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THE EXPERIMENTAL CELL AND THE

TRANSDUCER CALIBRATION

Our experimental cell is a 5 cm3 hexagonal hole in a 15
mm thick copper plate, which is closed on its back and
front faces by glass windows sealed with Indium rings
(see Figure 1) and stainless steel clamps. It is filled with
4He through a thin Cu-Ni capillary (the ”fill line” whose
inner diameter is 0.4 mm). It stands at least 62 bar
inner pressure. Inside this cell, we have glued two piezo-
electric transducers [11] in order to shear crystals that
are grown in the gap between them. The thickness of
this gap was d = 1.2 mm in a first cell used for crys-
tals from X1 to X6 and d = 0.7 mm in the second cell
shown on Figure 1, where the transducers are glued on
their whole surface area in order to avoid any possible

FIG. 1: The second cell used for this experiment is a 5 cm3

hole in a 15 mm thick Copper plate that is closed with two
glass windows sealed with stainless steel clamps and Indium
rings. The cell plate is attached to a dilution refrigerator
which allows measurements down to 15 mK. 4He crystals are
grown inside the 0.7 mm gap between two piezo-electric trans-
ducers by injecting liquid through a 0.4 mm capillary on the
top (see Figure 2). The two transducers allow applying a ver-
tical shear and measuring the resulting stress across the thin
crystal in the gap. A first cell was used for this experiment,
where the gap was 1.2 mm thick. The optical access allows
determining the crystal orientation (see Figure 3).

bending near their edges. Figure 2 shows the ”loading
curve”, that is the stress measured as crystallization pro-
ceeds from the bottom to the top of the transducers.
Note that this curve shows no particular singularity at
half loading when the liquid-solid interface passes over
the two soldering points of grounding leads that are vis-
ible on Figure 3. One of these soldering points is on the
front and the other on the back so that there is no sig-
nificant variation in the gap thickness there. Figure 3a
shows the shape of a seed during fast growth, which is
used to determine the crystal orientation before the crys-
tal is regrown more slowly over the entire cell including
the gap between the two transducers (Figure 3b). An
ac-voltage (1 mV to 1V at a frequency in the range 1
to 20 000 Hz) is applied to one transducer, which pro-
duces a vertical displacement u, consequently a strain
ε = u/d and finally a stress σ = µε on the other trans-
ducer (µ is the shear modulus of the He crystal). The
displacement u is very small - of order 1 Angstrom per
Volt - and it needs to be accurately calibrated in order
to obtain an absolute value for µ. The stress generates
charges, which are collected as a current whose ampli-
tude and phase are measured with a lock-in amplifier.
We also use current pre-amplifiers (femto-lca-20k-200m
and femto-lca-200-10g) as was done by Day and Beamish
who introduced this method in their original work [2].
We improved their method by calibrating the transduc-
ers’ response in the following way. We first measured the
cross talk between transducers. Although the transducer
sides facing each other are grounded, there is a small
cross talk between them, which mainly comes from ca-
pacitive coupling and needs to be accurately known as
a function of frequency. It is independent of pressure
and temperature in our working conditions so that we
measured it with the cell full of liquid. As explained in
the main text, we then used a particular crystal (X3),
which was oriented with a [0001] axis tilted by an angle
very close to 45◦ from vertical. For this crystal, the re-
sponse to a vertical shear depends mainly on the three
elastic coefficients c11, c13 and c33, with a negligible con-
tribution from c44 and c66. The coefficients c44 and c66
contribute to the shear modulus in all directions except
for a shear at 45◦ from the [0001] axis. We then veri-
fied that the measured shear modulus was independent
of temperature in our geometry for this particular crys-
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FIG. 2: The loading curve is the shear stress measured in the
cell as a function of time during the growth of the crystal in
the gap, which takes about 3 minutes in this case. Near the
mid height of the transducers, one sees two point contacts for
the grounding of the transducer surfaces that face each other.
One of these contacts is on the front and the other on the back
side of the transducer, so that there is no significant variation
in the gap thickness there. Thanks to this design, the loading
curve shows a linear variation with height with no singularity
at half loading.

tal (see Fig. 3 in the main text). Finally, we used the
known values [7, 8] of c11, c13 and c33 to obtain the piezo-
electric coefficient we needed. In the first cell it was d15
= 0.88 Angstrom/Volt independently of T up to 1 K and
0.95 in the second cell, about 5 times less than at room
temperature. The shear modulus is µ = Id/(ωd215Aσ) ,
where V is the voltage applied to the first transducer, A
is the transducers’ area (1.2 cm2 in the first cell and 1
cm2 in the second one), I is the current generated by the
stress on the second transducer. In order to know I, a
careful calibration of the gain of our amplifiers needed to
be done as a function of frequency. In the end we ob-
tained the absolute amplitude of the real and imaginary
part of the response, that is the shear modulus µ and the
dissipation 1/Q = tan(φ) where φ is the phase delay of
the response. For each crystal orientation, we calculated
µ as a function of the 5 elastic coefficients (see below),
so that we could extract the variation of c44.

SAMPLE PREPARATION

The quality and the purity of samples are very impor-
tant in this experiment. The crystal quality depends on
growth conditions as previously explained by Sasaki et al.
[3] and by Pantalei et al. [4]. The best crystals, called
”type 1”, are grown relatively slowly (up to 50 µm/s in

this experiment, 0.3 µm/s in the experiment by Rojas
et al. [5]) at low T , usually around 20 mK, by pres-
surizing superfluid 4He up to the liquid-solid equilibrium
pressure Peq = 25.3 bar. After nucleation on a random
site, a crystal seed grows, falls down to the bottom part
of the cell and the growth proceeds at constant T and P
thanks to the mass injection into the cell through the fill
line where helium remains liquid. This fill line is ther-
mally anchored along its path to the cell, so that growth
does not warm up the cell even at temperatures less than
20 mK in this experiment. At the equilibrium or during
slow growth, the crystal occupies the lower part of the
cell with a horizontal surface and some capillary effects
where it touches walls, as would a non-wetting liquid in
a little glass bottle. This is because the growth dynam-
ics proceeds with negligible dissipation and because the
temperature is highly homogeneous so that there are no
temperature gradients, only a gravity field [1]. In order
to fill the cell with solid as much as possible, one has to
place the orifice of the fill line at the highest point in the
cell. For this purpose, our cells are tilted. One also has
to avoid corners or slits where liquid would be trapped
because of capillary effects. Finally, it is also important
to avoid the presence of dust particles on walls because
they are efficient pinning sites for the liquid-solid inter-
face moving up. If one stays at Peq at the end of the
growth, there necessarily remains some liquid in corners
or slits, in our case at the junction between the glass
windows and the cell body. As a consequence, the 3He
impurities may be trapped in this liquid if growth takes
place at low T , because their solubility in the liquid is
much higher than in the solid [4]. According to our ex-
perience, it is also possible to expel all 3He impurities in
this adjacent liquid by applying a large ac-stress on the
crystal at low T , because the resulting force shakes the
dislocation and detaches them from the 3He atoms that
are known to travel ballistically through the crystal lat-
tice so that they reach liquid regions in a short time and
stay trapped there.

We use a different growth procedure for ”type 2” crys-
tals. We grow them again at constant T and P from the
superfluid liquid, but at 1.4 K. When the cell is as full
of solid as possible, we block the fill line by increasing
the pressure outside and we cool down to 1 K at con-
stant volume. Due to the decrease of Peq from 26.1 bar
at 1.4 K to 25.3 bar at 1 K, the rest of the liquid in the
cell crystallizes but the quality of the final crystal, which
occupies the whole cell now, is expected to be damaged
by stresses. The advantage of this method is that it pro-
duces a crystal in which the 3He concentration is known,
equal to the initial concentration in the gas cylinder, and
stays at this value during temperature cycles afterwards.
Since it is easy to melt or grow crystals by manipulating
valves outside the refrigerator, we could melt any ”type
1” crystal to a small seed and regrow it as a ”type 2”
crystal or vice versa.
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FIG. 3: Two photographs showing the growth shape of a seed
crystal on the left (a), and the growth inside the gap on the
right (b). The total width of the cell is 20 mm. The growth
of the seed is fast enough (1 mm/s) to make facets visible on
the left photograph (a) and to allow the determination of the
crystal orientation (here crystal X3 with its c axis tilted at 45◦

from the vertical). The growth inside the gap is shown on the
right photograph (b). Here it is our first cell where the gap is
slightly larger, 1.2 mm instead of 0.7. The growth inside the
gap is slower (50 µm/s). In this first cell, the two transduc-
ers were not glued on their entire surface and the electrical
contacts were made on the bottom edge of the transducers.
Between the two transducers, one can see a straight horizontal
line, which is the solid-liquid interface outside the gap, and a
convex one below, which shows the capillary depression of the
meniscus inside the gap. This depression is a consequence of a
45◦ contact angle with the transducer walls (for more details
on this partial wetting, see [6]).

”Type 3” crystals are polycrystals grown at constant
volume from the normal liquid above the superfluid tran-
sition. This is known as the ”blocked capillary” (BC)
method because, when cooling starts, a solid plug forms
in the fill line near the ”1K pot” of the refrigerator after
what the growth proceeds at constant volume and con-
stant mass (but at varying P and T of course). In this
experiment, we started cooling down the cell around 3
K with 60 bars everywhere. In the cell, the crystalliza-
tion started at 2.4 K and finished at 1.7 K with a final
pressure P= 30 bar (see ”path A” in the phase diagram
of ref. [3]). We chose these values to avoid crossing the
reappearance of liquid near the hcp-bcc transition of the
solid (see [3]). Indeed, recrystallization from the super-
fluid usually ends up with a few large single crystals while
our goal was to obtain isotropic polycrystals with small
grains and a strong disorder. The polycrystalline nature
of the sample is probably a consequence of multiple nu-
cleations of seeds in a cell that is far from homogeneous
in temperature in the absence of superfluid. We found
that the crystals grown at the lowest temperature have
the largest softening, that is the largest reduction of c44
in the soft state. This is probably because their dislo-
cation density Λ is smaller, with a larger free length L
between pinning sites (a larger ”pinning length”). The
precise measurement of Λ and L is in progress in our
laboratory.

In this experiment, we reached 80% reduction of c44
with the ”type 1” crystal X4 . In a previous experiment,

Rojas et al. [5] had found an 86% reduction of c44, after
assuming that no other elastic constant varied, for an-
other ”type 1” crystal which was probably of even better
quality for two reasons. First, the growth rate used by
Rojas et al. was significantly lower (0.3 µm/s) than in
this experiment (50 µm/s). Secondly, Rojas’ cell had a
much more open geometry with no corners and a larger
horizontal cross section area, which allowed much more
continuous growth without sharp jumps each time the
liquid-solid interface detaches from some pinning site.

In their experiment, Ruutu et al. [10] obtained small
crystals with no screw dislocations according to their
measurements of growth rates. Their crystals were grown
slowly at 20 mK, but the dislocation density probably de-
pends on the growth speed just after nucleation, which is
difficult to monitor. We have not yet succeeded in prepar-
ing crystals without any dislocation but it is obviously an
exciting challenge because we expect the disappearance
of plasticity in that case.

ORIENTATION DEPENDENCE

A little geometry has been necessary for the data anal-
ysis. The elastic tensor of an hcp crystal involves 5 inde-
pendent coefficients cij with values of i,j from 1 to 6 and
writes:

















c11 c12 c13 0 0 0
c12 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c66

















The meaning of these indices from 1 to 6 is respec-
tively xx, yy, zz, yz, xz and xy with the z-axis parallel to
[0001], the six-fold symmetry axis - also called ”c” - of
the hexagonal structure. The coefficient c66= (c11-c12)/2.
The orientation of the x-axis in the plane perpendicular
to the c axis is arbitrary since we assume that the dislo-
cations are distributed such that the transverse isotropy
of the hcp crystal is preserved. In our experiment, the
axis c is tilted with respect to the vertical direction z’
of the shear. The crystal orientation is given by the an-
gles θ and φ as defined on Figure 4 where the growth
shape is compared with a hexagonal prism. Coordinate
transformations can be applied to quantities expressed
in abbreviated notation using the Bond matrices [14].
Rotations of the coordinate system about its y-axis are
applied with:
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and rotations about its z-axis are applied with:
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The elastic tensor in the transducer coordinate system
x’y’z’ (Figure 4) is given by:

C′ = Mz(−φ)My(−θ)CMT
y (−θ)MT

z (−φ)

where XT is the transpose of matrix X .
The shear modulus that relates the shear strain we ap-

ply to the component of the shear stress that we measure
is given by:

µ = c′44 =
1

4
(c11 − 2c13 + c33)sin

22θsin2φ+

c44(cos
2θcos2φ+ cos22θsin2φ) + c66cos

2φsin2θ

We used the above equation to calculate the shear
modulus µ as a function of the coefficients cij for all our
crystals. For example we obtained:

µ = 0.0001(c11− 2c13+ c33)+0.933c44+0.067c66 for X2
(θ = 89.5◦ and φ = 85◦)

µ = 0.25(c11 − 2c13 + c33) + 0.004c44 + 0.004c66 for X3
(θ = 45◦ and φ = 85◦)

µ = 0.0001(c11 − 2c13 + c33) + 0.25c44 + 0.56c66 for X5
(θ = 60◦ and φ = 30◦)

µ = 0.008(c11 − 2c13 + c33) + 0.97c44 for X21
(θ = 5◦ and φ = 90◦)

The values of all cij have been obtained from ultra-
sound velocity measurements at 10 MHz by Crepeau et

al. at 1.32K [7] and by Greywall at 1.2K [8] c11 = 405
bar, c12 = 213 bar, c13 = 105 bar, c33 = 554 bar, c44 =
124 bar, and c66 = 96 bar. At such high temperatures,
the damping of dislocation motion by thermal phonons
being proportional to the frequency and to T 3, [12] dis-
locations cannot move at 10 MHz. As a consequence,
their values correspond to the true elasticity of the lat-
tice, without any contribution from plasticity. We have
verified that, at low temperature in the presence of 3He
impurities, the shear modulus of our 4He crystals is the

FIG. 4: The crystal orientation. The orientation of the [0001]
axis ”c” is defined by two angles θ and φ. The axis z’ is
vertical, parallel to the transducer plane surfaces. The axis
x’ is perpendicular to the windows, and the axis y’ is per-
pendicular to the transducer surfaces. The values of θ and φ

are obtained by matching the growth shape with a hexago-
nal prism. In this particular case (crystal X2), the c axis is
very close to horizontal. On the photograph, one sees that
the crystal touches the front window so that two white lines
correspond to intersections of the crystal with this front win-
dow. Only the free edges of the crystal are used to determine
the orientation.

same as measured by Crepeau et al. [7] and by Grey-
wall [8]. The only correction to be made for polycrystals
grown at high pressure is the pressure dependence anal-
ysed by H.J. Maris [9].
The resolved stress σr is the quantity which determines

the force acting on dislocations. We determined it as
follows. The strain in the transducer coordinate system
(Figure 4) is given by:

E′ =
(

0 0 0 ε 0 0
)T

In the crystal frame this becomes:

E = My(θ)Mz(φ)E
′

The stress in the crystal frame is then :

Σ = CE

The magnitude of the resultant of the shear stresses
acting in the basal plane (Σ2

4
+ Σ2

5
)1/2 is independent of

rotations of the crystal about its c-axis. If we assume that
the three 〈1120〉 Burgers vectors are uniformly populated
then we can choose the convenient orientation with one
set of Burgers vectors along the stress resultant and the
other two at 60◦ to it. Then the average resolved stress
will be:

σr =
c44ε

√

cos2θcos2φ+ cos22θsin2φ√
3
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TEMPERATURE CYCLES AND ANNEALING

OF SAMPLES

Most of the data that are analysed in this article have
been obtained by cooling samples slowly (12 hours) from
1 K down to 15 mK. The first reason for proceeding this
way is that we confirmed that some disorder induced
by mechanical perturbations at low T is annealed when
warming above 0.5 K, as was previously noticed by Day
et al. [12]. Each temperature cycle took 6 hours for
warming up to 1 K and 12 hours for cooling down to
15 mK, that is about one day. We used the same proce-
dure for all crystals in order to include a recording during
the night when perturbations from the environment were
as small as possible (remember that we measure stresses
down to 1 nanobar; He crystals are extremely sensitive
to vibrations). We then transferred liquid Nitrogen every
morning when the crystal was cold. Every three days, a
liquid helium transfer was also necessary to keep the re-
frigerator working. All these transfers produce mechan-
ical vibrations that shake dislocations. After any large
mechanical perturbation at low temperature, we observe
some hardening of crystals, which we believe is due to
creation of jogs on the dislocations. After annealing up
to 1 K we found reproducible results as if jogs had been
eliminated thanks to the diffusion of thermally activated
vacancies.

COMPARISON WITH A CLASSICAL CRYSTAL

In order to compare the plasticity in helium crystals
and in classical crystals, let us consider the historical
measurements by Tinder and Washburn[15] on Copper.
Qualitatively, the plasticity is the same phenomenon: it
is due to the motion of dislocations and it is sensitive to
the concentration of impurities. But quantitatively, there
are striking differences. Tinder and Washburn found a
threshold stress of about 2 g/mm2 = 2 104 Pa beyond
which a plastic strain appears in addition to the usual
elastic response. This threshold is somewhat smaller than
in other classical crystals, probably because of the care-
ful growth and manipulation of these very pure samples.
Still, it is larger by five orders of magnitude than in our
case. In Copper, the applied stress is 0.4 10−6 times the
shear modulus µCu = 50 GPa. For helium crystals, we
find a linear response (no threshold) down to 1 nanobar
= 10−4 Pa, which is 10−11 times the elastic shear modu-

lus µHe = 12 MPa. Furthermore, Tinder and Washburn
find a plastic strain that is 40 times smaller than the
elastic strain so that the effective shear modulus is not
significantly changed. In Helium, the plastic strain due
to the dislocation motion is 4 times larger than the elas-
tic strain, leading to an effective shear modulus that is
reduced by 80%. In other words, the plastic response is
2 orders of magnitude larger for stresses 5 orders of mag-
nitude smaller than in Copper. In Copper, the plastic
response is highly non-linear and the response time of
order minutes at room temperature (300 K). In Helium
at 0.1 K, the plasticity is linear so that it results in an
effective reduction of the shear modulus, which we have
found independent of frequency up to 16 kHz. We have
been able to study oriented single crystals and we have
found evidence that the gliding plane of dislocations is
the basal plane, so that the plasticity is anisotropic. Tin-
der and Washburn studied polycrystalline samples where
they could not measure any orientation dependence of
the plasticity.
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