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Abstract. The focusing of acoustic waves is used to study nucleation phenomena in liquids. At large
amplitude, nonlinear effects are important so that the magnitude of pressure or density oscillations is
difficult to predict. We present a calculation of these oscillations in a spherical geometry. We show that the
main source of nonlinearities is the shape of the equation of state of the liquid, enhanced by the spherical
geometry. We also show that the formation of shocks cannot be ignored beyond a certain oscillation
amplitude. The shock length is estimated by an analytic calculation based on the characteristics method.
In our numerical simulations, we have treated the shocks with a WENO scheme. We obtain a very good
agreement with experimental measurements which were recently performed in liquid helium. In addition,
the comparison between numerical and experimental results allows us to calibrate the vibration of the
ceramic used to produce the wave, as a function of the applied voltage.

PACS. 67.40.-w Boson degeneracy and superfluidity of 4He – 43.25.+y Nonlinear acoustics –
62.60.+v Acoustical properties of liquids

1 Introduction

Recent experiments have shown that acoustic waves can
be used to study the nucleation of phase transitions
far from equilibrium under very clean conditions [1–3].
Thanks to hemispherical piezo-electric transducers, we
have focused 1 MHz acoustic waves in liquid helium and
produced large pressure and density oscillations. These
waves are quasi-spherical and, at the acoustic focus (the
center), their amplitude can be very large. We used an
optical method to detect the nucleation of bubbles by the
negative swings of the waves [1,2]. This nucleation occurs
beyond a certain threshold in the sound amplitude which
needs to be determined as accurately as possible, in order
to compare with independent theoretical predictions. We
later obtained evidence for the nucleation of crystals by
the positive swings [3] and had the same need.

In the absence of nonlinear effects, the measurement
of the nucleation threshold would be simple to do. For
example, one could study the nucleation as a function of
the static pressure in the experimental cell, and then use
a linear extrapolation [2]. However, we expect nonlinear
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effects to occur, especially in cavitation studies. Indeed,
the homogeneous nucleation of bubbles occurs near the
“spinodal limit” where the compressibility diverges and
the sound velocity vanishes. When the amplitude of an
acoustic wave is such that during the negative swings the
sound velocity approaches zero, it is clear that the wave
must be highly distorted. This kind of nonlinear effects
has been already noticed by several authors [4–6].

We thus try to calculate the nonlinear focusing of the
acoustic waves. We start with the spherical geometry, be-
cause in a first approximation, everything depends only
on the radial distance r from the center. As we shall see
(Sect. 2), this calculation still appears difficult because the
focusing of acoustic waves leads to the formation of shocks
at all amplitudes in a spherical geometry, and their treat-
ment is not straightforward. We first obtain this result and
the associated shock length from an analytic calculation
which uses the methods of characteristics (Sect. 2.2). Our
calculation extends the former work of Nemirovskii [6] to
the spherical case, except that we neglect the coupling
with heat modes. It is done in the spirit of Greenspan and
Nadim’s work [7], though in our case it is slightly more
tricky due to the shape of the equation of state. We make
it quantitative by using the equation of state of liquid
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helium [8] which is well established. For weak oscillation
amplitudes of the transducer, the pressure and velocity
are calculated by solving the Euler equations using a fi-
nite difference method (Sect. 2.3), neglecting any shock
forming with an infinitesimal amplitude within a distance
from the center much smaller than our mesh size. At larger
amplitude, not only shocks cannot be ignored, but we have
found that they had to be handled very accurately in order
to get sensible numerical results. Therefore, we have had
to adapt a code devoted to shock simulation to the case of
helium. We have chosen a code based on a WENO scheme
(Sect. 2.4) because it does not require the arbitrary lim-
iters found in some other methods. Eventually we obtain
the amplitude of the density oscillation at the focus as a
function of the amplitude of the waves generated by dis-
placement of the ceramic surface. The frequency of the
waves is 1 MHz as in the experiments. In parallel, we have
built an experiment to measure the focusing in a quasi-
spherical geometry. As explained in Section 3, the results
of this experiment allow a precise comparison with our
theoretical and numerical work [9,10]. We find that the
shape of the acoustic wave is indeed distorted at high am-
plitude and very well described by our calculations, thus
validating our numerical method. The final comparison
with our calculation allows us to calibrate the efficiency
of the ceramic. As described in our conclusion, this work
should now be extended to different geometries. One of
them is the hemispherical geometry where, according to
other experimental results [2], nonlinear effects are appar-
ently less important, an observation which needs to be
understood and compared with future calculations.

2 Theory

2.1 Description of the model

Throughout this paper, we consider a spherical geometry.
We take it as one-dimensional since the pressure and den-
sity fields only depend on the radial distance r.

In the case of liquid helium 4 at zero temperature,
the equation of state has been obtained by three differ-
ent methods (sound velocity extrapolations, density func-
tional calculations, and Monte Carlo simulations) with
similar results. Maris [8] uses the simple form to relate
the pressure (P ) to the density (ρ):

P − Psp =
b2

27
(ρ − ρsp)3, (1)

where Psp and ρsp are respectively the pressure and the
density at the spinodal point where the compressibility di-
verges, the sound velocity, cs = b(ρ− ρsp)/3, vanishes and
the liquid becomes totally unstable against the formation
of the vapor.

We also considered helium 3, a lighter liquid which is
not superfluid except at very low temperature – i.e. below
the achievable temperature in our experiment – and which
obeys the same equation of state.

Table 1. Summary of the various reference scales used in the
paper to obtain dimensionless quantities. The first three scales
are the fundamental ones, the last ones are derived from them.

Physical Reference Numerical value
quantity scale of the reference scale

4He 3He

time (×10−6 s) T 1 1

length (×10−3 m) λ0 =cs0T 0.238 0.182

density (kgm−3) ρsp 94.18 53.50

velocity (m s−1) cs0 238.3 182.5

pressure (×10
5

Pa) ρspc2
s0 53.47 17.82

Dimensionless Definition Numerical value
constants

spinodal
pressure

Psp

ρspc2
s0

−0.18031 −0.17697

density
at P = 0

ρ0

ρsp
1.541 1.531

Co
b ρsp

3cs0
1.848 1.883

The values of the parameter b and of the density ρ0

at P = 0, are 14.030 m4 s−1 kg−1 and 145.13 kg m−3 for
helium 4, and 19.262 m4 s−1 kg−1 and 81.916 kgm−3 for
helium 3 respectively. Note that the value of the spinodal
pressure for helium 3 (−3.1534 × 105 Pa) is less negative
than for helium 4 (−9.6435 × 105 Pa), which means that
the inner cohesion of liquid helium 3 is weaker than for
helium 4.

We neglected dissipation since our main goal was to
compare with experiments in superfluid helium 4 which
has zero viscosity and where the attenuation of sound
vanishes in the low temperature limit [11]. At the tem-
peratures considered in case of helium 3, the viscosity is
very weak and is neglected, though this approximation
would probably need to be better justified. Therefore, the
numerical approximation considers the Euler equations.

In order to use a dimensionless form of the equations,
we have chosen as a time scale the period of the wave T
(T = 1/f = 1 µs for 1 MHz waves), as a length scale
the wavelength at zero pressure λ0 = cs0T and as a den-
sity scale the spinodal density ρsp. The scalings and the
remaining dimensionless parameters are given in Table 1
for liquid helium 3 and 4.

If we now consider ρ as the dimensionless density and
u as the dimensionless velocity of the fluid, the Euler
equations are written as follows:

∂tρ + u∂rρ + ρ∂ru =
−θρu

r

∂tu + u∂ru = −1
ρ
∂rP, (2)
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or, by using the conservative variables ρ and q = ρu,

∂tρ + ∂rq =
−θq

r

∂tq + ∂r[q2/ρ + P (ρ)] =
−θq2

ρr
(3)

where θ is respectively 0, 1, or 2 in planar, axisymmetric
cylindrical, or spherical geometry. The equation of state,
governing the dimensionless pressure variations, reads:

P − Psp

ρspc2
s0

=
C2

o

3
(ρ − 1)3, (4)

and the dimensionless sound speed is

cs = Co(ρ − 1). (5)

This implies in particular that the dimensionless sound
speed cs = 1 for P = 0 ρ = ρ0. Also the classical
ratio B/A = ρst(∂2P/∂2ρ)st/(∂P/∂ρ)st [12] is given by
2ρst/(ρst − 1), where “st” labels the unperturbed (static)
values. For P = 0, B/A = 5.697 for helium 4 and 5.766
for helium 3, values close to those of water at 60 ◦C or
liquid hydrogen at 14 K. When P goes to Psp, B/A goes
to ∞. Note that, in order to have simple notations, we use
the same names for physical and reduced variables. In gen-
eral, calculations will be performed with reduced variables,
while numerical results and experimental parameters will
be given as physical quantities.

Boundary conditions are imposed at the center (r = 0)

u(0, t) = 0, (6)

and on the transducer surface (r = L(t))

u(L(t), t) = −ω ∆x0 sin(ωt) [1 − exp(−t/1.5)] . (7)

In all our simulations, the motion of the transducer surface
is much smaller than a mesh size and it is sufficient to
impose an oscillating velocity on the ceramic at a fixed
position L0. The exponential term represents the response
time of the transducer. In the experiment the response
time is rather equal to 8 µs. Here we took it shorter to
have a more rapid convergence of the calculation to the
steady regime. This has no effect on the final result, as our
simulations will always be used in the stationary regime.

In the whole paper, all the calculations are based on
Euler equations, for which shock waves do occur. We are
aware that, in superfluids as helium 4, there is no shock
wave strictly speaking. Actually, when a steep gradient ap-
pears, it is regularized by dispersion instead of dissipation.
This means that modes propagate with a different velocity
depending on their frequency, and thus highest frequency
modes are expelled from the steep region. However, we
assume that, as shocks form only in the focal region, and
during a limited time, not too much momentum is lost
locally due to dispersion, and that in a first approxima-
tion, a viscous or dispersive regularization of the shocks is
equivalent (note that any numerical scheme able to han-
dle shocks will always introduce either a dissipation or a

dispersion term in order to make shocks regular, even if
Euler equations do not contain any viscous term). Besides,
as we shall see (Sect. 2.3.2), we do not need to describe
the shock structure exactly, as we are above all interested
in the relaxation part of the wave. We have found from
our simulations that the negative pressure swing only de-
pends very weakly on the numerical viscous regularization
we use and thus on the shock amplitude near the focal
point. Still, it would of course be interesting to be able to
quantify further the effects of dispersion, and this could
be the object of a further work.

Throughout the paper, we shall consider helium 4 un-
less it is explicitly specified that it is helium 3. In the next
sections, we show that shock waves can occur in this sys-
tem, and we compute the radius (denoted as shock length
in the following) at which a shock wave occurs for various
oscillation amplitudes ∆x0 of the transducer surface.

2.2 The method of characteristics

In the study of compressible fluids, the method of charac-
teristics is a standard one [13]. It has already been used
for helium in a planar geometry (see for example [6]).

Here we are interested in the shock length in spherical
geometry, for the equation of state (1). In this paper we
define the shock length as the distance from the center
where the shock forms. We shall use the method of char-
acteristics to predict a lower bound for the shock length.

2.2.1 Riemann invariants and characteristics

Let us first recall the principle of the method. Solving
the Euler equations means knowing the density ρ and the
velocity u everywhere within a certain domain of the (r, t)
plane. In our case, the “characteristics” are two families
of curves

{
C(+)

i

}
i∈R

and
{
C(−)

i

}
i∈R

parameterized by i,

where the parameter i could for example be defined as
the r-coordinate at which the characteristic intersects the
axis t = 0 (see Fig. 1 for an illustration). Thus, C(+)

i (resp.
C(−)

i ) refers to a single curve in the (r, t) plane, which
belongs to the (+) family (resp. (−)), and has in our case
a positive slope (resp. negative). Each family completely
covers the (r, t) plane as i is varied. The two families of
curves intersect each other. Then, instead of locating a
point in the plane by its coordinates (r, t), it is equivalent
to indicate which particular characteristics C(+)

i and C(−)
j

intersect each other at this point. The point (r, t) will then
equivalently be referred to as point (i, j).

These families are chosen so that, for each family
{
C(k)

i

}
with k = ±, there exists a quantity Ik called “Riemann
invariant”, which is a function of ρ and u, and obeys a
simple evolution equation along any characteristic C(k)

i of
the family. If the value of Ik is known at one point of a
characteristic C(k)

i (for example at the initial time), then
it is easy to compute it on the whole curve.
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Fig. 1. The two characteristic families defined in the (r, t)
plane. Here each curve is labeled by the r-coordinate of its
intersection with the t = 0 axis. The point indicated by a
small circle can be referred to either by its coordinates (r, t),
or by the labels of the characteristics which intersect at this
point (i, j).

As each point of the (r, t) plane is the intersection of
two characteristics C(+)

i and C(−)
j , we know the values of

I+(ρ, u) and I−(ρ, u) at this point. Then the density ρ and
the velocity u are entirely determined.

Now the precise form of the Riemann invariants and
corresponding characteristics have to be derived from
the Euler equations (2) and the equation of state for
helium (4). The detailed calculations are given in Ap-
pendix A.1. Here we just give the results concerning the
shape of the characteristics and the Riemann invariants.
By definition, at any point, the slope of a characteristic
C(+)

i with equation r = x(t) is dx/dt = u + cs where u

and cs are taken at (x(t), t). For a characteristic C(−)
i , it

is dx/dt = u− cs. Using the dimensionless speed of sound
cs given by equation (5), the derivative along the charac-
teristic reads

d

dt
= ∂t + (u ± cs)∂r.

The Riemann invariants are found to be

I± ≡ Co(ρ − ln ρ) ± u, (8)

and the equations verified by the “invariants” Ik (k = ±)
are

d

dt
[I±] + θ

Co(ρ − 1)u
r

= 0 (9)

where the derivative d/dt is taken along a characteristic
C(k)

i . Again, θ is respectively 0, 1, or 2 in planar, cylindri-
cal, or spherical geometry.

In planar geometry (θ = 0), Ik is a true invariant,
since it is constant along the corresponding characteristic,
hence its name. In spherical or cylindrical geometries, it
is not constant, due to the source term in equation (9),
though it is still called an “invariant”.

All this is valid at least as long as the characteristics
belonging to the same family do not intersect each other.
When they do, the corresponding Ik becomes multival-
ued. This is an indication that a shock has formed, and

9.7 9.8 9.9 10.0
r / λ

0.00

0.05

0.10

0.15

0.20

t 
/ T

Fig. 2. Characteristics obtained for an experimental oscilla-
tion amplitude equal to ∆x0 = 10 µm, a cell radius L0/λ = 10,
and a time step δt = 0.01 T. The location of the piston is rep-
resented by the solid thick line on the right. On the upper left,
two characteristics are crossing each other and the program
stops. We chose a much larger oscillation than in the exper-
iment, in order to have a rapid shock formation, and thus a
readable picture.

beyond the corresponding time, the description used in
this section breaks down.

2.2.2 Lower bound for the shock length - Analytic
calculation

We shall now show that such an intersection does occur in
the system, and calculate the corresponding shock length.
We consider a spherical domain bounded by a spherical
piston. At t = 0, the fluid is at rest with a density ρst

and the piston surface is a sphere of radius L0. As long as
the fluid is at rest, all the characteristics are straight lines
(see Fig. 2). The respective slopes of the characteristics{
C(+)

i

}
i∈R

and
{
C(−)

i

}
i∈R

are +cst and −cst, cst being the

sound velocity for the initial density ρst. The piston starts
to move at t = 0 with a velocity vp(t) = −∆v0 sin(ωt).

We denote C(−)
0 the characteristic originating from r =

L0 at t = 0, with slope −cst. The domain to the left of
C(−)
0 is unperturbed unless some characteristic C(−)

i crosses
C(−)
0 , i.e. unless there is a shock.

The aim of this calculation is to find an upper bound
for the time necessary to form a first shock in the system.
As the piston moves, it emits some characteristics which
will cut C(−)

0 after a while, leading to a shock. We only
study how the characteristics emitted at early times, and
almost parallel to C(−)

0 , will eventually cross it. Of course,
some other characteristics emitted later could cross C(−)

0
earlier, or some shocks could occur somewhere else at ear-
lier times. That is why our calculation only gives an upper
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bound for the shock time given by

tshock ≤ L0

cst

{
1 − exp

[
− c2

st

2 L0 ω ∆v0

ρst − 1
ρst − 1

2

]}
≤ L0

cst
,

(10)
(see Appendix A.2 for the details of the calculation). As
the corresponding shock length rshock is measured from
the center of the sphere, a lower bound for rshock is

L0 ≥ rshock ≥ L0 exp
[
− c2

st

2 L0 ω ∆v0

ρst − 1
ρst − 1

2

]
> 0. (11)

From this study we conclude that in spherical geom-
etry, there is always formation of a shock, whatever the
velocity of the piston is, as long as it has a nonzero accel-
eration towards the center of the sphere. However, when
the oscillation amplitude ∆x0 = ∆v0/ω goes to zero, the
lower bound of the shock length goes also to zero. If we
assume that the lower bound is an accurate estimate of
the actual shock position (assumption confirmed numer-
ically in the next section), then, as shocks appear at the
intersection of tangential characteristics, their initial am-
plitude is zero. If they are formed very near the center,
their amplitude does not have time to grow much. This
is true especially because of the existence of a cut-off: the
notion of shock becomes meaningless when the width of
the shock becomes of the same size as the shock length
itself. So, as the oscillation amplitude tends to zero, the
jump in density and velocity at the shock also vanishes,
and their is no contradiction with the fact that the solu-
tion is expected to approach the linear solution [14].

2.2.3 Numerical calculation of the shock length

In order to show that the lower bound computed in the
previous section is actually a good estimate of the shock
length itself, let us now solve numerically the Euler’s equa-
tions by computing a network of characteristics

{
C(−)

i

}
i∈Z

and
{
C(+)

i

}
i∈Z

. As the fluid is at rest on the left of C(−)
0 ,

we restrict our calculation to the (r, t) domain located be-
tween C(−)

0 and the piston trajectory.
Among the several possible parameterization choices,

we have chosen for the (+) family the subset of character-
istics crossing at regular time intervals ti the first charac-
teristic C(−)

0 emitted by the piston, where ti = iδt, δt is
an arbitrary fixed time step, and i is restricted to integer
values (see Fig. 2).

When C(+)
i meets the piston, a new characteristic C(−)

i
(with the same label i) is emitted from the piston at the
same time. This defines the parameterization of the (−)
family. The intersection of the characteristics C(+)

i and
C(−)

j is referred to as point (i, j).
During the nth step, we compute all the points (i, j)

such that i + j = n with i and j integers. Let us describe
now how a point (i, j) can be computed from the points of
the previous step (see Fig. 3). All the information comes

i
(+) (−)

j

(i , j)

(i−1 , j)(i , j−1)

C C

Fig. 3. Schematic representation of the network formed by the
two families of characteristics, where i and j are integers.

from the two sites (i, j − 1) and (i − 1, j). We must ex-
trapolate each characteristic C(+)

i and C(−)
j up to the next

intersection (i, j). We compute the local slopes u ± cs of
the characteristics C(+)

i and C(−)
j in sites (i, j − 1) and

(i− 1, j) respectively. Then (i, j) is the intersection of the
two straight lines which respectively go through (i, j − 1)
and (i − 1, j) with these slopes.

The values of the Riemann invariants I+ and I− at
(i, j) are found by numerical integration of the equa-
tions (8) and (9) along the two involved characteristics.
From these values, both ρ and q = ρu are obtained.

The program stops whenever two characteristics of the
same family cross each other, as shown in Figure 2. Then a
shock occurs and the calculation based on characteristics
breaks down (there would be multivalued points).

Let us now compare analytic and numerical results.
Both calculations were done by taking L0 equal to the
experimental cell radius, i.e. 8 mm = 33.6 λ. We have
also checked that the chosen time step δt = 10−4 T is
small enough to capture the shock length with a four digit
accuracy. In Figure 4, we plot the shock distance rshock

measured from the center of the sphere as a function of the
amplitude of the oscillation of the piston. We compare it
with the analytic result. The agreement is excellent. This
shows that our analytic calculation not only gives a lower
bound but in fact a good estimate for the shock distance
itself.

We have also performed the analytic calculation in the
case of helium 3, neglecting the role of viscosity. It is ex-
pected that shocks form at smaller wave amplitude in he-
lium 3, because, in this lighter liquid, the spinodal pressure
is less negative than in helium 4.

2.3 Numerical simulations of Euler’s equation

2.3.1 Numerical method

As we shall see now, a simple finite difference numerical
scheme is sufficient to simulate our system with moderate
amplitude, at least as long as the shock length is smaller
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Fig. 4. Shock distance in helium 4 versus the amplitude of
the oscillation on the ceramic, for a cell radius L0 = 33.6λ,
and a time step δt = 10−4 T. We compare the analytic pre-
diction (solid line) and our numerical calculations (symbols),
both based on the characteristics method. The inset shows an
expanded view for small amplitudes. The arrow indicates the
amplitude for which cavitation is observed in the experiment
at zero static pressure.

than the spatial discretization step. Our aim is to calcu-
late numerically the pressure and density oscillation at the
center. We chose to have two lattices, one for mass and the
other for momentum. They are staggered (Fig. 5) and al-
low us to enforce exactly the conservation of mass in the
volume 4π[(k + 1/2)3 − (k − 1/2)3]δr3/3:

ρ
t+δt/2
k = ρ

t−δt/2
k +

δt

δr

[(
k − 1

2

)2
qt
k−1 −

(
k + 1

2

)2
qt
k

]
k2 + 1

12

.

(12)
We have taken the momentum equation in the form:

qt+δt
k = qt

k − δt

δr

[
(qt

k + qt
k+1)

2

4ρ
t+δt/2
k+1

− (qt
k + qt

k−1)
2

4ρ
t+δt/2
k

]

− C2
o

(
ρ

t+δt/2
k + ρ

t+δt/2
k+1

2
− 1

)2
ρ

t+δt/2
k+1 − ρ

t+δt/2
k

δr
δt

− 4
δt

δr

(qt
k)2(

k + 1
2

) [
ρ

t+δt/2
k + ρ

t+δt/2
k+1

] . (13)

As we use a staggered lattice, we only have to specify the
boundary conditions for the momentum. It is vanishing
at the center of the sphere (r = 0), and thus the sym-
metry with respect to the center imposes q0 = −q−1 (see
Fig. 5). On the other hand, the motion of the piston is
implemented by

qK(t) = −ρK ω ∆x0 sin(ωt) [1 − exp(−t/1.5)] .

K

ρ
K

ρ
0

ρ
1

ρ
2

ρ
3

0 21 3 K L/dx

qq
0

q
1

q
2

q
3

q
-1

Fig. 5. Staggered lattice used for the numerical simulations.
The radius of the simulation domain is L = (K + 1/2) δr. The
symmetry with respect to the center r = 0 imposes q0 = −q−1,
so that the velocity would vanish at the center: q(r=0) = 0.
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Fig. 6. Focal pressure for a weak oscillation ∆x0 = 0.7 nm.
The simulation was done with 100 mesh points per wavelength
and 104 points per period, starting with a static density ρst =
ρ0, and thus a vanishing static pressure.

2.3.2 Focal pressure

In Figure 6, the focal pressure is represented as a function
of time. It is calculated from the average density in the
central cell. The results of Figure 6 were obtained for a
cell length equal to the experimental one, i.e. L0 = 33.6 λ,
an oscillation amplitude ∆x0 = 0.7 nm, and a zero static
pressure. Then the reduced sound velocity is equal to 1,
and the wave needs 33.6 time units to reach the center of
the cell. We are interested in the steady regime, which is
established around t/T > 45. For t/T > 33.6, the wave
goes through the focal point and propagates towards the
ceramic where it is reflected back to the focal point (for
t/T > 2 × 33.6). It reaches again the latter at t/T =
100.8 = 3 × 33.6. Then we stop our measurements, to be
consistent with the experiment, which uses short bursts.

As long as the oscillation amplitude of the ceramic
is not too large, nonlinear effects are negligible far from
the focal point. Even the focal pressure during the steady
regime is nearly sinusoidal, and the positive swings are
only slightly larger than the negative ones (Fig. 7).

We have checked that the amplitude of the density is
well represented by the function sin(kr)/(kr), as predicted
from the linear theory [14] (see Fig. 8).
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Fig. 7. Same figure as Figure 6, with a zoom on the steady
state region. We are nearly in the linear regime.
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Fig. 8. Density profile for a weak oscillation ∆x0 = 0.7 nm
(same simulation as in Fig. 6). We are still in the linear regime.
The thin solid lines indicate a fit of the amplitude by 1/r and
the dashed line a fit by sin(kr)/(kr). The latter is almost iden-
tical to the numerical result, except near the focal point where
nonlinear effects become visible. The simulation was done with
100 mesh points per wavelength, starting with a static density
ρst = ρ0 and thus a vanishing static pressure.

From our calculation of Section 2.2, we expect a shock
to occur near the focal point. However, for the case of
Figure 8, it happens on a region around r = 0 that can-
not be seen because it is much smaller than the mesh
size. Indeed, the predicted reduced shock length would be
rc/λ = 4.2 × 10−28, to be compared with the mesh size
δr/λ = 0.01.

When ∆x0 is increased to 5 nm, nonlinear effects be-
come more important. Although the reduced shock length
(from the center) is equal to 0.003, thus still smaller than
the spatial step δr/λ = 10−2, one sees the formation
of fronts (Fig. 9). At the center, the positive swings of
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Fig. 9. Density profile for an oscillation ∆x0 = 5 nm, at dif-
ferent times, corresponding to the maximal and minimal fo-
cal pressure. Nonlinearities are becoming important. The sim-
ulation was done with 100 mesh points per wavelength and
105 points per period, starting with a static density ρst = ρ0.
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Fig. 10. Focal pressure for an oscillation ∆x0 = 5 nm in
the same conditions as Figure 9. Note the important nonlinear
positive swings.

the pressure are now much larger than the negative ones
(Fig. 10).

There are two main sources for nonlinearities: the
equation of state and the inertial terms in the Euler equa-
tions, both enhanced by the spherical geometry. Their rel-
ative importance have been studied by various simulations
where we suppressed one of them. If we take a constant
sound speed cs = cst, i.e. a linear equation of state, then
nonlinear effects are strongly reduced and the maximal
and minimal pressure excursions are almost symmetrical.
If we rather suppress the inertial term u∂ru from the Eu-
ler equation for the velocity, nonlinear effects are also re-
duced, but to a lesser extent.

Thus all nonlinear terms reinforce each other, but the
dominant nonlinear effect comes from the equation of
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Table 2. Maxima and minima of the focal pressure (×105 Pa)
computed in three different cases. Case 1: full simulation of
the equations (3). Case 2: the sound speed is kept constant
cs = cst. Case 3: the inertial term u∂ru is suppressed. All cal-
culations are done for the same experimental oscillation am-
plitude ∆x0 = 5.9 nm, and for two different cell radii.

L0 / λ0 L0 (mm) case 1 case 2 case 3
10 2.38 Pmax 13.53 6.18 11.92

Pmin –3.49 –4.83 –3.58
20 4.76 Pmax 17.17 6.34 14.27

Pmin –3.31 –4.73 –3.41
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Fig. 11. Shock distance in helium 4 versus the amplitude of the
oscillation of the ceramic. We compare the analytic prediction
for the full equation of state (solid line) and the case of a
constant sound speed (dashed line).

state, as summarized in Table 2 (the geometry also plays
a crucial role of course, but it cannot be separated from
the other effects). Note that the nonlinear effects increase
also with the radius of the cell as it is well known.

This is confirmed if we do the analytic calculation of
Section 2.2.2 again, now with a constant sound speed. We
find then that

rshock � L0 exp
[
− c2

st

L0ω∆v0

]
. (14)

In Figure 11, we compare with the result (11) of Sec-
tion 2.2.2 obtained with the full equation of state. It turns
out that, for realistic oscillation amplitudes, the shock ap-
pears almost at the center if the nonlinearities of the equa-
tion of state are not taken into account.

2.4 Shock formation at large amplitudes. The WENO
scheme

Eventually, when the amplitude ∆x0 is further increased,
the formation of shocks can be observed in our simula-
tions. The numerical scheme described in the previous sec-
tion becomes unstable around ∆x0/δr = 2 × 10−3, and a
new scheme had to be used.

For performing fine analysis of the Euler flow dynam-
ics, non-dissipative high-order accurate schemes (like spec-
tral [15–17] or Padé schemes [18,19]) have been identi-
fied as suitable tools as far as regular numerical solutions
are searched. However, when dealing with compressible
flows involving discontinuities, non-dissipative high-order
schemes introduce spurious oscillations in the vicinity of
the discontinuity and one must use a numerical scheme
which can both represent the smooth regions of the so-
lution with the minimum of numerical dissipation, and
capture the discontinuities by using an ad hoc scheme
with robust discontinuity-capturing features. Therefore,
as shock waves may occur in the computational domain
for the present calculations, the numerical method we use
is based on a high-order intrinsically-dissipative scheme
originally designed to capture discontinuities.

Among the shock capturing techniques found in the
literature, Total Variation Diminishing (TVD) schemes
are generally considered to be well suited for the cap-
ture of shock waves but too diffusive in smooth regions,
due to the limitation of the accuracy to first-order near
extrema. More recent schemes like the ENO (Essentially
Non-Oscillatory) or WENO (Weighted Essentially Non-
Oscillatory) family schemes [20–22] have been introduced
to increase the order of accuracy in the smooth regions
of the solution. Using such an approach, the derivatives of
the flux function are approximated by means of high-order
polynomial reconstruction over several grid points (the set
of these points is named “stencil”). In the ENO/WENO
schemes, to avoid spurious oscillation in the vicinity of the
discontinuity, a selection mechanism is used to chose the
most regular stencil among all the stencil candidates. The
discrete solution is then obtained on a variable stencil at
each grid point. One of the drawbacks in the generic ENO
scheme is the necessity to check and choose between sev-
eral stencil candidates, which is quite CPU consuming. To
overcome this disadvantage, we preferred using a Weighted
ENO scheme (WENO) since it improves the order of ac-
curacy of the generic ENO scheme (by using a weighted
combination of the stencil candidates) without increasing
the computational cost [23]. This scheme is rapidly pre-
sented in the next section. Some more technical details
about WENO scheme can be found in Appendix B or in
the literature [22,23].

2.4.1 The shock-capturing method

For simplicity, the governing equations (3) are recast in
the following abridged form:

∂Q

∂t
= L (r, Q) (15)

where Q = (ρ , ρ u)t is the vector of the conservative vari-
ables and

L (r, Q) = −∂F (Q)
∂r

+ S (r, Q)
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stands for a spatial operator, applied on Q, based on both
the Euler flux vector F (Q) =

(
ρ u , ρ u2 + P

)t
and the

source term S (r, Q) = −θ

r

(
ρ u, ρ u2

)t
.

In view of the discretization of the Euler equa-
tions (15), we will denote by δt and δr the time step and
cell width respectively. Qn

i will denote the numerical vec-
tor solution at a time t = t0 + n δt and at a position
r = i δr. For simplicity, the integration of these equations
has been performed by means of a decoupled time and
space algorithm.

a) Time integration

The time integration is performed by means of a third-
order accurate Runge-Kutta method, proposed by Shu
and Osher [21], chosen because this high-order accurate
scheme does not increase the Total Variation of the right-
hand-side of the equations (L (r, Q)). When dealing with
discontinuities, this Total Variation Diminishing (TVD)
property is important since it ensures that no local ex-
tremum can be created during the time integration, mean-
ing that no oscillation may occur in the vicinity of the
shock wave due to the time scheme. At each point of the
computational grid, the time integration is then obtained
via a multi-step algorithm as follows:

Q(0) = Qn
i

Q(1) = Q(0) + δt L
(
Q(0)

)
Q(2) =

3
4

Q(0) +
1
4

Q(1) +
1
4
δt L

(
Q(1)

)
(16)

Q(3) =
1
3

Q(0) +
2
3

Q(2) +
2
3
δt L

(
Q(2)

)
Qn+1

i = Q(3).

The explicit Runge-Kutta scheme exhibits a stability
condition based on the CFL number: CFL = µ δt/δr,
where µ is the maximal value of the eigenvalues µk

i of
the Euler flux Jacobian (∂F/∂Q)i (see Appendix B). All
the calculations presented herein have been obtained by
considering a fixed value of the CFL number, namely
CFL = 0.5, which corresponds to a nearly optimal value
for the considered Runge-Kutta scheme. Let us mention
that this value ensures a good representation of all the
time scales of the flow under study.

b) Spatial integration

The spatial discretization of the right-hand-side term
L (r, Q) of equation (15) is obtained by means of a high-
order finite volume scheme:

L (ri, Q
n
i ) = − 1

δr

[
F

n

i+1/2 − F
n

i−1/2

]
+ S (ri, Q

n
i ) (17)

where F
n

i+1/2 is the numerical flux evaluated at the cell
interface (ri+1/2). To reconstruct the numerical flux at the
cell interfaces, a scheme with a discontinuity-capturing
feature must be employed to prevent oscillations in the
vicinity of the shock wave. Following a previous study [23]

on the capability of some recent high-order shock cap-
turing schemes to recover basic fluid mechanics phenom-
ena, the numerical flux has been evaluated by means of a
WENO scheme [22]. The numerical flux (F

n

i+1/2 ) is ap-
proximated by using a polynomial reconstruction over a
set of several grid points (the “stencil”) around the cell
boundaries, such that the flux derivatives is estimated
with a (2p − 1)th-order of accuracy at best (in regular
regions):

∂F (Q)
∂r

=
1
δr

[
F

n

i+1/2 − F
n

i−1/2

]
+ O(δr)(2p−1) (18)

where p is the order of the ENO reconstruction proce-
dure [21]. See Appendix B for more details in the flux re-
construction. In the followings, the calculations have been
performed by using p = 3, leading to a fifth-order accuracy
in regular regions while the order of accuracy is decreased
close to unity in the shock region.

c) Boundary conditions

To solve the system of equations we need boundary
conditions at the center of the sphere (r = 0) and at the
ceramic surface (r = L(t)). At the center of the sphere, the
fluid is at rest and we prescribe u|i=0 = 0 as mentioned in
equation (6). The density is then calculated through the
equation of mass conservation by assuming that the mo-
mentum is an antisymmetric quantity with respect to the
sphere center. The singular behavior of the source term
ρu/r requires a specific treatment at the sphere center
since the momentum vanishes as r goes to zero. How-
ever, by noticing that the ratio ρu/r is a symmetric quan-
tity, the first radial derivative of this ratio vanishes at the
sphere center. By using a second order upwind difference,
(ρu/r)|r=0 is estimated by using the interior points as:

(ρu

r

)
i=0

=
4
3

(ρu

r

)
i=1

− 1
3

(ρu

r

)
i=2

. (19)

At the ceramic surface, one has to impose a condition
corresponding to the motion of the ceramic. In our case, as
the displacement of the sphere does not reach a sonic ve-
locity, the two eigenvalues µ1 and µ2 are of opposite sign.
This means that the two pieces of information necessary to
determine the two unknowns ρ and u come from opposite
directions. In particular, at the boundary, one comes from
the interior of the domain and the other from the outside.
Thus, it is possible to prescribe one of the variables, and
the other one would be determined by an upwind scheme,
i.e. asymmetric towards the inner domain. However in the
present problem, it is much more natural to prescribe the
velocity at the ceramic surface given by equation (7).

2.4.2 Numerical results

Of course, all the results presented in Section 2.3.2 can be
reproduced with our WENO scheme. Besides, one can in-
crease further the oscillation amplitude. For ∆x0 = 7 nm,
the reduced shock length (from the center) is equal to
0.043, i.e. larger than the spatial step δr/λ = 10−2, and
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Fig. 12. Density profile for an oscillation ∆x0 = 7 nm, at dif-
ferent times, corresponding to the maximal (solid line), min-
imal (dot dashed line) focal pressure, and to a sharp front
arriving to the center (dashed line) just before the pressure
maximum. Nonlinearities are becoming very important. The
simulation was done with 100 mesh points per wavelength,
starting with a static density ρst = ρ0.
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Fig. 13. Focal pressure for an oscillation ∆x0 = 7 nm. Non-
linearities are becoming very important. The simulation was
done with 100 mesh points per wavelength, starting with a
static density ρst = ρ0.

one clearly sees the formation of sharp fronts (Fig. 12).
At the center, the positive swings of the pressure are now
very sharp compared to the negative ones (Fig. 13). The
shape of the negative swings is also clearly asymmetric in
time.

It would be tempting, in order to reduce the compu-
tational effort, to assume that nonlinearities play a role
only in the last wavelengths. Then, one could simulate a
reduced box with radius Lred, and take as an input con-
dition:

∆xred = ∆xexp
Lexp

Lred
(20)
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Fig. 14. Minimal and maximal focal pressure, as a function of
the cell radius. The product Lred × ∆xred is constant for each
curve. Solid lines (resp. dashed lines) correspond to an exper-
imental oscillation amplitude ∆xexp = 0.7 nm (resp. 7 nm).
One of the curves (Pmax for 7 nm) is not visible, as it varies
from 2.80×109 Pa to 1.06×107 Pa! In all cases, the simulation
was done with about 350 points per wavelength.

where ∆xexp is the experimental oscillation amplitude of
the transducer, and Lexp its radius. Actually, this is fine as
long as nonlinearities do not play a role at all, i.e. as long
as the focal pressure is sinusoidal. In all other cases, as this
is shown in Figure 14, nonlinearities are built through the
whole propagation process, and one cannot neglect them
even far from the center, without modifying the focal pres-
sure. This could also be seen in the shock length analytic
expression (11), which is directly proportional to the cell
radius. In Figure 14, we have performed simulations with
various cell radii, corresponding to the same experimental
oscillation amplitude on the ceramic. As the cell radius
increases, both the positive and negative pressure swings
decrease (in absolute values). Nonlinearities make it more
difficult to reach extreme values. Thus in all the simula-
tions presented in this paper, we have simulated the whole
experimental cell, with radius 8 mm.

We have seen in Figure 13 that positive pressure peaks
can reach tremendously high values. Of course one may
wonder whether this is actually physical. The obvious an-
swer is no, but it is worth discussing this point in some
details.

The solution of the problem as we defined it in Sec-
tion 2.1 becomes singular when the shock reaches the cen-
ter of the sphere, and positive peaks actually diverge in
the simulations as the spatial discretization step δr is de-
creased at constant CFL number (see Fig. 15). For each
fixed δr, one still finds a finite focal pressure, as it is de-
fined as an average over the central cell - with radius δr/2.
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Fig. 15. Maximum of the focal pressure (solid line) as a func-
tion of the number of points per wavelength, for an oscillation
amplitude ∆x0 = 7.0 nm. For comparison, the dashed line
gives the pressure after a spatial average weighted by a Gaus-
sian with waist 7 µm.
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Fig. 16. Minimum of the focal pressure with the parameters
of Figure 15.

We check in Figure 16 that the minimal pressure does con-
verge for a decreasing δr.

A first remark is that this singularity involves only a
very small region around r = 0 (ultimately, it is singular
only in r = 0). In the experiment, one cannot measure the
pressure exactly in r = 0, but rather over the whole region
reached by the laser beam (see Sect. 3). The intensity of
the laser beam through its cross section is Gaussian, with
a beam waist (half width) of about 7 µm. In order to take
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Fig. 17. Averaged focal pressure for an oscillation ∆x0 =
7 nm. The spatial average is weighted by a Gaussian with waist
7 µm. This is to be compared with Figure 13.

this averaging effect into account in the simulation, we
have also computed a spatial average value of the pressure
weighted by a Gaussian of waist 7 µm (Fig. 17). Positive
pressure peaks are lowered, while the negative swing is not
very sensitive to the averaging process, as gradients are
much weaker than during the positive swing. But above
all, one now obtains extrema which are converging as δr →
0 (Fig. 15).

However, it is not enough to rule out the singularity by
an averaging process. Actually, the singularity is not ex-
pected to hold as such in a more realistic description. First,
the third Euler equation for energy should also be taken
into account in this regime, as well as regularization mech-
anisms (dispersion, dissipation). Secondly, in the experi-
ment, we expect diffraction, and the fact that actually the
flux is not zero at the focal point, to break the geometrical
symmetry. Making quantitative estimates of these effects
is not simple, and is postponed to future work. Finally,
even with averaging, positive pressure peaks in Figure 17
are still so high that they are far above the solidification
pressure (2.53×106 Pa at T = 0). Our recent experiments
show that indeed acoustic waves can trigger crystalliza-
tion, not only cavitation [3]. However in our simulations,
the possible crystallization has not been taken into ac-
count.

As a conclusion, the value of the positive pressure
swings is not expected to be reliable for high amplitudes
of the transducer surface. But we checked, using different
types of numerical regularization of the shocks (an exam-
ple is given in the next section), that even if it affects the
maximal pressure, it has no effect on the negative swings,
and thus it is still possible to use our simulations to draw
conclusions for negative pressures.

In Figures 18 and 19, we show the density profile and
focal pressure obtained for ∆x0 = 30 nm, a value which
can be reached in cavitation experiments. Figure 18 il-
lustrates how shocks are formed when the wave arrives
near the focal point. The amplitude of the shock increases
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Fig. 18. Density profile for an oscillation ∆x0 = 30 nm. Shocks
form near the focal region. The simulation was done with about
350 points per wavelength.

50 52 54 56 58 60
t / T

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

1.20

fo
ca

l p
re

ss
u

re
 (

10
   

P
a)

9

Fig. 19. Focal pressure for an oscillation ∆x0 = 30 nm. The
simulation was done with about 350 points per wavelength.

when the shock itself arrives at the focal point, leading
to tremendous pressure maxima in the simulations (here
about 1.2 × 109 Pa). This is of course unphysical, as we
just discussed, but the important point is that the mini-
mum (negative) pressure does not depend on the value of
the maximal pressure. Thus it is still possible to calculate
a minimum pressure value and compare with experiments.

Figure 20 shows the amplitude of the transducer oscil-
lation which is necessary to reach a given minimal pressure
at the center, starting from a static pressure Pst. Actually,
the variable we plot is rather Pst as a function of ρst∆x0,
in order to see the departure from the linear theory:

Pmin = Pst − ω2Lexpρst∆x0. (21)

Our interest in such a curve came from a first version of
the experiment, for which it was not possible to measure
the focal pressure. Still, we were able to measure the oscil-
lation amplitude necessary to obtain cavitation for various
initial static pressures, i.e. we could plot a curve such as
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Fig. 20. Static pressure, as a function of the oscillation ampli-
tude for which the minimal focal pressure is equal to a given
value Pmin, multiplied by the static density. Each curve corre-
sponds to a different value of Pmin (in 105 Pa).

those of Figure 20, for the special case Pmin = Pcav, the
cavitation pressure. However this could be done only for
positive static pressures, while we were interested in the
zero amplitude value of the curve, for which static pressure
and cavitation pressure should be the same. Thus simula-
tions are useful to determine which kind of extrapolation
should be used for negative static pressure values.

It is interesting to see that the effect of nonlinearities
is to bend such curves in a concave way (Fig. 20). In ref-
erence [2], the sign of this curvature was used to show
that a linear extrapolation provides an upper bound of
the cavitation pressure. Whether the shock formation af-
fects the nucleation mechanism is an open question. If we
try to plot the same oscillation amplitude as a function
of the static density in the cell (Fig. 21), instead of the
static pressure (Fig. 20), nonlinearities are even more pro-
nounced, as would have been expected from the equation
of state (a concave function of a concave function is still
more concave).

More important for the validation of our numerical
methods is that we later succeeded in measuring at the
focal point the temporal signal itself. As explained below,
this was done in a quasi-spherical geometry and very good
agreement was found between theory and experiments.

3 Experiments

A hemispherical piezoelectric transducer is held against a
clean glass plate. In a first approximation, the glass re-
flects the sound wave so that this is equivalent to a full
spherical geometry. The main interest of the glass plate is
that it allowed us to measure the instantaneous density at
the center from the reflection of light at the glass/helium
interface.
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Fig. 21. Same figure as Figure 20, except that the static pres-
sure is replaced by the corresponding static density. The cur-
vature of the function is enhanced by using this variable.

3.1 Experimental method

Our experimental method is described in full details else-
where [24,25]. Let us only summarize it here. The trans-
ducer radius is 8 mm and its thickness is 2 mm. It res-
onates in a thickness mode at f = 1.019 MHz. At this
frequency, it has a minimum impedance Z = 22 Ω. Its
quality factor is Q = 50 ± 5 when immersed in liquid he-
lium at 25 × 105 Pa. We usually pulse it with bursts of
6 oscillations. Thanks to a dilution refrigerator, we can
run the experiment between 30 mK and 1.5 K, at static
pressures from 0 to 25 × 105 Pa. Figure 22 shows our op-
tical setup: a brass piece holds a lens and a wedged glass
plate in liquid helium. The transducer is pressed against
the plate. Thanks to the lens, the radius of the laser waist
is 7 µm, so that the spatial resolution is about 14 µm. This
is small compared to the size of the acoustic focal region
which is set by the acoustic wavelength at 1 MHz: from
240 µm at 0 Pa to 360 µm at 25 × 105 Pa. The 2 degrees
wedge of the glass plate avoids interferences with reflec-
tions on its front face. A hole in the transducer allows the
transmitted light to be analyzed on the other side of the
cryostat.

We use an Ar+ laser and we carefully focus it at the
center of the acoustic focal region. The transmitted light
is collected by a photomultiplier tube (PMT) and used to
detect nucleation events one by one. The light which is
reflected at the glass/helium interface is separated from
the incident beam by means of a semi-transparent plate.
Its intensity is proportional to the normal reflectance R at
the glass/helium interface, which depends on the refrac-
tion index of helium, i.e. on its density as it is well known
from the Clausius-Mossoti relation. Note that, due to a
large acoustic impedance mismatch, the sound transmis-
sion into the glass plate is negligible, so that the index of
the glass can be considered as constant during the mea-
surement. Furthermore, the acoustic radiation pressure on
the center of the plate is small so that no significant flexion
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lens
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Fig. 22. The experimental set-up which is immersed in liq-
uid helium, inside the experimental cell. At the center of the
hemispherical transducer, the amplitude of the sound oscilla-
tion is measured from the intensity of the reflected light. The
transmitted light is used to detect the possible nucleation of
bubbles or crystallites.

of this plate occurs. Finally, the reflected intensity is not
sensitive to the exact location of the glass/helium inter-
face. A careful calibration (see Refs. [24,25]) allowed us to
extract the absolute amplitude of the acoustic wave at the
center of the acoustic focal region from the ac-component
of the reflected light.

3.2 Comparison with calculations

Figure 23 shows two recordings obtained at 0.1K with re-
spective excitation amplitudes of 9.05 and 20.4 V on the
transducer. In the cell, the static pressure is 9.80×105 Pa,
corresponding to a static density ρ = 158.51 kgm−3. At
20.4 V, the density oscillation is found asymmetric: neg-
ative swings are broader with a smaller amplitude than
positive swings. Moreover, the negative swings are not
symmetric in time. This recording at intermediate pres-
sure and moderate amplitude has been chosen because the
signal shape is not modified by any nucleation of crystals
or bubbles.

We can compare the experimental recordings with the
numerical calculations described in Sections 2.3 and 2.4.
Simulations are performed with the same static pressure
as in the experiment. Then there is only one free pa-
rameter in the simulation (the oscillation amplitude ∆x0)
in order to adjust both the amplitude and the shape of
the signal. The adjustment with the experimental signal
is made only on the central oscillation of the latter. In-
deed, in the experiment, the transducer is excited with
an electrical burst of six oscillations. Longer bursts would
dissipate too much heat in this low temperature experi-
ment. Such short bursts also force nucleation to occur at
a well defined time. This is because the transducer has
a finite quality factor Q ≈ 50, so that the amplitude of
the sound wave increases during the first six periods and
slowly decreases afterwards. The numerical result is used
in the steady regime, after its initial transient, but it does
not matter for the comparison. As can be seen, we find a
very good agreement for numerical oscillation amplitudes
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Fig. 23. Two recordings of sound wave amplitudes respectively
corresponding to excitation voltages 9.05 and 20.4 V on the
transducer. The static density is ρ = 0.15851 g/cm3 (horizontal
line), corresponding to a static pressure Pstat = 9.80× 105 Pa.
The asymmetry of the oscillations is well reproduced by the
numerical calculations performed for ∆x0 = 3 and 6 nm. The
numerical focal density (solid lines) is weighted by a Gaussian
with waist 7 µm. Simulations are performed with 350 mesh
points per wavelength.

∆x0 = 3 and 6 nm: both the asymmetry with respect to
the horizontal axis and the asymmetry in time are well
reproduced by the calculation.

Similar adjustments with several recordings, for differ-
ent oscillation amplitudes and different static pressures,
are summarized in Figure 24. All the points come from
the WENO scheme. This allowed us to check the conver-
gence of the results for a decreasing spatial step δr, thus
beyond the limit of stability of the finite difference scheme
of Section 2.3.1. For ∆x0 < 6 nm, most points have been
obtained with both schemes allowing us to check that they
give the same results for this range of amplitudes. For each
adjustment, the numerical amplitude obtained by fitting
the central oscillation is associated to the experimental
voltage applied to the transducer. In Figure 24, we also
indicate as a second x-axis the estimate given by equa-
tion (29) for the oscillation amplitude ∆x0. This estimate
is obtained independently from the simulations, as will be
detailed below. It is referred to as the experimental oscil-
lation amplitude in the figure. If the estimate and the nu-
merical adjustment were in perfect agreement, one would
expect a slope equal to one in Figure 24. Actually, we
find that both methods give different results, and this will
be discussed below. The adjustment between experimen-
tal signals and numerical simulations yields the following
calibration:

∆x0

V
= 0.30 ± 0.02 nm V−1. (22)

It is interesting to compare this value with an estimate
from the measurement of the electrical characteristics of
the ceramic. Let us summarize the derivation of this esti-
mate, which is given in reference [2]. Indeed, the quality
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Fig. 24. Oscillation amplitude ∆x0 for which the simulation
fits the experimental signal, as a function of the experimental
applied voltage. These results are obtained for different static
pressures, i.e. 0.110 (�), 0.800 (◦), 4.3 (�), 5.1 (♦), 9.8 (�),
15.4 (�), 22 (�), and 25.3 (+) ×105 Pa. We also indicate as a
second x-axis the estimate for the oscillation amplitude given
by (29) which is obtained from independent physical argu-
ments.

factor is simply related to the ratio of the acoustic en-
ergy Eac which is stored during one period to the average
dissipated power V 2/(2Z):

Q = 4πf
Eac Z

V 2
, (23)

and the acoustic energy can be evaluated as follows. Let
us call Rm the mean radius of the transducer and 2e its
thickness. For a resonance in a thickness mode, one can
assume that the sound wave inside the transducer is a
spherical wave with an elastic displacement given by

∆x = ∆x0
Rm − e

r
sin[k(r − Rm)] sin(ωt), (24)

where the wavevector k = π/2e and ω = 2πf .
Since Eac is twice the average kinetic energy in the

transducer [2] and the local velocity is simply the time
derivative of ∆x, one can integrate over the thickness and
write:

Eac = πρtω
2∆x0

2(Rm − e)2e (25)

where ρt is the transducer density. After expressing Eac

in terms of the mass of our transducer, we obtain

Eac =
M

4
ω2∆x0

2 (Rm − e)2

R2
m + e2

3

(26)

where M = 7.510−3 kg. Note that the last factor was
forgotten in reference [2]. Finally, we can express the



C. Appert et al.: Nonlinear focusing of a spherical acoustic wave 545

displacement ∆x0 as a function of the applied voltage:

∆x0 = V

(
2Q

ω3MZ

)1/2
Rm

Rm − e

√
1 +

e2

3R2
m

. (27)

The above equation leads to ∆x0/V = 1.7 nm V−1.
However, this value would correspond to an excitation
with long bursts, when the stored energy saturates. Since
we excite it with bursts of six oscillations only, and since
the phase is such that they start with positive swings, the
maximum pressure is reached (6 + 1/4) periods after time
zero, and the displacement to be considered in our case is

∆x0(6) = [1 − exp(−12π/Q)] exp(−π/2Q) ∆x0 (28)

We find ∆x0(6) = 0.513 ∆x0 with ∆x0 given by equa-
tion (27), and our final prediction is

∆x0(6)
V

= 0.88 nm V−1. (29)

The above value has the right order of magnitude but
it is three times larger than that given by the fit of our
numerical calculations (Eq. (22)). There are several as-
sumptions in the above analysis which can be claimed as
responsible for this discrepancy. We list them starting with
those that we expect to be the most relevant:

a - the resonance in a thickness mode may be coupled to
flexion modes, in which case the efficiency of the trans-
ducer can easily be reduced;

b - there is a small hole in the center of the transducer
which allows the transmitted light to be analyzed;

c - the sound wave in the transducer cannot be strictly
spherical, since there must be edge effects near its free
equator;

d - the reflection by the glass plate is not perfect so that
our closed hemispherical geometry is not strictly equiv-
alent to a full spherical geometry. Once more this
should reduce the efficiency of the transducer;

e - some of the emitted energy is lost in the various pieces
which hold it in the cell;

f - there is also some uncertainty of order 10% in the mea-
surement of Z and Q.

As a result, we consider the value 0.3 nm V−1 as a
very useful calibration of the efficiency of our transducer,
in qualitative agreement with a simple estimate.

4 Conclusions and perspectives

In this article, we have presented analytic and numerical
calculations of the focusing of a spherical acoustic wave.
We have shown that shocks are generated in this geometry
and we have obtained an analytic estimate for the shock
length based on the characteristics method. Then, in order
to perform full numerical simulations of the focusing pro-
cess, we have used a WENO scheme to treat shocks. We
then showed that our method is validated by a compari-
son with experimental measurements in a quasi-spherical

geometry. We have measured a wave distortion which is
well reproduced by our calculation and the analysis of its
dependence on the excitation amplitude has led us to a
very useful calibration of the efficiency of our transducers.

We consider this work as a first step only, and we plan
to extend it to a hemispherical geometry for two impor-
tant reasons. Indeed, in order to study the homogeneous
nucleation of bubbles in stretched fluids (under negative
pressure) or that of crystals in pressurized fluids, we need
to eliminate the effect of walls. This is achieved by us-
ing hemispherical transducers which focus acoustic waves
away from any walls [1,2]. In such experiments, since we
have no probe in the acoustic focal region where nucle-
ation takes place, there is a difficult problem of calibra-
tion of the sound amplitude, for which any reliable calcu-
lations would be very useful. Of course, the calculation in
a hemispherical geometry is much more difficult because
it is two-dimensional (it depends on both the radial dis-
tance and the polar angle). Now that the method is known
for the treatment of shocks, the 2-D calculations should
be tried. Furthermore, we have estimated the amplitude
of nonlinear effects in the hemispherical geometry [2], and
found them to be much smaller than in the spherical ge-
ometry, though lower pressures seem to be reached. This
is interesting in itself and should be tested numerically.
One physical explanation could be that the local condi-
tion at the center is different: by symmetry, the spherical
geometry imposes that the center is a node for the fluid
velocity. In the hemispherical geometry, there is no reason
why it should be so. On the contrary, the sound wave could
even create a flow at the center with non vanishing aver-
aged value. This phenomenon is known in the literature as
acoustic streaming. This symmetry difference might lead
to a different amplitude for the nonlinear effects. It would
be very interesting to study this phenomenon numerically.

Another direction of research would deal with the in-
teraction between shocks and nucleation. Until now, all
theories predicting the nucleation threshold ignore the
presence of very steep gradients. This is not necessarily
justified.

We are grateful to H. Lambaré for his contribution to the cal-
culations in their early stage. C.A. would like to thank Frédéric
Coquel for interesting discussions.

Appendix A: Theoretical prediction
of the shock length by the characteristics
method

A.1 Characteristic equations

The system of Euler equations (2) is of the form

∂tvi + Aij∂rvj = bi, (30)

with v ≡ (ρ, u) and b = (−θρu/r, 0). The matrix

A =

(
u ρ
c2
s
ρ u

)
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has two eigenvalues µ+ = u+cs and µ− = u−cs associated
with the left eigenvectors

l+ =
(
cs/ρ 1

)
,

l− =
(−cs/ρ 1

)
. (31)

If we apply lk on the left of equation (30), we obtain

lk.

[
dv
dt

− b
]

= 0, (32)

where

d

dt
= ∂t + µk∂r.

Thus the derivative d/dt is taken along a curve r = x(t)
with slope dx/dt = µk everywhere (µk itself being a func-
tion of r and t via v). By definition, this curve is called
a k-th characteristic and is denoted by C(k). There is a
whole family of C(k) characteristics, covering the whole
space, each curve being determined, for example, by the
initial conditions.

The leftmost term of equation (32) can be integrated
and the equation becomes

d

dt
[Co(ρ − ln ρ) ± u] + θ

Co(ρ − 1)u
r

= 0, (33)

where again the time-derivative is taken along a charac-
teristic curve.

We call Riemann invariants the quantities

I± ≡ Co(ρ − ln ρ) ± u (34)

appearing in equation (33).

A.2 Lower bound for the shock length

Considering the geometry and notations of Section 2.2.2,
we calculate at what time the first characteristic C(−)

0
emitted by the piston at t = 0 is cut by another charac-
teristic C(−)

i . This is the signature of a shock forming. The
calculation assumes that it is the first shock ever formed
in the cell.

As C(−)
0 is first cut by characteristics C(−) emitted at

early times, and almost parallel to C(−)
0 , we perform the

following change of variable. Instead of r, the location of
any point will be given by its distance η to a point moving
on the characteristic C(−)

0 , taken at the same time:

η = L0 − cstt − r. (35)

The characteristic equations (33) have to be written
in the new coordinates (η, t). Besides, we would like to
eliminate u and ρ from the equations so that the only
remaining unknowns would be the Riemann invariants I+

and I−. Following [7], we have dη/dt = −(u±cs +cst) and
u = (I+ − I−)/2. But unlike in reference [7], the density

ρ and thus the sound velocity can only be expressed in
terms of I+ and I− by inverting the relation

I+ + I− = 2Co(ρ − ln ρ) ≡ 2I(ρ), (36)

leading to

ρ = I−1

(
I+ + I−

2

)
, (37)

with I−1(x) = W (ex/Co), where W is the Lambert W
function [26]. The characteristic equations now read

∂tI+−
{

I+ − I−
2

+ Co

[
I−1

(
I+ + I−

2

)
− 1
]
+ cst

}
∂ηI+

+
2

L − cstt − η

(
I+ − I−

2

)
Co

[
I−1

(
I+ + I−

2

)
− 1
]
=0

(38)

∂tI−−
{

I+ − I−
2

− Co

[
I−1

(
I+ + I−

2

)
− 1
]
+ cst

}
∂ηI−

+
2

L − cstt − η

(
I+ − I−

2

)
Co

[
I−1

(
I+ + I−

2

)
− 1
]
=0.

(39)

We search for a solution under the form

I+(η, t) =
∞∑

m=0

I
(m)
+ (t)ηm,

I−(η, t) =
∞∑

m=0

I
(m)
− (t)ηm. (40)

We choose the lowest order terms I
(0)
+ and I

(0)
− equal to

their value in the fluid at rest I
(0)
+ = I

(0)
− = Co(ρst−lnρst).

Then if we write equations (38–39) at lowest order, all the
terms in the second equation vanish. In the first equation,
both the first and last terms disappear. The remaining
term leads to

I
(1)
+ = 0. (41)

This is not very surprising, as I+ corresponds to the char-
acteristics moving from the fluid at rest into the perturbed
region. Taking (39) to the next order, we obtain an equa-
tion for I

(1)
−

dI
(1)
−

dt
+

1
t − L0/cst

I
(1)
− + K

[
I
(1)
−
]2

= 0, (42)

where

K ≡ 1
2

(
2ρst − 1
ρst − 1

)
. (43)

This equation can be solved using a change of variables
I− ≡ 1/I

(1)
− . The solution yields

I
(1)
− (τ) =

I
(1)
− (0)

(1 − τ)
[
1 −KL0

cst
I
(1)
− (0) ln(1 − τ)

] , (44)
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with
τ ≡ cst

L0
t. (45)

We have now to determine the initial value I
(1)
− (0). It refers

to small t, rather than t exactly equal to zero.
To determine its value, we calculate for small time t

the variation of I− between point A = (r, t) = (L0−cstt, t)
which sits on the first characteristic C(−)

0 , and point B =
(r, t) = (rp(t), t) where rp(t) is the location of the piston
at time t.

At A, the fluid is at rest. We have I− = I
(0)
− and η = 0.

At B, for t small, r � L0 and thus η � −cstt. Besides,
I− = Co(ρ − ln ρ) − u where u is equal to the velocity of
the piston vp(t) = −∆v0 sin(ωt) � −∆v0ωt. If we expand
ρ(rp(t), t) = ρst+αt (where α is unknown), then replacing
into I− and expanding in t yields

I− = Co(ρst − ln ρst) + Coαt − Co
α

ρst
t + ∆v0ωt

= I
(0)
− +

(
cst

ρst
α + ∆v0ω

)
t.

Comparing this relation with the expansion

I− = I
(0)
− + ηI

(1)
− � I

(0)
− − cstI

(1)
− t, (46)

gives

I
(1)
− = − α

ρst
− ∆v0

cst
ω. (47)

On the other hand, an expansion of (37) in powers of η
gives

αt = ρstρst =
cst

ρst

(
η
I
(1)
−
2

)
t. (48)

The elimination of α between the above two equations
yields

I
(1)
− (t = 0) = −2

∆v0ω

cst
. (49)

The time at which I
(1)
− becomes infinite (see Eq. (44))

gives an upper bound tshock for shock formation. It is only
an upper bound because some other terms of the expan-
sion (40) in η may explode before I

(1)
− . We find

tshock ≤ L0

cst

{
1 − exp

[
− c2

st

2L0ω∆v0

ρst − 1
ρst − 1

2

]}
≤ L0

cst
.

(50)
As the corresponding shock distance rshock is measured
from the center of the sphere, a lower bound for rshock is

L0 ≥ rshock ≥ L0 exp
[
− c2

st

2L0ω∆v0

ρst − 1
ρst − 1

2

]
> 0. (51)

All the above calculations are valid for small η, i.e.
only for characteristics not too far from C(−)

0 . These are
the characteristics emitted by the initial motion of the
piston.

Appendix B: The WENO scheme in more
details

To reconstruct the numerical flux (F
n

i+1/2) evaluated at
the cell interface (ri+1/2) (see Eq. (17)), a scheme with a
discontinuity-capturing feature must be employed to pre-
vent oscillations in the vicinity of the shock wave. Follow-
ing a previous study [23] on the capability of some recent
high-order shock capturing schemes to recover basic fluid
mechanics phenomena, the numerical flux has been eval-
uated by means of a Essentially Non-Oscillatory (ENO)
family scheme [20–22]. The numerical flux is approximated
using polynomial reconstruction over several grid points
(the set of these points is named “stencil”) around the
cell boundaries. We shall now describe this reconstruction
of the fluxes in details.

As in many schemes devoted to computations involving
shocks, the WENO scheme uses the Riemann invariants
as variables. Computing the evolution of these variables
requires to know their values not only on integer space
coordinates, but also at some intermediate locations. An
extrapolation from integer positions is thus necessary and
this is where the fundamental idea of WENO schemes
comes in.

• Change of variables:

For simplicity and accuracy purposes, the discretiza-
tion of the Euler flux is based on a polynomial reconstruc-
tion applied on the local characteristic variables (Riemann
invariants, see Sect. 2.2.1) since the equations recover the
scalar form. Then, the propagation directions can easily be
followed in the characteristic plane. In order to perform
this change of variables, the method is the same as in
Appendix A. First one linearizes the Euler equations and
finds the eigenvectors of the Euler flux Jacobian evaluated
at the cell interface ((∂F/∂Q)i+1/2). Note that, as we are
now using the Euler equations in conservative form (3)
instead of (2), the Jacobian differs from the one given in
Appendix A (matrix A), and now reads

∂F/∂Q =


 0 1

−q2

ρ2
+ c2

s 2
q

ρ

.


 (52)

In order to compute (∂F/∂Q)i+1/2 then the eigenvalues
(µk

i+1/2), and the left (lki+1/2) and right (rk
i+1/2) eigenvec-

tors (k ∈ {1, 2})– the conservative variables Qn
i must be

evaluated at the cell interface ri+1/2. As these variables
do not vary linearly in the cell if a shock is present, one
cannot use a simple arithmetic or geometric average, but
should rather use a Roe average, whose description can be
found in [27]. This ensures the consistency of the scheme,
i.e. that (∂F/∂Q)i+1/2 converges towards (∂F/∂Q)i when
δx tends to zero.

The numerical Euler flux is then projected onto the
left eigenvector matrix li+1/2 = (l1i+1/2, l

2
i+1/2). The scalar

ENO reconstruction procedure is applied to the projected
fluxes [21]. In the physical domain, the numerical Euler
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Fig. 25. Sketch of all the stencil candidates to recover a third-
order reconstruction (p = 3) at the cell interface ri+1/2. The

eigenvalue µ stands for the extrapolated value µk
i+1/2.

flux is then obtained by a projection onto the right eigen-
vector matrix (ri+1/2 = l−1

i+1/2) and reads:

F i+1/2 =
2∑

k=1

[
fENOk

i+1/2 · rk
i+1/2

]
(53)

where fENOk
i+1/2 stands for the scalar ENO reconstruc-

tion, which will be defined below.

• Extrapolation of variables at non-integer
locations – the core of (W)ENO schemes:

First, we shall present the strategy used in ENO
schemes [21]. For a given non integer location, there are
several ways to perform the extrapolation, depending on
from how many integer points it will be performed, and
how these points will be located with respect to the non-
integer one. The set of these points is called a stencil. Fig-
ure 25 illustrates the different possible choices for a sten-
cil of length p = 3. Simple finite difference schemes use
a stencil defined once and for all. Here, only the length p
of the stencil is fixed for a given simulation. All the p + 1
possible locations are considered as candidates, provided
that there is at least one point adjacent to the non-integer
point (see again Fig. 25).

If p denotes the order of the reconstruction, the ENO
procedure [21] chooses the most regular stencil among the
p + 1 stencil candidates. As an example for p = 3, we
can see all the stencil candidates in Figure 25. A first se-
lection among the p + 1 stencil candidates is performed
according to the sign of the two eigenvalues (µk

i+1/2): one
keeps the p leftmost stencils for the positive or null eigen-
values and the p rightmost otherwise (Fig. 25). Indeed,
the sign of the eigenvalue gives the propagation direction
of the associated characteristics, and thus of the relevant
information.

The regularity of the function on each of the p re-
maining stencils is measured by the undivided difference
table [21] evaluated on each stencil and the most regular
stencil is chosen among all the p stencil candidates. Of
course, this stencil may be different at each time step, for
each location, and for each eigenvalue µk

i+1/2 (k ∈ {1, 2}).

Table 3. The constant coefficients ζp
j of the ENO reconstruc-

tion up to 5th-order.

p m j = 0 j = 1 j = 2 j = 3 j = 4
1 –1 1

0 1
2 –1 –1/2 3/2

0 1/2 1/2
+1 3/2 –1/2

3 –2 1/3 –7/6 11/6
–1 –1/6 5/6 1/3
0 1/3 5/6 –1/6

+1 11/6 –7/6 1/3
4 –3 –1/4 13/12 –23/12 25/12

–2 1/12 –5/12 13/12 1/4
–1 –1/12 7/12 7/12 –1/12
0 1/4 13/12 –5/12 1/12

+1 25/12 –23/12 13/12 –1/4
5 –4 1/5 –21/20 137/60 –163/60 137/60

–3 –1/20 17/60 –43/60 77/60 1/5
–2 1/30 –13/60 47/60 9/20 –1/20
–1 –1/20 9/20 47/60 –13/60 1/30
0 1/5 77/60 –43/60 17/60 –1/20

+1 137/60 –163/60 137/60 –21/20 1/5

The scalar ENO reconstruction is then applied on
this specific stencil by means of the following polynomial
development:

fENOk,m

i+1/2 =
p−1∑
j=0

ζp,k
j lki+1/2 · F (Qi+m+j) (54)

The integer m refers to the index of the leftmost point
of the chosen stencil. The sum goes over all the points
of this stencil. One recognizes the projection of the fluxes
onto the left eigenvectors, that allows to go from physical
variables to characteristic variables. The constant coeffi-
cients of the polynomial (ζp,k

j ) are calculated in order to
recover a scheme of order p in regular regions. The values
of ζp

j can be found in Table 3 up to p = 5.
Using this generic ENO scheme (53, 54), the Euler flux

derivative is estimated with a pth-order of accuracy at best
(in regular regions). However, when the stencil used at
the cell interface ri+1/2 is different from the one at ri−1/2

(which is the case in strong gradients or shock regions),
the order of accuracy decreases.

One of the drawbacks in the generic ENO scheme is
the necessity to check and choose between p stencil can-
didates, which is quite CPU consuming. To overcome this
disadvantage, we preferred using a Weighted ENO scheme
(WENO) since it improves the order of accuracy of the
generic ENO scheme by using a weighted combination of
the p possible stencils. The weights [22] depend on the
degree of regularity of the solution. In regular regions,
they can be computed to achieve (2p−1)th-order of accu-
racy whereas in regions with discontinuities they are set
to zero, leading to a standard ENO scheme. The WENO
flux is estimated by:

fWENOk

i+1/2 =
p−1∑
n=0

ωn fENOk,n−p+1

i+1/2 (55)
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Table 4. The constant coefficients Cp
n of the WENO recon-

struction up to 5th-order, for a positive eigenvalue.

p n = 0 n = 1 n = 2 n = 3 n = 4

2 1/3 2/3

3 1/10 6/10 3/10

4 1/35 12/35 18/35 4/35

5 1/126 10/63 10/21 20/63 5/126

where fENOk,n−p+1
i+1/2 is the generic ENO reconstruction

given by equation (54) and ωn are the weights defined
as follows:

p−1∑
n=0

ωn = 1, (56)

ωn =
βn

p−1∑
l=0

βl

with βn =
Cp

n

(ε + ISn)2
(57)

ε is a small positive number to prevent the denominator
from vanishing (hereafter we set ε = 10−6) and ISn is a
measure of the flux function regularity for the nth ENO
stencil candidates. The evaluation of the smoothness mea-
surement (ISn) is based on the undivided-differences and
the ISn formulation can be found in [22]. It is such that a
more regular curve gives a smallest ISn, and thus a largest
weight βn. The Cp

n coefficients are reported in Table 4 up
to the order p = 5, for positive eigenvalues at the cell
interface (µk

i+1/2 > 0). For the negative eigenvalue case,
the WENO coefficients can be obtained by symmetry with
respect to the considered cell interface (ri+1/2).

Using this WENO scheme (55-57), the Euler flux
derivative is estimated with a (2p − 1)th-order of accu-
racy at best (in regular regions). Moreover, let us under-
line that, if the solution is regular enough, the WENO
procedure recovers a high-order centered scheme, which is
of course non-dissipative.

If the length of the stencil is p = 3 which is our case, the
order of the scheme in regular regions is then 5. However,
as the order of the scheme drops to 1 in shock regions
as for any other scheme it is not interesting to increase
too much the order in regular regions. As the scheme is
less dissipative with p = 4 in the non regular regions,
this could even make the results worse (indeed, in our
case, p = 4 gave less satisfying results), since spurious
oscillations may occur.
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