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Critical Casimir forces and anomalous wetting
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Abstract. We presenta review of critical Casimir forces in connection with successive experiments
on wetting near the critical point of helium mixtures.
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1. Introduction

In 1978, M. Fisher and PG. de Gennes [1] considered a critical system whose fluctuations
are confined between two plates a distance . apart. They noticed that, with two identical
plates, there is a singular contribution of order k57 /L? to the free energy per unit area
of the system so that there is an attractive force between the plates which should be of or-
der —2kpT/L? near the critical point at the temperature 7. In analogy with the standard
Casimir effect, which originates in the confinement of electromagnetic fluctuations be-
tween two electrodes, the phenomenon considered by Fisher and de Gennes is now known
as the “critical Casimir effect”. It has been studied by several groups and recently reviewed
by M. Kardar and R. Golestanian [2] and by M. Krech [3] (among others). Despite all the
work already done, it seems to us that it is not yet fully understood: the amplitude of the
critical Casimir force has not yet been calculated with the boundary conditions correspond-
ing to experimental situations; furthermore, Garcia and Chan demonstrated the existence of
this effect with a series of two remarkable experiments [4,5], but some of their quantitative
results appear somewhat puzzling to us.

In order to interpreat their experiments on wetting by helium mixtures, Ueno et al. [6]
related the critical Casimir effect to another critical phenomenon, which is known as “crit-
ical point wetting” and was first predicted by J.W. Cahn [7]. This relation had first been
proposed by M.P. Nightingale and J.O. Indekeu who had already noticed the potential in-
terest of liquid helium as a model system for the whole issue [8,10]. Consider a binary
liquid mixture below its critical temperature 7: it is separated in two phases with an in-
terface in between. The contact angle # of this interface may be non-zero away from 7,
but Cahn predicted that, as 7" tends to 7, 8 should vanish and the wall be completely wet
by one of the two critical phases. Several theoretical studies have confirmed that critical
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point wetting is very general and it has been observed in several experiments with different
systems [11-13]. However, de Gennes pointed out the importance of long range forces in
Cahn’s situation and opened the possibility of exceptions to critical point wetting if such
long range forces are present [14].

T. Ueno et al. studied 3He-*He liquid mixtures in contact with a wall in a series of
two experiments: a first one in Kyoto [15] where magnetic resonance imaging (MRI) was
used, and a second one in Paris [16] where the contact angle was measured optically. These
two experiments showed that, apparently, an exception to critical point wetting had been
found in the physics of helium mixtures. In their third article, Ueno ef al. [6] proposed that
critical Casimir forces were the long range forces responsible for this exception. By using
Garcia’s measurements, Ueno ef al. found that the critical Casimir forces had the right sign
and the right magnitude to explain the non-wetting behavior found in the Paris experiment.

Together with further developments of the theory, these interesting findings urged us
to extend and confirm our experimental results. One of the important questions had been
raised by Kardar and Golestanian [2] and concerned a new contribution to the critical
Casimir force. Indeed, they explained that such a force could exist even if the medium was
not close to a critical point. In the case of superfluids, the order parameter has a phase, so
that so-called “Goldstone modes” fluctuate whatever the temperature, in the whole temper-
ature domain where long range correlations exist. A similar effect was predicted for liquid
crystals [17]. For liquid helium, a force originating in Goldstone modes should thus exist
in the whole temperature region where it is superfluid. As a consequence, a liquid helium
film adsorbed on a wall would be thinner if it is superfluid than if it is normal, even if T’
is much lower than 7, the superfluid transition temperature. In our context of wetting by
helium mixtures, the Goldstone mode contribution to the Casimir force could have led to a
non-zero contact angle of the *He-*He interface with a wall at low temperature.

In order to test Kardar’s prediction, we changed the geometry of our experimental setup,
so that measurements could be done at lower temperature without too much difficulties
with optical refraction effects. The results of this ongoing experiment are not yet pub-
lished [18]. Its preliminary results indicate that the contact angle is in fact zero at low
temperature (complete wetting). As we shall see, it does not mean that Kardar’s predition
is wrong, only that the magnitude of this effect is too small to be observed in an indirect
measurement such as ours. Furthermore, we have tried to reproduce Ueno’s former results
near the critical point of helium mixtures, and, this time, we have found that the angle is
very likely to be zero. This now means that there was probably an experimental artefact in
Ueno’s series of experiments. It also means that the amplitude of the critical Casimir force
is probably smaller than what was deduced from Garcia’s measurements. We thus hope
that Garcia’s experiment can also be reproduced, the comparison of its results with theory
extended to the region below 7, and its relation with the critical point wetting by helium
mixtures more critically discussed.

The somewhat difficult goal of this review is to clarify the present status of this confusing
situation, particularly the questions concerning the magnitude of the critical Casimir force
and its connexion with critical point wetting.
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2. Critical Casimir forces

Fisher and de Gennes only gave an order of magnitude for the amplitude of the critical
Casimir effect at the critical temperature 7;.. One usually writes the critical Casimir force
as

F(L,1) = 2o /g) m

where the “scaling function” ¥(L/€) depends on temperature and on the thickness L
through its ratio to the bulk correlationlength &. Near 7, ¢ diverges proportionnally to t =
where t = (T'/T. — 1) is the reduced temperature and v = 0.67 for ordinary critical points
(v = 1 for tri-critical points). Following the seminal paper by Fisher and de Gennes, several
theoretical works have brought important information about the critical Casimir force:

1- The sign of the force is given by the sign of the scaling function, and it depends on the
symmetry of the boundary conditions. If they are symmetric, ¥ is negative and the force is
attractive; on the opposite, if the boundary conditions are antisymmetric, #} is positive and
the force is repulsive.

2- The magnitude of the force is generally considered as universal, in particular at the
bulk critical temperature 7, where its value is twice the “Casimir amplitude” A , which is
the universal value of © (the similar scaling function appearing in the singular contribution
to the free energy) at 7. Furthermore the Casimir amplitude depends on the dimension N
of the order parameter. From the work of Nightingale and Indekeu [9,10] and Krech and
Dietrich [19], it appears that A is roughly proportionnal to V. For example, it is expected
to be twice as large for a superfluid transition (/V = 2) as for the phase separation of a usual
liquid mixture (N = 1). It also depends on the boundary conditions, more precisely on
their nature, not on the exact details of surfaces [19]. These conditions can be periodic,
or the order parameter can vanish at the boundary ("Dirichlet” boundary conditions) or its
derivative can vanish (“von Neumann’ conditions).

3- With Dirichlet boundary conditions, the critical temperature in the film is significantly
displaced with respect to the bulk critical temperature 7, and the maximum of the scaling
function ©(L /¢) is expected to be rather different from the Casimir amplitude A. In fact,
as far as we know, there exists no calculation of the scaling functions both below and above
T, for Dirichlet boundary conditions. According to Krech and Dietrich [19], A is much
smaller for Dirichlet boundary conditions than for periodic ones, but it does not mean that
the maximum amplitude of ¥ is also much smaller, mainly that the temperature at which
this maximum is reached is displaced (as far as we understand).

The calculation of ©(L/&) has been performed above T, by Krech and Dietrich [19],
using an e-expansion method. For periodic boundary conditions and below 7, it has been
more recently calculated by G. Williams in the frame of his vortex loop-model for liquid
helium [24]. According to Williams, his calculation below 7. matches nicely with Krech’s
calculation above 7., the Casimir amplitude being about -0.15, close to the maximum
amplitude of the scaling function ©(L/¢).

In their first experiment, Garcia and Chan observed the thinning of a pure liquid helium
film near the superfluid transition at 7. This film was adsorbed on a copper electrode
and most of the thinning occured in a small temperature region near 7. They analyzed
it in terms of the critical Casimir effect and extracted a scaling function ¥(7/£) which
was very similar in shape with calculations, for example the recent ones by Dantchev and
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Figure 1. The scaling function ©(z) as measured by Garcia and Chan. The horizontal
coordinate is # = tL'/* where ¢ is the reduced temperature and L the film thickness, ©
the critical exponentof the bulk correlation length &; it is measured in A" units. These
results could only be compared with Krech’s theory above the critical temperature 7
, Le. for z > 0, where ¥(z) has a very small tail. Different symbols correspond to
different film thicknesses.

Krech [20]. Garcia’s scaling function displays important features which deserve several
comments:

1- The maximum amplitude of ¥} does not occur at the bulk critical temperature 7-..
This was expected because the order parameter for superfluidity vanishes on both sides of
the superfluid film, so that the superfluid transition temperature is depressed in the film:
TSm < TPk It occurs significantly below T, for © = tL'/% ~ —10 (the reduced
temperature is taken negative below 7.. Note also that, in both articles by Garcia and
Chan, the horizontal coordinate z = tL}/¥ = (L& /€ )1/ ¥ is not dimensionless, but close
to (L/€)*¥ since I is taken in A and the quantity £, is about 1 A [27]). The magnitude
of the scaling function above T, 1is very small, as predicted by Krech and Dietrich [19].
Garcia and Chan claim that their measurement of ¥ agrees with the calculation, but this
only concerns the small tail at 7" > 7., where the signal/noise ratio is poor, while most of
the observed effect occurs below 7.

2- Garcia and Chan found that ¥(L/£) reaches maximum negative values which vary
from -1.5 to -2 as a function of the film thickness L. This is doubly surprising, firstly be-
cause a dependence on L seems to contradict the predicted universality, secondly because
no calculation has ever found such large amplitudes for #. In the various situations which
have been calculated, the theoretical results are 5 to 50 times smaller. This is a serious
problem which needs further studies: new experiments should identify the origin of the
L-dependence, and ¥ should be calculated below 7, with Dirichlet boundary conditions.

3- They also found indications that the scaling function does not tend to zero in the low
temperature limit, away from 7.. One possible explanation for this is the confinement of
Goldstone modes invoked by Kardar and Golestanian [2]. The amplitude of the Goldstone
mode contribution looked too small to explain the rather large negative value of (7" — 0)
found by Garcia and Chan, but a more recent calculation by R. Zandi et al. proposes that,
the film surface being mobile, a contribution from third sound modes at the surface of a
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Figure 2. The phase diagram of liquid helium mixtures (left) and a schematic repre-
sentation of the partial wetting of a wall by the phase separated mixture (right).

superfluid film should be added to the one coming from Goldstone modes, so that the total
attractive force acting on the film surface is larger than first calculated [21]. One could
even imagine that phonons also contribute to the force at low temperature [22].

3. Critical point wetting and Ueno’s experiments

Following Cahn’s argument [7], let us consider a binary liquid mixture near its critical
temperature 7.. Below 7, the mixture is separated into a concentrated “‘c-phase” and a
diluted “d-phase.” In the case of partial wetting, the contact angle # of the cd-interface
against a substrate “’s” obeys Young-Dupré relation [25]:

Osc— Osq OO
cosfl = ———— = —

(€]
T T

where 0., 054, and o; are interfacial free energies between s and c-phase, s and d-phase,
and c- and d-phases respectively. If one assumes that o is proportional to the difference
in concentration (0. X = X. — X), on finds that, for ordinary critical points, do x 6 .X
933 Since the interfacial tension o; o '8, one finds that the numerator in Eq. 2 vanishes
more slowly than the denominator, so that the cosine increases as 7' approaches 7¢, and
the contact angle reaches zero at some temperature below 7,: a “critical point wetting”
transition occurs. In the case of a tri-critical point, as is the case for liquid helium mixtures
because phase separation occurs at the same temperature 7; as superfluidity (see Fig. 2),
the (mean field) exponents are respectively 2 and 1 [26,27], so that the same reasoning
should apply and complete wetting should occur as 7" approaches 7;. The above argument
is too simple but more careful analysis have proved that is is qualitatively correct in the
absence of long range forces [8].

In their two successive experiments, Ueno ef al. did not find Cahn’s critical point wet-
ting when studying liquid helium mixtures. Below their tri-critical temperature 73, these
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Figure 3. The contactangle 6 of the * He-*He interface with a wall was found non-zero
in Ueno’s experiments in Kyoto (crosses). They used a magnetic resonance imaging
(MRI) technique whose accuracy was not good near the tri-critical point, in view of the
large scatter of data points in this temperature region. Agreement with this anomalous
behaviour was found in a later experiment by Ueno et al. in Paris. However, in their
more recent experiment, Ishiguro and Balibar found ¢ = 0 both at low temperature and
near the critical point.

mixtures are separated in a “c-phase” which is concentrated in 3He, and a “d-phase” which
is diluted in 3He, consequently rich in *He. In the Kyoto experiment [15], Ueno et al.
measured the profile of the cd-interface near a wall made of epoxy glue. They used a mag-
netic resonance imaging technique (MRI) and found a non-zero contact angle (see Fig. 3).
In the Paris experiment [16], Ueno ef al. measured the interface profile with an optical
interferometric technique. They also found that the contact angle # was non-zero below
T} ; moreover, they found that § increased as 7" approached 7;(see Fig. 4). This was not
compatible with critical point wetting, so that, in their theoretical article [6], Ueno et al.
reconsidered Cahn’s argument after identifying three long range forces which are present
in their experimental situation.

The van der Waals force is attractive on atoms and *He atoms occupy a smaller volume
than 3He atoms because their quantum fluctuations are weaker (their mass is larger). As
a result, the van der Waals attraction on the d-phase is stronger than on the c-phase, and
a c-phase is always separated from a solid wall (in Fig. 2, a sapphire window) by a film
of d-phase. Being attractive on atoms, the van der Waals field induces an effective force
which is repulsive on the film surface. In the absence of other long range forces, a finite
thickness film would only exist off-equilibrium, but as equilibrium is approached the film
thickness would diverge and complete wetting by the d-phase would occur. Romagnan
et al. [28,29] found some experimental evidence for this, but their measurements were
limited to thicknesses up to about 80 A only. The sketch in Fig. 2 corresponds to a
situation where another long range force acts on the film. Being attractive, this other force
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Figure 4. The contact angle near the tri-critical point. This is an enlargement of the
graph shown in the previous figure. The experiment by Ueno ef al. in Paris (2003)
showed that § increased instead of tending to zero as 1" approched the tri-critical tem-
perature 7;. However, this anomalous behavior was not confirmed in the more recent
experiment done by Ishiguro and Balibar, who found 8 = 0.

is able to counterbalance the van der Waals field and to limit the film thickness, so that the
macroscopic contact angle is non-zero.

In the presence of such long range forces, the way to calculate the surface energies,
consequently the contact angle, is to integrate the so-called “disjoining pressure” TI(L)
which is nothing but the sum of the forces acting on the film surface [31]:

— “CHl)dl
cos(f) = e —Td 4 S, O 3)
T T
In addition to the van der Waals force which is known, Ueno et al. explained that there is
a critical Casimir force. This is because the d-phase film is superfluid, while the c-phase is
normal. The order parameter of superfluidity is non-zero inside the film but it has to vanish
on both sides. This symmetric vanishing should produce an attractive Casimir force on
the film surface. Since there exists no calculation with such Dirichlet boundary conditions
yet, Ueno et al. [6] used Garcia’s measurement of (L /) to calculate the contribution
of the critical Casimir effect to the disjoining pressure. They also included the Helfrich
force, which is repulsive, due to the cutoff of capillary modes at long wavelength by the
presence of the nearby wall [30]. At a reduced temperature { = —0.01 below 7, they
found that the critical Casimir force was stronger than the two others in the thickness
range from 0 to 400 A (see Fig. 6). According to this calculation, the equilibrium film
thickness was thus 400 A, and Ueno et al. could calculate the contact angle by integration
of the disjoining pressure (Eq. 3). They found 45 degrees, in good agreement with their
measurement (see Fig. 4). Moreover, they argued that the Casimir force could be twice as
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Figure 5. Various measurements of the interfacial tension o; between the c- and the
d-phase in the vicinity of the tri-critical temperature T; = 870 mK. Within the error
bars, all data agree with the ¢ critical behavior measured by Leiderer et al in 1977.

large in their experiment as in Garcia’s experiment, because it is a tri-critical point instead
of an ordinary critical point such as the lambda point of pure liquid helium 4. According
to this argument, they found that the contact angle was 60 degrees at ¢ = 0.01, in even
better agreement with their experimental results. Furthermore, Ueno et al. also extracted
values for the interfacial tension ¢; and found good agreement with previous measurements
(see Fig. 5). Although the support of experiments by theory and vice versa looked rather
strong, we decided to repeat the experiment in a different geometry and with more careful
analysis of the interferometric images. As we shall see, our new results show that there
was probably an artefact in Ueno’s experiment, also that the amplitude of the Casimir force
might be smaller than what Ueno ef al. deduced directly from Garcia’s measurements.

4. The new experiment in Paris

In Ueno’s experiment, the angle of incidence of the laser beam was large on the cd-
interface, that is far from normal. As a consequence, as soon as the difference in opti-
cal index between the c- and the d-phase was large, refraction at the cd-interface induced
a substantial difference in orientation between the ingoing and the outgoing beams. The
fringe pattern was distorted and the calculation of the interface profile too difficult. This is
the reason why Ueno et al. could not measure the contact angle below about 0.8 K. In order
to do this, and be able to look for a possible effect of Goldstone modes on the wetting by
helium mixtures, we rotated the cell by nearly 90 degrees, so that the incidence was now
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Figure 6. The 2003 calculation by Ueno et al. of the various forces acting on the
film surface. The amplitude of the Casimir force was taken directly from the measure-
ment by Garcia and Chan in 1999. It was apparently stronger than the van der Waals
effective force which is positive, meaning repulsive on the film surface. After adding
the Helfrich force, Ueno et al. found a total disjoining pressure crossing zero at [ =
400 A, the equilibrium film thickness. A finite film thickness means partial wetting and
quantitative agreement was found with the measurements by Ueno et al. in 2003.
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close to normal. We also tried to adjust the optical cavity more carefully, in order to obtain
straight fringes. The interface profile is obtained by substracting the optical path without
interface from the optical path with the interface (see Fig. 7). This is rather delicate and
needs a very accurate knowledge of the fringe pattern in the absence of interface.

Close to 7; where the index difference is very small, any error in the substracted back-
ground produces large errors in the calculated profile. We believe that this is the origin
of artefacts in the profiles found by Ueno et al. , whose fringe patterns where severely
bent, due to inhomogeneous stresses on the two cell windows. In our new experiment, we
have found zero contact angle in the whole temperature range. Two examples of profiles
are shown in Fig. 8. At low temperature (271 mK) and also at 840 mK, near 7}, the in-
terface bends upwards and meets the window tangentially. If Ueno et al. had been right,
the interface would have bent downwards near 7} [note that, on the two figures, the vertical
scale is not the same as the horizontal one, so that the window looks more tilted than in
reality (20 degrees)]. A critical discussion of the profile extraction and a full presentation
of results are delayed to a later publication where we shall explain more precisely why we
now believe that there was an artefact in Ueno’s work. For these conference proceedings,
we only briefly discuss the meaning of our new measurements.

5. Discussion

The van der Waals effective force acting on a cd-interface is repulsive, proportional to the
difference in the average volume per atom in each phase V., — Vy:

ILygw = Ao (i - i) C))

with Ag &~ 1000 K.A=3. A low temperature, V, = 61.15 A3 and V; = 46.56 A3 [32], so
that, far below T;= 0.87 K, the effective van der Waals force is about 5/ 73 in KA~ units.
For partial wetting to occur in the low temperature limit, the contribution of the Goldstone
modes to the Casimir force would need to be more negative than —5/L>. In their review
article [2], Kardar and Golestanian propose —0.048% 57"/ L3 which looks much too small.
Following the recent work of Zandi ef al. [21], one should also account for the existence
of fluctuations at the film surface, i.e. third sound modes. Their contribution should add
to that of Goldstone modes and lead to a total Casimir force which is three times more
negative than previously thought, about —0.15k 57"/ 3. However, this looks still too small
compared to the van der Waals field. In a sense, it is not surprising that we found complete
wetting at low temperature, but in the first experiment done by Ueno et al. in Kyoto, partial
wetting had been found and, since Garcia’s measured value of the Casimir force is much
larger than available calculations, it was worth checking that complete wetting occured at
low 7.

As for the vicinity of 7;, we have recalculated what should be the disjoining pressure if
one assumed that, in our case, the magnitude of the Casimir force was only one fifth of what
had been measured by Garcia and Chan [4]. There could be several reasons for this. Firstly,
Garcia’s results are indeed at least 5 times larger than any available calculation. Secondly,
their measurement was done with a pure liquid *He film, while we are dealing with a
mixture. Note that in a later experiment, Garcia and Chan also studied mixture films [5]
but they measured the force acting on a liquid-gas interface, not on the cd-interface as we

10 Pramana — J. Phys., Vol. 53, No. 6, December 1999
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Figure 7. The profile of the cd-interface between phase separated liquid helium mix-
tures is calculated from the difference in optical path between a pattern with an interface
(top image) and a pattern without interface (bottom image). These two fringe patterns
were recorded at 7' = 636 mK.
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Figure 8. The profile of the cd-interface between phase separated liquid helium mix-
tures and a sapphire window at 271 mK (top) and 840 mK (bottom). The arrows indi-
cate the magnitude of the capillary length and the broken lines are fits from Laplace’s
equation. The sapphire window is tilted by 20 degrees with respect to horizontal. We
have found complete wetting by the *He rich d-phase: § = 0.
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Figure 9. A modified calculation of the disjoining pressure acting on the film surface,
where the amplitude of the critical Casimir force has been taken as one fifth only of
the experimental result obtained by Garcia and Cahn. Contrary to what was shown in
Fig. 6, one now finds that the van der Waals force always dominate the Casimir force, so

that the disjoining pressure is always positive, leading to a macroscopic film thickness
at equilbrium, and complete wetting.
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do. In our case, a rigorous estimate should account for the existence of two competing
effects. The confinement of superfluidity leads to an attractive force because the order
parameter (the amplitude of the macroscopic wave function) vanishes symmetrically on
both boundaries of the film. However, there are also fluctuations of concentration near
T,. Due to the van der Waals field, the film is more diluted in >He near the solid wall
than near the cd-interface, so that , for concentration fluctuations, the boundary conditions
are anti-symmetric. This is why, for an ordinary liquid mixture with no superfluidity, the
Casimir force would add to the van der Waals field to favor wetting by the d-phase. Of
course, superfluidity and concentration fluctuations are coupled near 7;, and the effect
of superfluidity should dominate because the dimension of its order parameter is N = 2
instead of NV = 1 for concentration. Still, we expect a rigorous calculation to find that the
effect of concentration fluctuations decreases the effect of superfluidity fluctuations.

As shown in Fig. 9, when estimating the amplitude of the Casimir force as only one
fifth of what was measured by Garcia and Chan, we find that complete wetting is restored.
Compared to the results shown in Fig. 6, the disjoining pressure is now positive for all
thicknesses. Given our most recent measurements [18], we now believe that, in our exper-
iment, that is near a sapphire window, the critical Casimir force is too weak compared to
the van der Waals field, so that complete wetting occurs, as usual. To find an exception
to critical point wetting, one should try using a susbstrate exerting a much weaker van der
Waals field than ordinary insulating materials, and this does not look easy to us.

We are grateful to E. Rolley and F. Caupin for help in the experiments, to R. Garcia and
M. Chan for several discussions of their experiments and allowing us to reproduce one of
their figures, also to S. Dietrich and M. Krech for numerous disccussions on the theoretical
aspects of the whole issue. R. Ishiguro aknowledges support from the Japan Society for
the Promotion of Science.
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