “The quantization of hydrodynam-
ics [by Landau] is a very interesting attempt. .. however
quite unconvincing as far as it is based on a represen-
tation of the states of the liquid by phonons and what
he calls “rotons”. There is unfortunately no indication
that there exists anything like a “roton”; at least one
searches in vain for a definition of this word...nor any
reason given why one of these two fluids should have a
zero entropy (inevitably taken by Landau from Tisza)”
[7]. Clearly, London and Landau had rather different ap-
proaches to superfluidity and had both easily recognized
the weak points of their opponent’s theory.

A few years later only, Osborne et al. [8] showed that

3He was not superfluid down to 1 K and Peshkov found
that the second sound velocity increased below 1 K, as
predicted by Landau but not by Tisza [9]. Some more
years later, the existence of rotons was demonstrated by
neutron scattering experiments [10].

Both London and LLandau probably died too early to
admit that they both had part of the truth: BEC takes
place in superfluid “He, also in >He and in supercon-
ductors thanks to the pairing of fermions, as for rotons,
nobody doubts of their existence, it’s only their physi-
cal nature which is still somewhat controversial, as we
shall see below. One of my motivations in recalling this
old time is the following message which I received from
Laszlo Tisza himself, on the 17th of June 2005 :

Dear Sebastien,

I am delighted to read in Physics Today that you are to
receive the Iritz London Prize. [... ] This is wonderful!
Please receive my warmest congratulations. Yesterday
I was leafing through old correspondence and I found
a letter in which I nominated Landau for the Prize.
I am sure I was not alone. I was actually at LT-7 in
Toronto when the Prize was announced. It is actually
unconscionable of Landau not to have taken note of the
remarkable Simon - London work on helium In Oxford
1934-5! I never heard a word of it while at UFTI. All he
said that London was not a good physicist. I am looking
forward to your book to straighten out matters. With
warmest regards, Laszlo

The content of this message would need a lot more
comments, but, for the present lecture, let me only wish
Laszlo Tisza to enjoy many more years of scientific
activity after turning 100 in 2007.

2. QUANTUM EVAPORATION

When 1 started playing with heat pulses in superfluid
4He, I was in fact trying to detect the emission of vor-
tices by a flow through an orifice. It was shown later by
the group of Varoquaux and Avenel[11], followed by the
group of Packard and Davis[12] that much more sensi-
tive techniques were needed for this. But I was surprised
to observe that heat pulses could propagate through the
liquid-gas interface during the filling of our cell. After
observing that, at high temperature, heat propagated as
a second sound wave in the liquid and could emit or-
dinary sound in the gas when hitting the liquid-gas in-
terface, I realized that the low temperature regime was
much more interesting. The vapor pressure vanishes ex-
ponentially as 7 goes to zero, so that atoms propagate
ballistically on macroscopic distances. Furthermore, the
mean free path of phonons and rotons also becomes
large, so that a heat pulse propagates as a burst of bal-
listic rotons and phonons. In such a regime, I heard from
Horst Meyer who had worked on this phenomenon[13]



that PW. Anderson[14] had predicted that it should be
similar to the photoelectric effect. Quasiparticles incident
on the liquid-vapor interface could evaporate atoms in a
way similar to photons ejecting electrons from the sur-
face of a metal. The conservation of energy would imply
that the kinetic energy I, of the evaporated atom would
be equal to the difference between the quasiparticle en-
ergy and the binding energy £, of atoms to the liquid.
Since rotons have a minimum energy A = 8.65 K and £,
=7.15 K, atoms evaporated by rotons should have a min-
imum kinetic energy A— E, = 1.5 K. This corresponds to
a minimum velocity v =79 m/s.

By varying the liquid level in my cell and by measur-
ing the flight time from a heater in the liquid to a bolome-
ter in the gas, about 1 cm above, I could measure the
velocity of atoms evaporated by rotons. I found the first
preliminary evidence for the minimum velocity predicted
by Anderson.[15] The photoelectric effect is the experi-
mental evidence for the quantization of light. Similarly,
my experiments showed that heat in a superfluid can be
quantized as quasiparticles, especially Landau’s famous
rotons. Rotons are difficult to detect with a bolometer be-
cause their reflection probability on any solid surface is
high. After being transformed into ballistic atoms, rotons
were easy to detect and evidence for their minimum en-
ergy found.

Given these preliminary results, I asked Adrian Wyatt
if we could continue together on this subject and use his
experimental techniques which were much more sensi-
tive than mine, in order to be more quantitative. Adrian
called the phenomenon “quantum evaporation” and we
got particularly interested in the case of anomalous ro-
tons. This is because we expected the component of the
momentum parallel to the surface to be conserved, as
usual, not the velocity of course. Now, rotons have two
branches on each side of the minimum in their disper-
sion curve: Rt have their momentum parallel to their
group velocity but R~ have it antiparallel. As a conse-
quence, the evaporation by R~ rotons traveling to the
right should evaporate atoms traveling to the left. For
this, I started building a cell in Adrian’s laboratory at Ex-
eter, where heaters and detectors could rotate in a verti-
cal plane, but my postdoc time ended long before this
cell could be finished and work. In fact, Adrian Wy-
att and his group worked on quantum evaporation for
more than two decades and performed a beautiful anal-
ysis of the whole phenomenon: they not only observed
evaporation by rotons but also by phonons, they could
also separate evaporation from Rt and from R~ rotons
and obtain clear evidence for the anomalous evaporation
we had imagined.[16, 17, 18] They also measured most
evaporation probabilities by the various kinds of quasi-
particles and compare with calculations by Dalfovo et
al.[19]. This calculation included predictions on the re-
verse process, quantum condensation of atoms incident

on the free surface of liquid helium, which was first
observed by D.O. Edwards et al. and depends on their
momentum.[20] I am not sure that quantitative agree-
ment is well established between theory and experiments
on quantum evaporation and condensation and I have al-
ways been a little surprised to see that very few groups
performed experiments on this. Among them is the one
led by H.J. Maris and G. Seidel whose particle detection
method involves quantum evaporation, and whose results
on solar neutrinos might be of great importance.[21]

3. THE SURFACE OF HELIUM
CRYSTALS

Together with Harry Alles and Alexandr Parshin, we
have written a detailed review of this whole field which
appeared this year. [22] I wish to focus here on some as-
pects of my own work only. I started studying the surface
of helium crystals after noticing that, when crystallizing
superfluid helium in a cell, the crystal position was sen-
sitive to gravity: it occupied the bottom part as if it was
water in a glass. David Edwards came to visit me in Paris
and he suggested that we could try to measure the sur-
face tension a of solid helium by measuring its capillary
rise in a thin capacitor. We did this together [15] and ob-
tained the first direct measurement of o, in fact an aver-
age value of the surface stiffness y = o + doat/d¢? (¢ is
the angular orientation of the surface) which governs the
surface curvature in a generalized Laplace equation[22].
We also had two surprises. The capillary rise was nega-
tive, it was a depression because, apparently, the copper
walls of our capacitor were preferentially wet by liquid
helium. Moreover, we found an anomaly around 1 K:
helium crystals looked much stiffer below this temper-
ature than above. At the same time in Haifa, Jud Lan-
dau and Steve Lipson measured v in their optical cryo-
stat and found agreement with our results above 1 K
but not below where facets showed up on the shape.[24]
Also at the same time but in Moscow, Konstantin Keshi-
shev, Alexandr Parshin, and Alexei Babkin discovered
that capillary waves could propagate at the surface of he-
lium crystals below about 0.6 K as if it was a free liquid
surface. They called them “melting freezing” or “crys-
tallization” waves and obtained a value for y at low 7 in
agreement with our high temperature value but not with
our low temperature value. I soon realized that, when
facetted, a helium crystal could not pop through a hole
as if it were a liquid, so that, below 1 K, our measure-
ment was wrong. | also realized that, in order to study
these crystals, it was extremely useful to see through the
cryostat walls, that is to drill holes in the stainless steel
and put windows.

In 1926, when Keesom discovered that superfluid
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FIGURE 1. As temperature goes down, more facets appear
at the surface of “He crystals.

helium solidified at 25 bar, he tried to observe the
liquid-solid interface but he failed. Through the walls
of his glass Dewar, ... there was nothing peculiar to be
seen. .. ”. Some fifty years later, we had better techniques
and the optical observation of this interface brought very
interesting information (Fig.1). Among the numerous re-
sults obtained by many groups, I wish to mention here
the roughening transitions and the crystallization waves.

3.1. The roughening transitions

Most of the static properties of helium crystals are
common to all other crystals. A central one is the ex-
istence of successive roughening transitions where new
facets appear on the equilibrium shape as 7" decreases;
one says that the crystal surface changes from rough to
smooth in order to express thatits large scale fluctuations
disappear (itis not a change at atomic scale). Thanks to a
complete study of the first transition where so called “c”
facets of the hexagonal structure appear, we have found
precise agreement with the set of renormalization-group
theories which predict that roughening transitions belong
to the Kosterlitz-Thouless universality class. In partic-
ular, we have found that the step free energy vanishes
exponentially as 7" approaches the roughening tempera-
ture 7% from below; we also found agreement with the
universal relation between 7, and the surface stiffness

vr = Y(Ig) )
kgl = EYRdz )

where d is the step height. We also found agreement for
the critical variation of y as a function of orientation, the
critical variation of the growth rate as a function of tem-
perature and growth driving force, and the critical behav-
1or of the surface stiffness as a function of orientation and
temperature. For a detailed review, please see ref. [22].
Here I only wish to insist on the universal relation (Eq.1)
which is the best known property. Agreement was found
between Nozieres’” theory[26] and all the results obtained
by us and by the Moscow group [27]; for this we had to
adjust three parameters, namely the roughening tempera-
ture Ty, itself, the strength of the coupling of the interface
to the underlying lattice, and a small scale cutoff where
fluctuations start.

The c facet is the simplest one for such a comparison
because *He crystals are easier to orient with a ¢ facet
horizontal than with any other facet horizontal, also be-
cause the ¢ axis is a six-fold symmetry axis so that there
is only one component of the surface stiffness tensor in
this direction. The study of the other facets in “*He is still
incomplete so that the agreement with Nozieres’ theory
is not as precise but all measurements are compatible
with its predictions (see ref. [22]). As for 3He crystals
which are bee, their (110) facets could only be seen be-
low about 100 mK[28] although the roughening temper-
ature was predicted to occur at 260 mK. This has been a
puzzle for a long time. Thanks to the recent work of To-
doshchenko et al. in Helsinki [29], one now understands
that the coupling of the surface is extremely weak close
to the roughening temperature, so that facets have a neg-
ligible size except if the temperature is much lower than
260 mK. A surprising result by the Helsinki group is that
this coupling becomes strong at low temperature since
quantum fluctuations of the surface are strongly damped
when the viscosity of liquid 3He is high.

Thanks to the study of helium crystals, the universal
relation of roughening is now well established and we
used it to explain the very large number of facets ob-
served by P. Pieranski at the surface of some lyotropic
liquid crystals[30]. These cubic crystals show up to 60
different types of facets at room temperature, which are
arranged in sets of “devil staircases” around high sym-
metry orientations. Together with Noziéres, we showed
that these crystals are soft in the sense that their typical
elastic energy is much smaller than their surface energy,
so that their steps are in fact embedded as edge disloca-
tions below the crystal surface. We could calculate their
stiffness components and show that the large interaction
between steps is compensated by the small step energy
in the calculation of the roughening temperatures, so that
the existence of a large number of facets at room temper-



ature is a simple consequence of the large value of the
lattice spacing[31].

3.2. Crystallization waves

Contrary to most of their static properties which could
be generalized to classical crystals, the dynamic proper-
ties of helium crystals are obviously particular to quan-
tum systems. For example, around 100 mK, the growth
rate of rough crystal surfaces is larger by 11 orders of
magnitude in “He than in 3He. No classical crystal would
show such a difference between two isotopes. In e, the
growth rate increases as temperature goes down while,
for classical crystals, everything depends on thermal ac-
tivation above energy barriers, so that the growth rate al-
ways decreases when temperature goes down. The strik-
ing difference between “He and 3He has two different
origins. Firstly, excitations are different in superfluid “He
and in a Fermi liquid such as 3He. The crystallization of
superfluid *He is mainly limited by collisions of the mov-
ing crystal surface with excitations; as a consequence,
since thermal excitations disappear at low 7', the growth
rate diverges to infinity as 7" tends to zero.[32,33] This is
reminiscent of the mobility of electrons in metals which
also increases as the density of thermal phonons van-
ishes. Since the excitations in liquid >He are Fermi quasi-
particles which have a large momentum, the intrinsic mo-
bility of the liquid-solid interface is much smaller than in
4He (there is more momentum exchange during a col-
lision with Fermi quasiparticles than during collisions
with thermal phonons). As a consequence, even at 320
mK where the latent heat of crystallization is zero in 3He,
the shape of a 3He crystal relaxes to equilibrium in a few
seconds, which is about 6 orders of magnitude than in
4He at the same temperature. But as soon as the latent
heat is non-zero, since the thermal conductivity of liq-
uid 3He is poor, the resistance to growth involves a bulk
thermal resistance which may be very large while it is
negligible in “He. As a result, the growth dynamics of
4He crystals looks strikingly fast while it looks as slow
as for classical crystals in 3He.

A famous consequence of the fast dynamics of “He
crystals is the existence of crystallization waves. These
waves are well defined on rough surfaces below about
0.6 K, when thermal rotons disappear and the growth rate
is only limited by phonons. In these waves, the restoring
forces are gravity and surface tension as for waves at a
free liquid surface, and the kinetic energy comes from the
mass transport which is necessary to change a liquid into
a solid phase whose density is larger. As a consequence,
one can use a measurement of their dispersion relation
to obtain precise values of the surface tension (more
precisely the surface stiffness). This proved particularly
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FIGURE 2. The extended phase diagram of helium. The
liquid phase can be observed in a metastable state at negative
pressure down to -9.5 bar and at high pressure up to 160
bar, possibly up to an instability line where the roton gap
vanishes.[40].

interesting to study vicinal surfaces which are tilted by a
small angle with respect to facets.

A vicinal surface is called “stepped” if it is made of
well separated steps. For this the tilt angle has to be small
enough. At small tilt angle, the vicinal surface properties
are governed by step properties while at larger angle
they are isotropic rough surfaces. With E. Rolley[34],
we studied stepped surfaces to measure the properties
of steps. For this, we built a cell which could rotate
by 4+ 6° around two perpendicular axes. In this cell
we first grew a crystal with a vertical ¢ axis; it was
wide enough for gravity to force the crystal surface to
be horizontal. When rotating the cell, the surface kept
horizontal but its crystalline orientation rotated. This
allowed us to propagate waves either perpendicular to
steps or parallel to them, also to vary the step density
and of course the temperature. Fig. 3 shows some of
the results of this delicate experiment. One sees that the
surface stiffness becomes highly anisotropic as the tilt
angle ¢ tends to zero. We verified that the component
i of the stiffness tensor diverged as 1/¢ while the
component y, was proportional to ¢. A stepped surface
is somehow like a corrugated board, very soft to bending
in one direction but very stiff in the other direction.
From a fit with theory, we obtained the step energy and
the interaction between steps which had two parts, an
entropic repulsion and an elastic one. We could also
estimate the step width from the crossover angle (about
2.5°) from rough to stepped behavior and we found very
good agreement with what we had already learned when
studying the roughening transition. We also understood
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FIGURE 3. The anisotropy of the surface stiffness of *He
crystals, as measured by Rolley et al.[34]

the details of step-phonon collisions from the damping
of crystallization waves on stepped surfaces, we obtained
evidence for the adsorption of 3He impurities on these
steps, etc.

At the end of this long study, I could compare our re-
sults on He steps with those obtained by Ellen Williams
and her group on Si crystals. At high enough tempera-
ture on vicinal surfaces of Si crystals, the steps fluctu-
ate, consequently the width of terraces between them. E.
Williams had measured the distribution of terrace widths
and found it narrower in the presence of the elastic
repulsion.[35] Our description of step-step interactions
was perfectly consistent with hers and this convinced me
of the great interest of helium as a model system: with
helium crystals one has access to some physical quan-
tities which are not easy to measure in more classical
systems but the information obtained in helium can be
generalized to all others.

4. THE STABILITY LIMITS OF LIQUID
HELIUM

In the recent years, we have extended the phase dia-
gram of liquid helium to negative pressure where it is
metastable with respect to the gas and to high pressure
where it is metastable with respect to the solid. Thanks
to acoustical techniques which I learned from Humphrey
Maris, we are now able to study superfluid “He from -
9.5 bar up to 160 bar, possibly more, a pressure range
much larger than the stability one (0 to 25 bar). This is
because the liquid-gas and the liquid-solid transitions are
first order, so that the nucleation of the stable phase oc-

curs a certain distance away from the equilibrium line. If
there are no impurities and if one eliminates the influence
of walls, no “heterogeneous nucleation” takes place, the
nucleation has to be “homogeneous”. Our experiments
use piezoelectric transducers with a hemispherical shape.
They are excited at resonance in a thickness mode, so that
bursts of ultrasound (typically 1 MHz) can be focused at
the center of the transducer, far from any wall.

One difficulty is the calibration of the pressure ampli-
tude at the acoustic focus. By studying the variation of
the nucleation threshold as a function of the static pres-
sure in the cell, we could measure this amplitude within
about 10 percent. We found that, in the low tempera-
ture limit, bubbles nucleate, i.e. cavitation occurs near
the spinodal limit which has now been calculated by sev-
eral methods as -9.5 + 0.2 bar near 7" = 0 in “He.[36] We
also found a crossover from a quantum nucleation regime
below about 0.2 K to a thermally activated one at higher
temperature. In 3He, we showed that cavitation occurs
near -3 bar and that quantum cavitation is not possible in
a short time there because of the existence of zero sound
whose velocity does not vanish at the spinodal limit.[37]
All these results and some others are discussed in a re-
view article which I wrote on ‘“Nucleation in quantum
liquids™ [38].

More recently, we developed our research in two dif-
ferent directions. One is the extension to liquid water of
acoustic cavitation. This is another example of the model
character of helium: we are extending what we learned
in helium, a simple liquid whose spinodal line is well es-
tablished, to THE complex liquid where the spinodal line
is a matter of controversy and where homogeneous cav-
itation studies can distinguish between two competing
models of its structure. The other direction is the homo-
geneous crystallization threshold of superfluid helium.
For this we use the same type of acoustic technique but
we study nucleation in the positive swings of the waves
instead of the negative ones. This will be my last subject
for this lecture, and, as we shall see, it will take us back
to rotons.

In a first series of experiments, we focused the acous-
tic waves on a clean glass plate.[39] From the reflectivity
at the glass-helium interface, we could measure the local
density, or the local pressure by using the known equa-
tion of state of liquid helium. We found crystal nucle-
ation 4.3 bar above the liquid-solid equilibrium pressure
F,, =253 bar (see Fig. 4). This was 2 to 3 orders of mag-
nitude larger than in previous experiments where favor-
able defects or impurities must have been present on cell
walls. This experiment also showed that crystals could
grow at 100 m/s, reach a 10 pum size in 100 ns and be
easily observed. Eventually, we studied the statistics of
nucleation and showed that the nucleation was heteroge-
neous, taking place on one particular defect of the glass
plate.
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FIGURE 4. Acoustic nucleation of *He crystals occurs
4.3 bar above B, = 25.3 bar, the liquid-solid equilibrium pres-
sure. One records the density at the acoustic focus from the
light reflected at the glass-helium interface (lower traces); the
nucleation is also easily detected from the transmitted light
(upper traces). At the threshold, one observes either one or the
other type of signal with a probability 0.5. [39].

In a second series of experiment, we removed the glass
plate.[40] Apparently, we observed cavitation in the neg-
ative swings but no crystallization in the positive swings,
even at 25 bar near F,,. This was a surprising result which
showed that the standard nucleation theory could not be
used for precise predictions far from equilibrium. Indeed,
it uses the “thin wall approximation” to calculate the nu-
cleation barrier with the value of the macroscopic sur-
face tension of crystals in equilibrium with liquid he-
lium. This elementary calculation predicts homogeneous
nucleation at 65 bar while we could overpressurize liq-
uid helium up to 160 bar without nucleation. According
to Maris and Caupin [41], the liquid-solid interfacial en-
ergy increases with density so that the standard theory
underestimates the nucleation barrier.

How far can one pressurize liquid helium before it
crystallizes? This is in fact a rather open question. In
1971, Schneider and Enz proposed the existence of a
stability limit where the roton gap A vanishes.[42] A is
known to decrease with pressure from O to 25 bar. If A
vanishes, rotons become a soft mode which triggers an
instability: a density wave should spontaneously grow
and break the translation symmetry of the liquid. Since
the wavevector of rotons is the inverse of the interatomic
distance, the periodic phase is likely to evolve into the
stable crystalline phase. H.J. Maris estimated that A =
0 around 200 bar from an extrapolation of Dalfovo’s
density functional.[43] More recently, it was found from
Monte Carlo simulations that this stability limit probably
occurs at even higher pressure.[44]

In my opinion, this instability illustrates the nature
of rotons. Landau chose this name because he thought
that they could be elementary vortices. Later, Feynman

modified Landau’s view and tried to consider rotons
as elementary vortex rings, but this new image had a
difficulty.[45] Indeed, the group velocity of rotons with
energy A is zero, and this is hardly compatible with the
image of a vortex ring. Noziéres recently noticed [46]
that the existence of a roton minimum in the dispersion
relation w(qg) of helium excitations is just a sign of local
order in liquid helium. Feynman himself explains that
w(q) is proportional to the inverse of the structure factor
S(q), so that the roton minimum is a consequence of
the existence of a large maximum in S(g) (a “Bragg
peak” as Nozieres says). There is some local order in
liquid helium, consequently a large probability to find
atoms at an atomic distance from another atom, and the
dispersion of phonons with a wavelength equal to the
interatomic distance resembles that of a periodic crystal.
As pressure increases, the local order increases and the
roton minimum tends to zero. In this representation,
rotons are density fluctuations signaling the proximity of
a crystalline phase. When the roton minimum vanishes,
the liquid becomes unstable. This is the new view of
rotons which we hope to verify experimentally.

With this in mind, we have started a third series of
measurements, now with two hemispherical transducers
forming a spherical one. The amplitude of positive peaks
is higher but the calibration is more difficult because the
acoustic focusing is more non-linear than in the hemi-
spherical geometry.[47] According to our preliminary re-
sults [48], we have found homogeneous nucleation of
4He crystals in the bulk of liquid “*He, a long standing
challenge.

In order to measure the nucleation pressure, we plan
Brillouin scattering measurements inside the acoustic
wave. We should obtain the local instantaneous sound
velocity and relate it to the local pressure from the most
recent equation of state [44]. In fact, we expect Bril-
louin scattering to tell us about another important is-
sue, namely the vanishing of superfluidity as a function
of pressure. Superfluidity is a long range quantum order
which requires exchange between atoms. The higher the
pressure, consequently the density, the more difficult is
this exchange. This is why the superfluid transition tem-
perature decreases as a function of density, contrary to
the BEC transition in a weakly interacting gas. We won-
der what happens to superfluidity in highly pressurized
liquid “He, how the lambda line extrapolates at densi-
ties of order 0.23 g/cm?, 30 percent more than at 25 bar.
At first sight, we expected the lambda line to join the
liquid-solid instability line at 7=0, as drawn on Fig. 2.
But Nozieres’ argued that superfluidity could disappear
before A becomes zero.[46] Since Brillouin scattering al-
lows to detect superfluidity from the existence of sec-
ond sound, we plan to get some information on this is-
sue. If we could perform Raman scattering as well, we
could perhaps also measure the vanishing of the roton



gap. Such experiments look difficult but worth trying in
the coming years.
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