
The dripping of a crystal
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Dripping is usually associated with fluid motion, but here we describe the analogous phenomenon
of a 3He crystal growing and melting under the influence of surface tension and gravity. The pinch-
off of the crystal is described by a purely geometric equation of motion, viscous dissipation or inertia
being negligible. In analogy to fluid pinch-off, the minimum neck radius Rn goes to zero like a power
law, but with a new scaling exponent of 1/2. However, for most of the neck’s evolution the scaling
exponent is found to be much closer to 1/3. We attribute this behavior to slowly decaying transients
of the pinch solution, making the “critical region” very small, both in time and space. We argue
that there is no universal law governing the recoil of crystal tips after pinch-off, but for very early
times our experiments are consistent with an approximate theory predicting an asymptotic regime
with exponent 1/2.

PACS numbers: 47.15.-x, 67.80.-s, 68.35.Ja, 68.08.-p

I. INTRODUCTION

A liquid jet coming out of a nozzle is unstable: due
to capillary forces, it splits into droplets: this is the well
known Plateau instability [1]. When the drop detaches
at a critical time ts, its neck radius Rn tends to zero and
the equations of hydrodynamics form a singularity. The
profiles near the singularity are self-similar, and Rn goes
to zero linearly in time [2]. In the case that viscosity
is negligible and the dynamics is dominated by inertial
effects, a different critical behavior was found, and the
exponent becomes 2/3 [3, 4].

Here we present a third situation where both viscous
dissipation in the bulk and inertial effects are negligible.
This is the unusual case of crystals whose shape evolves
by local growth and melting in a situation where the tem-
perature is very homogeneous so that the driving forces
are gravity and surface tension, as for usual liquids. Drip-
ping becomes a purely geometrical effect for which sim-
ple arguments lead to the prediction Rn ∝ ∆t1/2, where
∆t = |t − ts|. We were surprised to find a ∆t1/3 behav-
ior in the experiment but, as we shall see, our results
are compatible with a 1/2 exponent for very small radii,
and numerical simulations confirm that this asymptotic
behavior is reached at very small Rn only.

Helium crystals are known to change shape rather
quickly by local crystallization and melting [5]. These
crystals are very pure and can be studied in equilibrium
or close to equilibrium with liquid helium in cells where
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FIG. 1: The experimental cell where 3He crystals were grown
thanks to a flexible membrane. The lower part was 3.45 mm
wide and 3.27 mm high; it could be observed through windows
from the outside of the cryostat, as shown in Fig. 2.

the temperature is very homogeneous. As a result, their
shape is governed by gravity and surface tension, not by
temperature nor by concentration gradients as usual crys-
tals. Except when facets come into play, the evolution of
their shape looks like that of flowing liquids; there is no
mass transport inside the crystals themselves, only some
in the surrounding liquid which allows local crystalliza-
tion and melting. The dynamics of 4He crystals is very
fast at low temperature [5]. The dynamics of 3He crys-
tals is not as fast as that of 4He but still much faster than
classical crystals: their shape relaxes typically in a few
seconds at 0.32 K, the temperature of the minimum in
the melting curve where the latent heat is zero. At that
temperature, 3He crystals are not facetted and they look
like transparent drops of some viscous fluid like honey al-
though they are high quality crystals. We have recorded
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FIG. 2: Twelve images (of width 3.5 mm) showing how a
3He crystal “flows” down from the upper part of the cell into
its lower part. For this recording, which took a few minutes,
the temperature was Tmin + 11 mK. The crystal first “drips”
down, so that a crystalline “drop” forms at the bottom (a
to c); then a second drop appears (d) and comes into con-
tact with the first one (e); coalescence is observed (f) and was
quantitatively analyzed in [6]. It is followed by the dripping
of a second drop which has exactly the same crystalline orien-
tation as the first one because this is not real flow, it is local
melting and growth of a single crystal which keeps the same
orientation all the time. it drips down and coalescence occurs
again (j). Usually, the last drop (k) behaves differently be-
cause, being smaller than the orifice, it falls in the liquid and
changes orientation before touching the lower crystal. As a
consequence, there is a grain boundary between the two crys-
tals which do not coalesce; the last drop keeps round, moves
to the right and finally vanishes (l). At this temperature, 3He
crystals have no facets, they are rough in all directions.

the time evolution of their shape with an ordinary CCD
camera.

In a previous article [6], we have taken advantage of the
properties of these 3He crystals to investigate the coales-
cence of crystalline drops. By analyzing video sequences
which had been recorded earlier by some of us [7] we
could verify a prediction by Maris [8] for the time evolu-
tion of the neck which forms when two crystalline drops
come into contact. We found good agreement with the-
ory, and it confirmed that, with such crystals, coalescence
is a purely geometrical problem: as we shall see, the local
velocity dRn/dt, which is the time derivative of the neck
radius is simply related to the local curvature 1/Rn.

Rn

z

R(z,t)

FIG. 3: Just before separation of the two crystalline drops, the
neck shape is symmetric, contrary to what is usually observed
with liquids.

II. THEORY

The driving force for growth is the difference ∆µ be-
tween the chemical potential µL (per unit mass) of the
surrounding liquid and that of the crystal, µC . It is lin-
early related to the growth velocity of the crystal vn by
the relation [9] (p.74)

vn = k ∆µ. (1)

The mobility k has been calculated and measured exper-
imentally [5]. Near Tmin = 0.32 K, it is given by

k−1 = 5.5 + (3.9 × 104)(T − Tmin)
2 m/s (2)

with T in K [7].
Assuming that the crystal grows at constant strain, ∆µ

can be calculated from a mechanical equilibrium between
the liquid and solid [9], p.18. Neglecting the anisotropy
of the surface tension γ, which is small for bcc crystals
such as 3He, this gives ∆µρC = δpL∆ρ/ρL−γκ, where κ
is the local curvature and δpL is the pressure in the liquid
relative to some reference value. The physical constants
are γ = 0.06 erg/cm2 [10] (surface tension) and ∆ρ =
ρC − ρL = 5.7 × 10−3 g/cm3 (density difference). The
liquid pressure δpL includes a hydrostatic contribution;
we will approximate δpL by a constant, since the capillary
length ℓc =

√

γ/(∆ρg) = 1.026 mm is large compared to
the size of the pinch region.

If the radius of the axisymmetric crystal is R(z, t) (cf.
Fig. 3), the shape of the crystal changes according to

Ṙ =
√

1 + R′2k∆µ, (3)
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where dot and prime are the derivatives with respect to
the time and space, respectively. We nondimensionalize
R with respect to the radius of the nozzle R0 = 0.5 mm:
h(x, τ) = R(z, ∆t)/R0, where x = z/R0 and time is
rescaled according to τ = ∆tkγ/(R2

0ρC). Then (3) leads
to

dh

dτ
= − 1

h
+

h′′

1 + h′2
+ ∆

√

1 + h′2, (4)

where ∆ is the non-dimensionalized departure of the liq-
uid pressure from the value corresponding to equilibrium.
The first two terms on the right come from the mean cur-
vature of the crystal surface.

To initiate pinch-off, we will set ∆ to a small negative
value in the simulations to be reported below. The ra-
dial curvature (first term on the left), drives pinch-off as
expected: a melting of the crystal (reduction in h and
thus in surface area) leads to a lower energy state. For
small h, equation (4) is dominated by the mean curvature
terms, and thus reduces to the famous (axisymmetric)
mean curvature flow, which has been studied extensively
in the Mathematics literature [11, 12]. In particular, this
equation exhibits blow-up at a finite time τ = 0, cor-
responding to the pinch-off seen in Fig.2. If the second
(axial) curvature term is negligible near the minimum
hmin = Rn/R0 of the profile, one ends up with the sim-

ple equation ḣminhmin = −1. This can be integrated to
give

h2

min = 2τ, (5)

which is indeed the correct asymptotics for the pinch-
ing of the neck, as we are going to see below. However,
contributions from the axial curvature are only logarith-

mically subdominant, so the convergence toward (5) is
exceedingly slow.

Before comparing the above prediction with experi-
ment, we need to describe more precisely how this ex-
periment was done. As already explained in refs. 6 and
7, 3He crystals were grown at 0.32 K in a cell which had
two parts connected by a vertical capillary (see Fig. 1)
and it was immersed in a 4He liquid bath which provided
a good thermal homogeneity. When increasing the pres-
sure of liquid 4He, the double membrane in the upper
part of the 3He cell was deformed and the 3He pressure
increased. When the 3He crystallization pressure was
reached, the first crystal seed happened to nucleate in
the upper part. It was grown by increasing the 4He pres-
sure further. When the 3He crystal was large enough, it
started invading the lower part, and became visible at the
lower end of the capillary (see Fig. 2a). At that moment,
the pressure was fixed and the shape evolved at constant
total crystal volume. By exchanging mass with its liquid
phase, i.e. by local growth and melting, the 3He crystal
started to move down because of gravity.

At Tmin = 0.32 K, the latent heat vanishes and the
liquid-solid transition is sensitive to T only to second
order in (T −Tmin). At the surface of 3He crystals, facets

FIG. 4: The cube of the neck radius Rn is linearly related
to the time ∆t before the singularity, where the two crystals
separate from each other. Different symbols correspond to
different recordings at Tmin + 9 mK.

appear only below 100 mK [5, 13–15], and the dynamics
of the liquid-solid interface is governed by (1) and (2).
Since the measurements were done at Tmin + 9 mK where
the growth resistance is k−1 = 0.115 s/m, (5) predicts
the asymptotic behavior R2

n = (1.145 × 10−4)∆t mm2

with ∆t in ms, a prediction that contains no adjustable
parameters.

As shown in Fig. 2, the transfer of the 3He crystal from
the upper part of the cell to the lower visible part oc-
curs by successive dripping (b,c and g,h) and coalescence
events (e,f and j). Here, we analyze the dripping. Fig. 3
shows that the shape of the neck is symmetric with re-
spect to a horizontal plane, contrary to what is observed
for ordinary fluids. We have analyzed the time variation
of the neck radius Rn and attempted to find the scaling
exponent with which the minimum neck radius vanishes
by plotting appropriate powers of Rn as function of time.
Figure 4 shows that by plotting R3

n one finds the closest
approximation of a straight line over the entire time pe-
riod. This observation seems to contradict (5), which
predicts an exponent of 1/2 as opposed to 1/3 supported
by experiment. We will see below that the explanation
for this apparent discrepancy is that the asymptotic be-
havior (5) is only observed for times extremely close to
the singularity.

To understand the nature of the convergence toward
the asymptotic solution, it is crucial to look at a more
complete description, which includes the spatial structure
of the solution. We begin by rewriting the solution in a
different coordinate system:

h(x, τ) = τ1/2φ(ξ, lτ ), ξ = (x − x0)/τ1/2, (6)
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where lτ = | ln(τ)| and x0 is the point where pinch-off
occurs. For fluids, the solution converges very quickly
to a similarity function φ which is in fact independent of
lτ [2, 16]. This means that profiles, taken at different
times, are related to each other simply by a rescaling of
the coordinate axes. In many cases involving the breakup
of liquid threads or jets, measurements of the minimum
radius or of the entire profile show excellent agreement
with similarity theory [1, 17–19].

However, the similarity structure of the pinch-off solu-
tion of (4) is different in two important respects [12], the
similarity function being

φ(ξ, lτ ) =
√

2

(

1 +
ξ2 − 2

4lτ
+ O

(

ln(lτ )

l2τ

))

. (7)

Note that (7) is symmetric in space, in agreement with
observation (cf. Fig. 3). Firstly, φ contains a contribu-
tion which depends explicitely on the logarithmic time lτ ;
this contribution comes from the axial curvature of the
interface. In the asymptotic limit lτ → ∞ (5) is recov-
ered for ξ = 0, but only on a logarithmic scale, as opposed
to the rapid convergence of classical similarity solutions.
Secondly, the convergence to the similarity form is not
uniform [16], but only in a small region around the neck
which is of the same size as the minimum neck radius
itself, such that the similarity variable ξ remains of order
one. This can be seen from the next order in an expan-
sion in 1/lτ , which we performed recently [20]. Namely,
for the higher order terms to be small, |ξ| must be small
compared to

√
lτ . For all practical purposes, the latter is

never much larger than unity. Note also the appearance
of logarithms of ln(τ) appearing at second order in (7),
implying a very slow convergence indeed.

Singularities in which the logarithm lτ appears explic-
itly are called “type II singularities” [21]. Mathemat-
ically, they come about as follows: if the equations of
motion are rewritten in the coordinate system described
by (6), the singularity appears as a fixed point. For the
singularity to be observed, the dynamics must be driven
toward the fixed point, which means that all eigenvalues
of the linearization must be negative: this is known as
“type I singularity”. Mean curvature flow belongs to the
“critical” case in which one of the eigenvalues is zero. A
careful analysis reveals that the singularity is reached,
but only on a logarithmic scale, cf. (7). However, this ef-
fect has never been estimated quantitatively. Our recent
results show that the second order contribution to (7) is
still universal [20], as confirmed by the numerical simu-
lations reported below. We suspect this remains true at
higher orders, but this still needs to be investigated.

III. NUMERICS AND COMPARISON TO

EXPERIMENT

In order to understand the approach to the asymp-
totic behavior (5) we performed numerical simulations
of the axisymmetric mean curvature flow equation (4),
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FIG. 5: A sequence of numerical profiles, obtained by simu-
lating (4) in the liquid bridge geometry. The non-dimensional
pressure has been set to ∆ = −0.2 for all simulations. The
initial condition is given by (8), with a = 0.4.

including gravity. We used an implicit, second order,
finite difference method as developed originally for the
fluid drop pinch-off problem in [22]. As hmin decreases,
smaller features need to be resolved near the neck. We
use an automatic mesh refinement as developed in [23]
to make sure all parts of the solution are well resolved.
This permits to follow the solution through 7 orders of
magnitude in the neck radius.

Unfortunately, the geometry of an axisymmetric crys-
tal dripping into a rectangular container is too compli-
cated for us to replicate the boundary conditions ex-
actly. Instead we use a simplified “liquid bridge” ge-
ometry where the crystal is held to a fixed radius at two
ends, see Fig. 5. The left end corresponds to the noz-
zle opening, which has been normalized to one, the right
end corresponds to the half-width Rc = 3.5R0 of the
container. The length of the computational domain is
L = Rc. As initial condition we take a linear profile,
modulated by a sine function of dimensionless amplitude
a:

hinit = (1 + (Rc/R0 − 1)x/L) (1 − a sin(2πx/L)) . (8)

The purpose of the amplitude a is to mimic the difference
between the three experimental dripping events, with-
out making an effort to approximate experimental initial
conditions quantitatively. Among others, a fully quanti-
tative description of the experiment would require us to
keep the height dependence of the hydrostatic pressure,
and to include the effects of the container walls.

The lower part of the profile sags somewhat under
gravity, and pinch-off occurs near the upper part of the
profile. In Fig. 6 we have re-plotted the square of the
rescaled neck radius, using the same experimental data
as before. Thus the asymptotic behavior (5) should give
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FIG. 6: The square of the rescaled neck radius, compared to
both simulation and theory. Symbols are the same data as
Fig. 4, the dashed and dotted lines are simulations of (4)
with two different initial conditions, corresponding to a = 0.7
and 0.4, respectively. The full line is the asymptotic result
(7).

a straight line of slope 2, which is included as the full
line, including the logarithmic correction implied by (7).
The result of two simulations for two different values of
a is included as the dashed and the dotted line. The ex-
periment is consistent with (7), if it is appreciated that
asymptotics is only reached for τ < 0.02.

This is also consistent with the direct numerical sim-
ulations of (4). Firstly, numerics starts to agree with
asymptotics around the same reduced time that the ex-
periment does. Secondly, the deviations from asymp-
totics are clearly non-universal: they depend strongly on
the initial condition. Only as the asymptotic regime de-
scribed by (7) is reached, does the system “forget” about
the initial condition. This is illustrated in Fig. 7, where
we have a plotted the deviation of the numerical solutions
from the theoretical prediction (7):

hmin =
√

2τ(1 − 1/(2lτ) + O(l−2

τ )). (9)

Considerable differences between the two initial condi-
tions persist to times |τ | ≈ 10−4 away from the singular-
ity, followed by very slow convergence toward (9). Even-
tually the deviations corresponding to the two numerical
solutions become very close, suggesting that even higher
order corrections to (9) are universal.

Thus although the experimental data seems to follow a
1/3-law in Fig.4, this appears to be fortuitous: by choos-
ing an appropriate initial condition, solution of (4) can
be constructed which closely resemble the experimental
data. For other initial conditions, however, solutions re-
main far from the experimental data.
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h
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FIG. 7: Reduced deviations from the asymptotic result (9) for
the two initial conditions, a = 0.7 (dashed) and 0.4 (dotted).
Note the logarithmic scale on the abscissa.

FIG. 8: As for dripping but now for their separation, the cube
of the half gap D between the two crystals is proportional
to the time ∆t. Different symbols correspond to successive
events recorded at Tmin + 9 mK.

IV. RECOIL

We have also analyzed the retraction of the two tips
of the crystal after it pinched off, and the results are
shown in Fig. 8. Plotting the third power of the half gap
D between the two tips, we find it being even more con-
vincingly described by a 1/3 power law (but with varying
amplitude).

However, once more do we believe that there is no par-
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FIG. 9: A numerical simulation of (4) after pinch-off, corre-
sponding to the profiles shown in Fig.5.

ticular significance to this observation. To gain further
insight, we compare to numerical simulations of (4), con-
tinuing the numerical simulations to times after pinch-off.
When hmin has reached 10−3, the neck is cut at the mini-
mum and the tips on either side are spliced to a spherical
cap. The results for the retracting tips, continuing the
simulation shown in Fig. 5, is seen in Fig.9. Extracting
the half-gap for the two initial conditions, one can com-
pare the results to experiment, as shown in Fig.10. Again
the results are very non-universal; however, the second
simulation happens to give a result that closely matches
two of the experimental data sets.

Again, the situation is very different from fluid drop
breakup, where a universal solution for tip retraction
was found [24]. The reason is the different character of
the similarity description before breakup. Namely, in the
fluid case the profile converges onto a universal shape for
all values of the similarity variable ξ. This means that
the behavior for large ξ can serve as a boundary condi-
tion for the solution after breakup, leading to a universal
post-breakup solution. However, the validity of (7) is re-
stricted to a small region |ξ| ≪ 1, whereas everything
outside of this region is non-universal. Hence the reced-
ing tip is in fact invading a region where the solution
depends on the initial condition, and so also depends on
initial conditions.

Nevertheless, one can estimate the retraction by ap-
proximating the profile at the moment of breakup by a
cone of half angle θ, which is reasonable as seen in Fig.11.
Let us begin by giving a rough argument for the speed of
retraction, which captures the essential physics. Namely,
we model the shape of each drop just after detachment
as a cone with half angle θ which terminates as a spher-
ical tip with radius R. The curvature is κ = 2/R so that
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FIG. 10: The square of the rescaled half-gap, compared to to
simulation and theory. Symbols are the same data as Fig. 4,
the dashed and dotted lines are simulations of (4) with two
different initial conditions, corresponding to a = 0.7 and 0.4,
respectively. The full line corresponds to the retraction of a
cone of opening angle 34.8 degrees.

FIG. 11: After separation of the two crystalline drops, a gap
opens. We approximate the shape of the two drops as cones
with a spherical tip; here the half angle of the cone is 34.8
degrees.

dR/dτ = 2 in non-dimensional variables. From simple
geometry we find the dimensionless half gap d = D/R0

between the two tips to be d = R(1−sin θ)/ sin θ, so that
the time dependence is

d2 = 4
(1 − sin θ)2

sin2 θ
τ. (10)

Of course, (10) cannot be completely quantitative,
since the real shape of the receding tip will not have the
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FIG. 12: The parameter ξ0 characterizing the speed of retrac-
tion as function of the slope s of the cone. The full line is the
result of our similarity theory, based on (12). The dashed line
is the approximation (10).

precise form assumed above. A more accurate description
can be obtained using the a similarity form analogous to
(6):

h(x, t) = τ1/2φa(ξ). (11)

If the motion starts from a cone, for large arguments
of ξ, φa must be a linear function with the same cone
angle θ. Namely, far away from the moving tip, the time
dependence on the right hand side of (11) drops out and
one matches onto a static profile. Inserting (11) into (4)
for ∆ = 0 one obtains the similarity equation

φ′′

a

1 + φ′2
a

+ ξφ′

a − φa − 1

φa
= 0. (12)

To obtain a solution of (12), we integrate (12) from a
value ξ = ξ0 to ∞. By the structure of (11), d2 = ξ2

0
τ ;

from an analysis near ξ = ξ0 it follows that φa ≈
2((ξ−ξ0)/ξ0)

1/2 near the tip. Using this local solution to
construct an initial condition, there is a unique solution
for each value of ξ0. The asymptotic slope s = tan(θ)
for large ξ establishes a relationship between ξ0 and the
cone angle, shown in Fig. 12. Evidently, while (10) cap-
tures the right qualitative behavior, quantitative results
require the solution of the full similarity equation (12).

For one set of data (red squares) we have fitted a cone
to the profile (cf. Fig.11), and found an opening angle of
about θ = 34.8 degrees. From Fig.12, this corresponds
to ξ2

0
= 5.87, which is the slope of the full line in Fig.

10. The predicted asymptotic behavior, based on the
simplifying assumption of initial cones, fits the data well,
but again only at very small time after separation of the
two drops.

In conclusion, we have studied the dripping of crystals
where viscosity and inertia are negligible, and the dissi-
pation is taking place only at the moving crystal surface.
Asymptotically, pinch-off is described by mean-curvature
flow, which exhibits an unusual type of self-similar behav-
ior including logarithmic terms. The important physical
consequence is that the approach to the singularity is ex-
tremely slow, so experimental observation, without the
benefit of theory, may lead to an incorrect identification
of scaling exponents. By the same token, a dependence
on the initial condition persists to very close to pinch-off,
as was recently observed for a related problem containing
logarithms [25]. Thus statements about the universality
of asymptotic behavior are virtually impossible to make
by observation alone, in the absence of quantitative the-
oretical estimates of transients.
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