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Dislocation densities and lengths in solid 4He from elasticity measurements
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Measurements on solid 4He show large softening of the shear modulus due to dislocations, behavior which
has been described as giant plasticity. Dislocation networks may also be responsible for the unusual behavior
seen in torsional oscillator and flow experiments. However, previous estimates of dislocation densities vary by
many orders of magnitude, even in single crystals grown under similar conditions. By measuring the temperature
and frequency dependencies of the elastic dissipation, we have determined dislocation densities and network
lengths in 4He single crystals, both in coexistence with liquid and at higher pressures, and in polycrystals grown
at constant density. In all cases, dislocation lengths are much longer and the networks are less connected than
previous estimates. Even in polycrystals, the dislocation network is far too sparse to explain the torsional oscillator
results in terms of superfluidity in a dislocation network.
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Quantum effects are very important in solid helium and lead
to unusual phenomena. The elastic properties of solid 4He1–3

are strongly dependent on dislocations, which move freely in
this quantum crystal. This can produce extremely large shear
modulus changes described as “giant plasticity.”3,4 Torsional
oscillator (TO) experiments on solid 4He also show anomalous
behavior below 200 mK,5 which has been taken as evidence of
supersolidity. However, this interpretation has been challenged
by recent calculations and experiments,6–10 which show that
elastic effects in TOs are larger than previously assumed,
suggesting that the anomalies may be elastic effects involving
dislocations.

Annealing and plastic deformation2,11,12 affect both elastic
and TO behaviors, confirming that dislocations are involved.
At high temperatures, dislocations are strongly pinned at
intersections but between these nodes they can move, which
reduces the shear modulus. At low temperatures, 3He impu-
rities weakly pin them and restore the intrinsic stiffness. In a
quantum solid, dislocations can have unique properties. Recent
measurements on 4He4 showed that they can move freely in the
basal plane, even at stresses as low as 10−9 bar. This extraordi-
nary mobility may reflect delocalization of kinks; this would
eliminate the Peierls barrier which limits dislocation motion in
conventional crystals. Path integral Monte Carlo simulations,13

show that dislocations may have superfluid cores, which
provides a possible mechanism for supersolidity14 and allows
phenomena like superclimb.15 Recent experiments16,17 showed
unusual flow, interpreted in terms of a Luttinger liquid in
dislocation cores. The decoupling in a TO or the flux in a
flow experiment depends on dislocation density � and on the
network’s connectedness. High-density networks have more
intersections so the distance L between nodes is smaller. The
combination �L2 is a geometric parameter that characterizes
the network’s connectedness. In a simple cubic network
�L2 = 3, independent of dislocation density. Smaller values
suggest additional pinning, while larger values imply that
dislocations are aligned to avoid intersections.18

Despite their importance, and many experiments probing
dislocation effects in helium, previous estimates of � vary

by six orders of magnitude. Some of this must reflect real
differences arising from growth and deformation, but even
in single crystals grown under similar conditions, reported
densities vary by more than four orders of magnitude [6 ×
109 cm−2 (see Ref. 19) to 3 × 105 cm−2 (see Ref. 20)]. Even
lower values, below 700 cm−2, were found in crystals grown
from the superfluid.21 X-ray topography22 has shown low-
angle sub-boundaries in 4He crystals, but individual disloca-
tions could not be resolved so � and L could not be determined.
The most detailed analyses applied the Granato-Lucke model23

to ultrasonic measurements of sound speeds in single crystals
grown from the normal liquid.20 This treats dislocations as
damped vibrating strings, driven by applied stress, and gave
� ≈ 106 cm−2 and L ≈ 5 μm. The corresponding values of the
network parameter �L2 ranged from 0.1 to 0.2, but with a large
uncertainty due to the unknown crystal orientations. However,
nearly all TO experiments involved freezing at constant
density. The large pressure changes and plastic deformation
during such blocked capillary growth are expected to produce
polycrystals with higher defect densities, but there have been
no comparable ultrasonic measurements on such crystals and
their dislocation densities are essentially unknown.

The effect of dislocations is simplest at low frequencies,
where inertia and damping can be neglected. In this regime, the
reduction of the shear modulus is proportional to �L2, but does
not depend on � or L separately. A dislocation’s contribution
to strain is proportional to L2 so a crystal with a few long
dislocations can be softer than one with many short ones.
The values of �L2 inferred from low-frequency experiments
are larger than those from ultrasonic measurements. TO shear
modulus measurements at 331 Hz24 gave �L2 ≈ 2 and recent
measurements in the kilohertz range1,2 give similar values.

Although dislocation densities cannot be determined, even
approximately, from the low-frequency shear modulus alone,
the dissipation 1/Q provides additional information. A moving
dislocation experiences a damping force B proportional to
its speed v. Longer dislocations move faster and produce
more dissipation. By measuring both modulus and dissipation,
� and L can be separately determined, if B is known.
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In contrast to previous estimates of L, which involved the
frequency dependence20 near the dislocations’ resonance
(around 12 MHz for L = 5 μm) or their breakaway from
3He impurities,25 we show directly that the dissipation at
high temperatures is due to intrinsic dislocation damping from
thermal phonons and use this dissipation to find L.

Our measurements were made in an optical cell, allowing
us to determine crystal orientations from their growth facets.4

Single crystals were grown at temperatures as low as 20 mK,
using either natural 4He (nominal 3He concentration 300 ppb)
or isotopically pure 4He (0.4 ppb 3He). Two shear piezoelectric
transducers (area A = 1 cm2) were mounted in the cell with
a gap D = 0.7 mm. An ac voltage V (between 200 Hz
and 16 kHz) was applied to one transducer, generating a
displacement d15V and a shear strain ε = V d15

D
in the helium.

The stress σ was determined from the current generated
on the opposite transducer. The effective shear modulus
μ = σ

ε
is given by a combination of the elastic constants Cij

which depends on the crystal’s orientation.4 Dissipation was
determined from the phase angle φ between stress and strain:
1/Q = tan φ.

Figure 1 shows the (a) shear modulus and (b) dissipation
at 3 kHz in crystal X21, grown from natural purity 4He
at 1.35 K. The modulus measured at low strain (ε = 10−9)

FIG. 1. (Color online) (a) Shear modulus and (b) dissipation
measured at 3 kHz in a standard purity (300 ppb 3He) crystal X21
grown at 1.35 K. Data are shown for two different strains, ε = 10−9

(noisy blue curves) and ε = 10−7 (red curves).

increases toward a “stiff” value at the lowest temperatures.
We have shown4 that only C44 changes (as expected for
dislocations gliding in the basal plane) and we calibrated the
piezoelectric coefficient (d15 = 0.95 Å V−1) using a crystal
oriented so the shear modulus was nearly independent of C44.
The low-temperature modulus (126 bar) agrees with the value
(the circle on the vertical axis) calculated from the orientation
and the known elastic constants of helium.26–28 At higher
temperatures, the modulus decreases by more than 50%. This
softening, and the associated dissipation peak in Fig. 1(b),
are due to unpinning of dislocations from 3He impurities.1

In the high-amplitude ε = 10−7 data, the effects of 3He are
almost eliminated since the large stress depins dislocations.
The modulus in the soft state is nearly constant between 0.1
and 0.6 K.

Above 0.6 K, the impurity pinning is insignificant so
the modulus and dissipation are independent of strain and
the 1/Q reflects the dislocation damping caused by thermal
phonons. These scatter from dislocations’ static strain fields
(anharmonicity, which gives a damping coefficient B ∝ T 5)
or from mobile dislocations (“fluttering,” which gives a larger
B ∝ T 3). A dependence B ∝ T n has been inferred from
previous experiments but with a range of values for the
exponent n. Ultrasonic experiments20,29 did not extract n from
direct fits but were consistent with values between 1.5 and
3. Internal friction experiments at 10 and at 78 kHz30 gave
n in ranges of 2.1 to 2.8 and 1.1 to 1.7, respectively. TO
measurements at 331 Hz24 did extract n directly from a fit
to the dissipation but gave n ≈ 2, rather than the expected
T 3 dependence. Although the value of n was not clear, the
magnitude of B in ultrasonic experiments20 was close to that
expected for fluttering.31

Our measurements provide a stringent test of the dissi-
pation mechanism (since dislocations give 1/Q ∝ ωB) and
of whether the damping is due to fluttering (which predicts
B ∝ T 3). In Fig. 2(a), we plot the high-amplitude dissipation
data from Fig. 1(b) as a function of T 2, T 3, and T 5. It is
clear that at low temperatures 1/Q ∝ T 3. Figure 2(b) shows
dissipation at 1.5, 3, and 9 kHz for this crystal, plotted versus
ωT 3. At low temperatures, the data for the three frequencies
collapse onto a single linear curve, demonstrating that 1/Q is
proportional to ωT 3.

The Granato-Lucke23 model describes the elastic effects
of dislocations. Our measurements are at frequencies well
below their resonance (inversely proportional to their length
and ≈60 kHz for dislocations spanning the gap between
transducers, L ≈ 1 mm). In this regime, the dislocation strain
has a relaxation form with real and imaginary (dissipative)
parts:

εdis

εel
= R��L2 1 − iωτ

1 + (ωτ )2
, (1)

where R is an orientation factor (0 � R � 0.5) giving shear
stress in the dislocations’ glide direction, and � = 4(1−ν)

π3 ≈
0.09. The relaxation time is τ = BL2

π2C
, where C = 2μelb

2

π(1−ν) , b

is the Burgers vector (3.7 × 10−10 m), and ν is Poisson’s
ratio.

The total strain is the sum of elastic and dislocation contri-
butions, so dislocations reduce the intrinsic shear modulus μel
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and introduce dissipation:

μel

μ
= εel + εdis

εel
= 1 + R��L2 1 − iωτ

1 + (ωτ )2
. (2)

The maximum softening, at low temperatures where the
dislocation damping is small (ωτ �1), is

�μ

μel
= μel − μ

μel
= R��L2

1 + R��L2
, (3)

while the dissipation in this regime is

1

Q
= �μ

μel
ωτ = �μ

μel
ω

BL2

π2C
. (4)

The dislocation damping is expected to be dominated by
fluttering, which gives31

B = 14.4kB
3

π2h̄2c3
T 3, (5)

where c is the Debye sound speed. This expression predicts
damping that agrees (within a factor of two) with values
from ultrasonic measurements.20 For crystals grown at low
temperatures, it gives B ≈ 1.49 × 10−8T 3 Pa s. The ωT 3

dissipation in Fig. 2(b) confirms that this is the dominant
damping mechanism.

FIG. 2. (Color online) Dissipation at strain ε = 10−7, in an
isotopically pure (0.4 ppb 3He) crystal (X15c) grown at 1.37 K.
(a) 1/Q at 3 kHz vs T n for n = 5 (upper, green curve), n = 3 (middle,
blue curve), and n = 2 (lower, red curve). (b) 1/Q at 1.5 kHz (red
curve), 3 kHz (blue), and 9 kHz (green) vs ωT 3. The dashed line is
an extrapolation of the linear low-T behavior.

FIG. 3. (Color online) Dissipation at frequencies from 1.5 to
9 kHz in four different crystals, plotted vs ωT 3.

At high temperatures and frequencies [e.g., for ωT 3 >

104 in Fig. 2(b)], the dissipation deviates from this linear
behavior because of the (ωτ )2 term in the modulus [see
Eq. (2)]. At higher temperatures, the dissipation will go
through a maximum (for ωτ ∼ 1) and then decrease as ωτ

increases. For ωτ � 1, dislocations are essentially immobile
and do not contribute to dissipation or soften the crystal.
This is why ultrasonic measurements made at high frequency
and temperature give the intrinsic elastic constants of solid
helium,26–28 unaffected by dislocations.

Figure 3 compares the dissipation for three types of
crystals.4 The crystals grown at 0.60 and 0.02 K remained in
coexistence with superfluid at all temperatures. The second
type, grown above 1.3 K, solidified completely at higher
pressure. The last type was a 29 bar polycrystal grown using
the blocked capillary technique. Each has 1/Q ∝ ωT 3 at low
temperatures but the slopes vary, indicating different lengths
L. We can calculate R from our known crystal orientations,4

Eqs. (3)–(5), and extract values of � and L from the
modulus change �μ/μel and dissipation at low temperatures.
Table I shows these values, and the network parameter �L2

for crystals grown in the three ways described above, and from
different purity 4He.

Several assumptions affect our values of � and L. The
value of C in Eq. (4) assumed isotropy and did not include
the dislocation core energy. Equation (5) for the damping
also assumes isotropy for phonon scattering but more precise
calculations of C and B would not change the relative lengths
in different crystals. We also assumed a single length L,
with which we could reproduce the essential features of our

TABLE I. Dislocation parameters.

Crystal TF (K) 3He (ppb) L (μm) � (cm−2) �L2

X15c 1.37 0.4 98 4.2 × 105 40.3
X18 1.32 0.4 98 5.9 × 105 56.6
X21 1.35 300 175 1.2 × 105 36.8
X15a 0.60 0.4 229 7.2 × 104 37.8
X15b 0.02 0.4 231 3.2 × 104 17.1
Polycrystal (29 bar) 300 59 5.4 × 105 18.8
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data. In the future, we will analyze the complete temperature
and frequency dependence of both dissipation and modulus,
including effects of a distribution of dislocation lengths.
However, including a distribution will not drastically change
the values of � and L, nor how they vary with crystal
growth technique. Note that our measurements (like previous
elastic and ultrasonic measurements) are sensitive only to
mobile dislocations. Dislocations with glide planes in different
directions may not be mobile; � and L in Table I refer only to
dislocations that glide freely in helium’s basal plane. Finally,
the Granato-Lucke model is classical and does not consider
possible dislocation damping due to zero point motion, which
might be important when thermal damping can be neglected. It
is difficult to measure absolute phase shifts needed to observe
nonthermal damping, but we saw no evidence for significant
damping at low temperatures.

The values of � in our single crystals are comparable to val-
ues previously inferred from some ultrasonic experiments,20

suggesting that differences in cell geometry and growth
technique do not dramatically change dislocation densities.
However, network lengths L in our crystals are as much as
50 times longer. This may reflect the higher quality of single
crystals grown from the superfluid at low temperatures, since
our 20 mK crystals had the lowest � and those grown above
1.3 K had the highest. Our values of �L2 (17 to 57)
are much larger than expected for simple well-connected
networks and at least two orders of magnitude larger than the
ultrasonic values.20,21 These extremely large values indicate
that dislocations are aligned in some way that minimizes
intersections,4 probably in planar arrays18 like the low-angle
grain boundaries observed in x-ray tomography.22

The very large lengths also mean that dislocations vi-
brate with large displacements and velocities. For a strain

ε ∼ 10−7, the maximum displacement of our longest disloca-
tions (L = 230 μm) is ξmax = 4σbL2

π3C
∼ 1.5 μm. The dislocation

then sweeps out an area ∼4 × 10−10 m2 and would encounter
about a thousand 3He atoms in the natural purity crystals.
However, the dissipation has the same ωT 3 dependence in the
natural and isotopically pure crystals, so impurity scattering
is not a significant source of dislocation damping at high
temperatures. At a frequency of 9 kHz, ξmax = 1.5 μm
corresponds to vmax = ωξmax ∼ 0.1 m s−1. This is significantly
faster than the velocity of ballistically moving 3He impurities
(v3 ∼ 2 mm s−1) so it is possible that mobile 3He cannot easily
bind onto and pin such rapidly moving dislocations.

The blocked capillary polycrystal grown had higher dis-
location densities and shorter lengths than single crystals, as
expected, but the range of � is small compared to previous
estimates. In the polycrystal, � ∼ 5.4 × 105 cm−2, only an
order of magnitude larger than in the highest quality single
crystals. At this density, less than one atom in 109 reside in the
dislocation cores.

Our measurements have confirmed that the damping of
dislocations in solid helium is dominated by scattering of
thermal phonons, which produces a dissipation proportional to
T 3 at low temperatures. This allowed us to extract consistent
values of dislocation densities and lengths in single crystals
and polycrystals. The densities are far smaller than the largest
values sometimes quoted for solid helium (6 × 109 cm−2),19

which essentially rules out the flow along the superfluid cores
of a network of dislocations as the source of the apparent
decoupling in torsional oscillator measurements.
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