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In order to understand how nucleation proceeds in quantum liguids such as
‘He and ®He, and the peculiarities of such quantum systems, I present a
review of nucleation in condensed matter. By describing successive exper-
iments, I first illustrate the interest and use of the elementary “standard
theory” of nucleation. Then I consider its limitations and the existence of
“spinodal” and instability limits, possibly in the frame of “density functional”
methods. When finally discussing nucleation at low temperature, I consider
a further improvement of the standard theory, namely the possibility of nu-
cleation by quantum tunneling. The main emphasis is on crystallization and
cavitation in liquid helium, but I also consider water, liquid hydrogen, wet-
ting, the nucleation of steps on crystal surfaces, vortices etc.

PACS: 64.10.+h, 67.20.4k, 67.80.-s

1. INTRODUCTION

Metastable liquids.

For a certain time, a liquid can stay in a metastable state, outside of
the stability region in its phase diagram. For example, liquid water can
be supercooled down to about -40 °C (233 K).! It can also be overheated
up to 200 °C under normal atmospheric conditions (P = 1 bar). Water
has also been stretched to -1400 bar, a remarkably large negative pressure.?
Such a metastablility is possible because the liquid /solid transition and the
liquid/gas transition are discontinuous (i.e. “first order”) phase transitions.
As a result, the interface between a liquid and its vapor has a certain energy
per unit area (its surface tension). Similarly, the interface between a solid



and its liquid phase also has a finite surface energy. For a more stable
phase (solid or gas) to appear in a less stable one (the metastable liquid),
an interface has to be created somehow, and there is an energy cost for that.
As a consequence, there is an energy barrier against the nucleation of the
stable phase, and metastability is possible.

Nucleation is called “heterogeneous” when it is influenced by the pres-
ence of defects, impurities, walls or radiation. This is the most common
case in nature. For example, water droplets in clouds freeze around -20 °C,
and this temperature depends on the pollution by dust particles and various
chemicals. When nucleation is an intrinsic property of the system, it may
take place very far from equilibrium conditions and it is called “homoge-
neous”. In this review, I mostly consider homogeneous nucleation, which
is simpler to describe quantitatively, and mention briefly heterogeneous nu-
cleation which is more difficult to study since the exact shape or nature of
nucleation sites is rarely known.

Negative pressures.

Some people find it difficult to consider negative pressures, although,
as we shall see immediately, they are present in everyday life.® The pressure
of a gas cannot be negative. Suppose that a gas is contained in a chamber
closed by a piston. If one pulls the piston, the pressure of the gas vanishes
linearly with the density inside according to the equation of state (Fig. 1).
Condensed matter is different: liquids and solids have a finite density at
zero pressure. Indeed, there exist attractive interatomic or intermolecular
interactions which are responsible for the cohesion. Stretching a liquid or a
solid means applying a positive stress to it. A negative pressure is nothing
but a positive stress.

If our chamber had very clean, smooth and hydrophilic walls, and if it
was filled with very pure water instead of a gas, we could pull the piston
and reach a moderate negative pressure before vapor bubbles would nucle-
ate. The pressure would follow an extension of the equation of state P(p)
in a metastable region at negative pressure (Fig. 1). As soon as gas bubbles
nucleated, the pressure in the water would rapidly come back to the atmo-
spheric pressure (41 bar). This is because the gas is highly compressible.
Now, surfaces are usually not perfectly clean, and heterogeneous nucleation
takes place easily on them. One can see heterogeneous nucleation in a glass
of champagne. Some air is first trapped on small defects on the glass surface
when it is filled. CO; then diffuses towards these few defects where bubbles
grow and escape, due to the buoyancy force, at a regular pace. The bottle
is free of bubbles because it is much cleaner and smoother inside. This has
a great practical importance since, otherwise, if nucleation of bubbles took
place in the bottles also, their filling would generate too much foam and
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Fig. 1. The pressure of an ideal gas is always positive. For a liquid, the
equation of state is such that the pressure can be negative. This is due to
the attractive interactions which are responsible for its cohesion, i¢.e. its
finite density at zero pressure. The liquid/gas transition being first order, a
liquid can be extended in a metastable state along its equation of state.

evaporate too much CO; gas.

Negative pressures exist at the top of high trees. Indeed, since the water
inside is under hydrostatic equilibrium, its pressure decreases as a function of
height. It is lower by 1 bar every 10 meters. If one neglects osmotic pressure
effects, and since the pressure at ground level is 1 bar, the pressure at the
top of a large redwood tree can be as negative as about -10 bar. Our piston
is the 100 meters high column of water pulling down the water at the top. It
is maintained there by capillarity. Some authors claim that cavitation can
be the factor which, in the end, limits the height of large trees.*

The pressure can also be negative in the core of strong vortices.” Indeed,
according to Bernoulli’s law, the quantity P + pv?/2 is constant in a non-
viscous fluid. Since, in an inviscid vortex, the velocity v is proportional to
1/r, the inverse radial distance from the core, the pressure can be strongly
reduced near this core. A velocity of 45 cm/s is sufficient to create a 1
mbar local depression. If the vortex emerges at the free surface, it makes
a local dimple about 1 cm deep. Behind a large, fast rotating propeller, if



the local velocity reaches 15 m/s, the pressure is depressed by 2 bar from
the atmospheric pressure and reaches -1 bar. In the ocean, this is enough to
trigger cavitation and, when exploding, the bubbles can damage the propeller
blade. In superfluid helium, vortices are quantized and the velocity given by
v = h/mr (m is the mass of the helium atom). Since there is no viscosity,
very large velocities and velocity gradients can occur without dissipation and
the vortex core is not limited to a macroscopic value as in normal fluids; it
is very small, of order an atomic size. For r = 2.5 A, one finds v = 60 m/s
and a negative pressure of -2.5 bar.

A historical example is Berthelot’s ampoule. In 1850, Berthelot held
the world record for negative pressures by cooling down a very clean glass
ampoule which he had first filled and sealed with water at high temperature
and pressure. When cooled down, the water evolved along an isochore and
the pressure decreased. Below a certain temperature depending on initial
conditions, the water was under stress. Berthelot reached -50 bar. It is the
same method which was used in 1991 by Zheng et al.,> who reached -1400
bar by making small inclusions of water in quartz crystals which they also
filled at very high temperature and pressure, and cooled down afterwards.

Finally, since an acoustic wave is an oscillation in density and pressure,
it can induce negative pressures if its amplitude is larger than the static
pressure in the medium where it propagates. As we shall see, this has been
extensively used for the study of cavitation in fluids.

2. STANDARD NUCLEATION THEORY
2.1. Elementary Theory
2.1.1.  The activation energy and the Arrhenius factor

Let us start with the case of cavitation in a liquid, for simplicity. As ex-
plained by Landau and Lifshitz,> one can model cavitation by calculating the
free energy of a spherical vapor bubble inside the metastable liquid (Fig. 2).
This bubble is an approximation of the “seed” or “nucleus” which has to
appear for the liquid to be replaced by the more stable vapor. This bubble
is assumed to have a radius R, and to be filled with a gas at a pressure P,
inside a liquid at pressure F;. A good approximation of its free energy is

4
F(R) = 47 R*y — gﬂ'RSAG , (1)

where 7 is the surface tension of the macroscopic interface between the liquid
and the gas, and AG is the difference in Gibbs free energy per unit volume
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Fig. 2. Within the “standard nucleation theory”, one calculates the free
energy of a small bubble with radius R as F(R) = 47 R?*y—4/37R*(P, - P).
The maximum value of F(R) is the energy barrier against nucleation. It
corresponds to the “critical radius” R.. This graph is drawn according to
the values of the surface tension v of liquid *He, for two different values of
the negative pressure in the liquid.

between the two phases. In the right hand side of Eq. (1), the positive term
is a cost in surface free energy, and the second one is a gain in volume energy.
According to Eq. (1), F(R) has a maximum value F for a “critical

radius”
2y

R.=—. 2
AC (2)
The maximum is the energy barrier against nucleation, given by
16773
F=—=. 3
3(AG)? 3)

The main assumption in this simple reasoning is to consider that the surface
term is given by the macroscopic surface tension. This is reasonable only



if the critical radius is large compared to the thickness of the interface. It
explains why it is often called the “thin wall” or “capillary” approximation.
As we shall see below, this result, although rather naive, has proved very
useful.

If fluctuations form a nucleus with a radius smaller than R., it tends to
shrink back to zero size. On the contrary, if the nucleus is larger than R, it
grows and invades the metastable phase. An important remark by Landau
and Lifshitz is that the critical nucleus of radius R. is under equilibrium
with its surrounding phase, even if this equilibrium is unstable. This means
that the two chemical potentials are equal and that AG can be expressed
in terms of the departure P, — Pey from the equilibrium pressure. Indeed,
one usually considers that the temperature inside the bubble is the same as
outside. If p;, are the respective densities of the liquid and of the vapor,
then one has

AG =P, = Pi= (1= po/p)(Pu— P) . (1)

As one approaches the critical point, the vapor density has to be considered,
otherwise it is negligible. In many situations, a good approximation of AG
is AG =| P, |. If one considered the nucleation of a solid from a liquid, one
would have AG = (1 — ps/pi)(Peq — F1).

It is also possible to express the departure from equilibrium in terms of
the temperature difference from the equilibrium temperature Teq. By using
the Clausius-Clapeyron relation, one gets:

AG =LV (Teq—T)/Teq (5)

where V' is the molar volume of the stable phase inside the nucleus, and L
the latent heat per mole.

Within this “standard theory” one proceeds by writing a nucleation rate
per unit volume and per unit time as

I'=Tgexp—(E/kgT) . (6)

The quantity ['g is called the “prefactor” because it is in front of the Arrhe-
nius exponential factor. It is the product of an “attempt frequency” by a
“density of independent sites”. Indeed, one counts in how many places (per
unit volume) the system can try to pass the energy barrier, and how often
it can do it per unit time.

Finally, the probability that nucleation occurs in an experimental vol-
ume V during a time 7 is an integral of the nucleation rate. One can write
it as

Y=1—-exp[-loVTexp(—F/kgT)], (7)



because it is one minus the probability that nucleation does not occur, which
itself decreases exponentially with V and 7. The above equation shows that
the nucleation probability varies exponentially as a function of the departure
from equilibrium. In a short range of pressure or temperature, it increases
from completely negligible to almost equal to one. One can thus define a
“nucleation threshold” where the probability ¥ is one half. This threshold
can be a critical pressure P,., or a temperature T.. If F'/kgT is large enough,
one can expand the activation energy E around its value F. = F(F.), and
write:

1 dF

Y=1-—exp [—1n2exp [_QE(P_PC)” . (8)

This expression is more general than the “standard theory” because it does
not use any explicit form of the activation energy F. One can then use
Eq. (3) to calculate the nucleation line P.(7):

P.(T) = B! [Tln (FOVT)] . 9)

In2

Equation (9) shows that homogeneous nucleation occurs at a pressure (or a
temperature) which depends only logarithmically on the prefactor I'g, the
volume V' and of the time 7 of the experiment.

2.1.2.  Fstimations of the “prefactor” I'g

Estimating ['g is difficult. It is fortunate that the nucleation threshold
depends only logarithmically on it. Some review on this problem is given
by D. Oxtoby® who explains that a rigorous calculation only exists in the
case of the condensation of a supersaturated gas. For this particular case,
he develops a kinetic theory for the growth of clusters which includes rates
at which atoms (or molecules) aggregate to liquid clusters or evaporate from

them. His result is ;
2 1/2
vn® [ 2y )
o= — [ — 10
o= () (10)

where v; is the volume per molecule in the liquid, n is the number density of
atoms in the gas, S = P/F.q is a measurement of the supersaturation and
m is the mass of atoms. This result resembles the one given by Blander and

Katz: 12
ro=N(22)" (11)

mmB

where N is the number density in the metastable phase and B a factor of
order 2/3.7 The term (v/m)'/? might be associated with the frequency of
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Fig. 3. The Kramers problem of a particle escaping from a potential well
V(x). The frequency of oscillations in the well at = z1 = 0 is wp; it would
be wyp in the inverse of the potential at z = x5.

capillary waves at some atomic scale. Indeed, their dispersion relation is

W= L1 (12)
Pl

If the average distance between atoms in the liquid is a, one has p = m/a®
and for a wavevector k = 1/a, w = (y/m)'/2. Except close to the critical
point where + vanishes, the critical nucleus cannot be too large compared
to an atomic scale, otherwise its energy is much too large for nucleation to
occur at a reasonable rate. As far as I know, no experiment has been precise
enough to verify Eqgs. (10) or (11).

As also explained by Oxtoby, his kinetic theory cannot be applied to cav-
itation, since one cannot write rigorous equations for the growth dynamics of
bubbles in the dense liquid by using sticking or evaporation probabilities of
single atoms. At this stage, it also appears that, on a given site, the system
attempts to overcome the energy barrier at a rate which should depend on
its viscosity. We imagine that a viscous system takes more time to build a
critical nucleus than if it had no viscosity. To include the damping of the
dynamics in the calculation of the prefactor is a further difficulty. As far as
I know, it has been solved only in the model system of one particle escap-
ing from a one dimensional potential well, the Kramers problem.®® Kramers



considered a particle of mass M in a potential V (z) depending on some vari-
able z (see Fig. 3). Following Grabert et al.,” we take the particle in the
well at « = 0, and we consider its possible escape above a barrier of height
Vi, at x = z3. The frequency of oscillations in the well is

wo = (V"(0)/M)'2 (13)

and they define
wy = (=V"(y) /M)? (14)

They describe the motion in the well by an equation of motion of type:

d*z  dV dx

—+ —+Mn—=0. 15

az T a T (15)
They define a normalized damping coefficient & = 7/2wp, and they find, for
small values of «, the expression

= ;’—;[(1 +a?)Y2 _ a]exp (_k%) (16)

for the escape rate. As expected, the damping of oscillations in the potential
well decreases the prefactor. One should also notice that it does not change
the exponent.

In the general case of a real sample of condensed matter, dissipation is
treated in a phenomenological way. Turnbull and Fisher!? have proposed

the expression:
NkgT o E
F = _— _— 1
h eXp( kBT) eXp( kBT) ’ (17)

where @ is an activation energy describing the temperature dependence of
diffusion. We notice that they are using a thermal frequency instead of an
oscillation frequency in the potential well. Of course it is somewhat sur-
prising to find Planck’s constant h in an expression describing a classical
process. However, in the frame of Kramers’ model, one sees that nucleation
cannot reasonably take place if E is too large compared to k7. Further-
more, except if the potential energy has some kind of pathological variation,
the frequency of oscillations in the potential well cannot be extremely dif-
ferent from the height of the barrier V;/h either. We thus understand that
Turnbull’s approximation may well work. We also notice that, according to
Turnbull’s expression, when a liquid is cooled down, the prefactor may be
very small if (®/kgT) is large: instead of nucleation, one observes a glass
transition, because the dynamics of the system slows down to nearly zero.




In a system with no dissipation, such as superfluid *He, Maris'! pro-
posed that the prefactor is

o kT 3
°T h 4zR3’

(18)

since the attempt frequency is close to a thermal frequency and the density
of “independent nucleation sites” is better described by the inverse volume
of the critical nucleus than by the number density of atoms. This is another
reasonable approximation, the one we used in liquid helium. It might be
useful to consider orders of magnitude in this particular example. Cavitation
occurs around P, = -8 bar at 1 K, so that the critical radius R, is of order
1 nm. A thermal frequency is kT/h = 2 x 10'° Hz at this temperature.
The quantity (y/m)"/?is 2 x 10" Hz. We could also consider the frequency
of a sound wave with a wavevector 2R.., which is 1.2 x 10! Hz. Since the
inverse volume of the critical nucleus is 2.5 x 10?° cm ™2, we conclude that
all approximations of the prefactor lead to 103! < I'y < 1033 em™3s~!. If we
now imagine that homogeneous cavitation is studied in a system having a
volume V in the range 1 to 1072 e¢m? in a time 7 from 1 to 1078 s, we find
V7 in the range 1 to 107%?%cm?s. Eventually, since F/kgT = In (I'oV 1) for
nucleation to occur with a probability of order one, we predict that F/kgT
is in the range 25 to 75 for such a system. It is useful to keep these numbers
in mind.

2.2. Supercooling Water and Liquid Hydrogen

I wish now to describe two experiments which illustrate how the stan-
dard theory of nucleation can be used. The first one is a study of ice nu-
cleation in supercooled water by Peter Taborek! in 1985. At that time, one
tried to understand how far liquid water could be supercooled. Water is a
complex fluid. HoO molecules have two covalent O-H bonds, but they also
make two H-bonds with neighboring molecules. As a result, the O-atoms
tend to be surrounded by 4 H-atoms in the directions of a regular tetra-
hedron. Water is an “associated liquid”, which means that it is made of
clusters of tetrahedra which dissociate and re-associate at thermal frequen-
cies (about 10'? Hz). Bonding HyO molecules takes space because of the
local symmetry it imposes. This is the origin of well-known anomalies in
the physics of water. The first anomaly is, of course, that ice floats on top
of water, and this is because, in ice, H-bonds organize H30 molecules in a
hexagonal lattice which is not very dense, while, in water, the smaller num-
ber of H-bonds allows the packing of molecules to be denser. The second
anomaly has the same physical origin: cold water contracts when warmed

10



up instead of expanding. The expansion coeflicient of water is negative be-
low 4 °C. This is because, as the temperature decreases, more molecules are
linked by H-bonds, and that makes the volume increase.

With the idea in mind that water is an anomalous liquid, various authors
have predicted further anomalies and instabilities of water, in particular in
its metastable region. In 1985, Taborek wanted to see if water could not be
supercooled below -40 °C because there was some singularity in the phase
diagram there, or simply because this was the typical temperature at which
homogeneous nucleation took place.

He designed an experiment in which heterogeneous nucleation had to be
suppressed. For this he used very pure water, of course, but he also divided
the water in small droplets. This is an important idea. If the water contained
a few solid particles which were favorable to the heterogeneous nucleation
of ice, they would be isolated in a few contaminated droplets and would not
affect the others. Taborek thus made an emulsion of water by mixing it with
oil and a surfactant. The oil was “petroleum jelly” and the surfactant either
something called STS or STO. By warming up and stirring everything with
variable strength, he could obtain a dispersion of droplets with a rather well
defined and variable size. When cooling back, the petroleum jelly jammed
and the droplets were stable for a long time.

He then measured the rate of nucleation of ice by monitoring the rate
at which the latent heat of crystallization was released in his emulsion. For
this he put everything in a calorimeter whose temperature was carefully
regulated. If heterogeneous nucleation was taking place on the water/oil
interface, it would depend on both the nature of the surfactant and the sur-
face area of droplets, that is on their size. He found that the STO surfactant
was not good, since he observed a size dependence of the nucleation rate.
On the contrary, with STS, the nucleation rate was smaller than with STO,
and independent of droplet size. He thus concluded that nucleation was
homogeneous with STS (see Fig. 4).

He then tried to compare his nucleation rate with the formula proposed
by Turnbull and Fisher [Eq. (17) above]. The activation energy for diffusion
® made only a small correction, and he found a nice exponential variation of
the nucleation rate as a function of T'. At that time, the exact value of the
energy of the ice/water interface was not known. In fact, he used the stan-
dard nucleation theory to determine this interfacial tension, and found that
it was 28.3 erg/cm? at 236 K. An even better fit was obtained by including a
small temperature variation (dy/dT = 0.1 erg/cm?K) so that he estimated
v = 31.9erg/cm? at 273 K. If a singularity existed in the phase diagram of
water near -40 °C, it would affect the value of the surface tension. For exam-
ple, the surface tension would have been strongly reduced as one approached

11
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Fig. 4. P. Taborek! measured the rate of nucleation of ice in an emulsion
of water droplets with petroleum jelly and two different surfactants (STS
and STO). In the case of STS, the rate is independent of droplet size, thus
independent of the water/oil interface. The nucleation rate depends expo-
nentially on temperature. The standard theory of homogeneous nucleation
was used to extract the value of the ice/water interfacial tension.
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this singularity. Taborek would not have found such a good agreement with
the standard nucleation theory. He thus interpreted his results as evidence
that nucleation is homogeneous and that no singularity modifies it around
-40 °C. That is why he could use his experiment to determine the surface
tension of the ice/water interface.

The experiment by Seidel et a on supercooled liquid Hy is similar
and further illustrates the use of the standard nucleation theory. About at
the same time (1986), people were looking for superfluids other than liquid

1.12

helium, and liquid molecular hydrogen was a possible candidate. Hj has
a triple point in its phase diagram at 13.8 K, so that, contrary to liquid
helium, liquid Hy cannot be in equilibrium down to absolute zero. As had
been explained shortly before by Maris,'? if one could supercool liquid Hj
strongly enough, one could observe its superfluidity around 4 K with many
similarities and interesting differences with liquid helium. As in the case
of ice, the energy of the liquid/solid interface of Hy was not known. Maris
considered possible values in the range from 0.75 to 1.5 erg/cm?, and made
interesting predictions (see Fig. 5).

As the temperature is reduced below the triple point temperature 7},
the nucleation rate first increases, then passes through a maximum value,
and finally decreases sharply (note the logarithmic scale of the vertical axis
in Fig. 5). Indeed, the rate is negligible near equilibrium, i.e. T}, because
the energy difference AG is very small so that the energy barrier F is large.
As T tends to zero, AG saturates at a finite value, and F/T increases. In
between these two limits, I' has a maximum. Furthermore, the exponential
dependence of the nucleation rate on ~ is so strong that it reaches values
larger than 1 per cm3®s if v = 0.75 erg/cm?, but it is completely negligible
(I < 10759} if v = 1.5erg/cm?. This behavior is very general: if the surface
tension is large enough, one can hope to supercool a system down to absolute
zero. Taborek had also predicted a maximum nucleation rate for water at
170 K, but the surface tension is not large enough, and the maximum rate
is consequently too large for the supercooling of water to exceed 40 degrees.
As shown by Seidel et al.,'? the same happens with liquid Hj.

Seidel et al. also divided their liquid Hy into small droplets. For this
they injected it through a small nozzle into pressurized helium gas. The
helium was at 15 bar to match its density with that of Hy. More precisely,
a temperature gradient was applied to the helium chamber (see Fig. 6), so
that the density of helium was decreasing with height. Due to the buoyancy
force, liquid droplets floated at a certain height. When they crystallized,
they fell down to a different height because solid H; is denser, and this made
nucleation observable. Seidel and his collaborators could thus count the
number of nucleation events as a function of supercooling, and draw a semilog

13
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Fig. 5. The nucleation rate of solid Hy from liquid Hy as calculated by
Maris et al.'® for different values of the solid/liquid interfacial tension (in
cgs units).
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Fig. 6. Seidel et al.'?> measured the nucleation rate of solid Hy from liquid
H; droplets floating in a pressurized helium vapor. They used the standard
nucleation theory to extract the value of the liquid/solid interfacial tension.
They used the data at low temperature only because, above about 11 K,
convection in the gas perturbs the temperature measurements.
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plot of the nucleation rate as a function of temperature as had been done by
Taborek. After considering various possible artefacts such as the dissolution
of helium in hydrogen, they found a well defined exponential behavior of
the rate in a small temperature range around 10.7 K, and used the standard
theory to conclude that v was 0.874 erg/cm? at this temperature. This value
is not large, and explains why it is not possible to supercool liquid Hy by
more than 20% of its triple point temperature in macroscopic volumes.

Let us finish this Section with two examples where supercooling may
possibly be extended down to absolute zero. One concerns superfluid *He.
There are two different phases of superfluid 2He, called A and B. Near the
melting pressure at 34 bar, *He-B is stable below 2 millikelvin, and 3H-A
between 2 and 2.5 mK. There is a first order phase transition from A to B.
The interfacial tension has been measured by Osheroff et al.!* and found
substantial. On the contrary, the difference in free energy AG between A
and B is not large and saturates to a small value at T' = 0. If there were
no surfaces nor radiations which might both be responsible for its heteroge-
neous nucleation, *He-B would never nucleate.!®'® By using extremely clean
experimental conditions, Schiffer et al.'” reached very strong supercooling
of 3He-A. It is still somewhat controversial whether suppressing the effect of
walls would allow to supercool *He-A down to absolute zero.

A last example concerns the wetting transition. If a substrate is in con-
tact with a liquid in equilibrium with its vapor, there can be two different
situations. Either the liquid spreads (“perfect” or “complete” wetting) or it
forms drops which touch the substrate with a non-zero contact angle (“par-
tial” or “incomplete” wetting). Moreover, there can be a transition between
partial wetting to complete wetting as the temperature is increased above
a critical “wetting temperature” T,,. The wetting transition is a first order
phase transition in most cases. If one starts from a high temperature situa-
tion where the substrate is covered by a thick layer of liquid, and if one cools
the system down, one needs to nucleate dry areas to reach the equilibrium
state of this system. Since the line tension of the boundary between dry
and wet regions is generally high, and the difference in surface free energies
between wet and dry surfaces is not large, it is difficult to nucleate these
dry regions.'® In the case of liquid helium on cesium substrates, it has been
shown that the wet situation can be supercooled down to absolute zero. One
should notice, however, that, in this particular example, the possible rough-
ness of the substrates favors the wet state and cannot help the nucleation of
dry spots.
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Fig. 7. The homogeneous nucleation pressure of helium gas from overheated
liquid helium. Data points are from Sinha et al.'® in the case of *He, and
from Lezak et al.?° in the case of *He. Agreement is found with the standard
nucleation theory (dotted lines, see text).
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2.3. Boiling Liquid Helium at High Temperature

High temperature, in this case, means from 4 K to 4.6 K, as was done
by Sinha et al.'® in *He. With this example we start considering cavitation
in helium, a model system for the study of nucleation, in my opinion. It also
further illustrates the role of wetting and walls. The nucleation of bubbles
is usually called boiling when it results from a temperature change, and
cavitation when it is from a pressure change, but, in fact, cavitation and
boiling belong to the same physics.

Sinha et al. used a bismuth crystal which was immersed in liquid *He.
By applying a pulse of current through the Bi crystal, they produced a
pulse of heat which warmed up the liquid near the Bi surface. From the
magnetoresistance of Bi, they could monitor the local temperature. A careful
study as a function of power and pulse width (i.e. time), showed that there
existed a regime in which bubbles nucleated in the bulk of liquid helium near
the surface, not on the Bi surface.

Sinha et al. explained that this was due to the very good wetting of Bi by
liquid helium. To nucleate a bubble on the surface needed to push the liquid
away, and this was apparently more difficult than nucleating a full bubble
slightly away from the Bi surface. The temperature at which boiling started
was clearly identified as a well defined plateau in the time variation of the
Bi temperature. Starting from a given point on the liquid/gas equilibrium
curve Poq(T), they could measure precisely the overheating of the liquid and
plot a nucleation line in the phase diagram (see Fig. 7). Unfortunately, their
method could not be extended below 4 K where the nucleation pressure
becomes negative, nor above 4.6 K where the saturated vapor pressure of
liquid helium is 1.25 bar, since their glass dewar could not stand a higher
pressure. They were not able to measure the nucleation rate.

In order to compare with the standard nucleation theory again, they
used the expression proposed by Blander and Katz [Eq. (11)]. They obtained
perfect agreement by assuming a product V7 = 1 cm®s and using I'Vr =
1 on the nucleation line. In Fig. 7 (upper graph), | have used the slightly
different expression by Maris [Eq. (18)] with a more realistic value V7 = 4
107® cm®s and the agreement is still good. On the lower graph, the same
comparison is shown with the results obtained by Lezak et al.?° in *He. This
work was done with the same method in the same group at Portland State
University, a few years later. Once more, the agreement with the standard
theory is good. Some more years later in the same group, Nissen et al.?!
obtained additional data with a different method which we consider in the
next section.
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Fig. 8. Nissen et al.?! introduced an acoustic method to study cavitation in

liquid helium at negative pressure. A hemispherical piezo-electric transducer
generates a sound wave which is focused at its center. The nucleation of
bubbles scatters light from a laser beam which illuminates the acoustic focal
region.

2.4. The Use of Acoustic Waves for Nucleation Studies

2.4.1.  Cavitation in liquid helium at negative pressure

In their pioneering work, Sinha et al.'® noticed that, in order to check

the standard theory further, it would be interesting to extend the study
inside the negative pressure region. For this purpose, Nissen et al.?! used
ultrasound emitted by a hemispherical transducer (Fig. 8). The transducer
was a piezo-electric ceramic which was excited by voltage bursts at the fre-
quency of a resonance in a thickness mode. The ac-motion of the inner
surface of the transducer emitted a wave in the liquid which was focused
at the center by the geometry. At large enough vibration amplitude, the
negative swings in the wave produced transient negative pressures. The
possible nucleation of bubbles was detected by shining a laser beam through
the acoustic focal region: light was scattered by the density modulation in
the acoustic wave, it was scattered with a larger intensity at a larger angle
by the bubbles when they nucleated.

Nissen et al.?! calibrated the amplitude of the negative swings produced
in their experiment by analyzing first the electrical resonance of the trans-
ducer (I will come back to this method in Section 2) and also the light scat-
tering from the acoustic wave. They ended up with data points in agreement
with both the previous work of Sinha et al.!'® and the standard nucleation
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Fig. 10. Some nucleation signals obtained by Chavanne et al.?* in their study
of acoustic crystallization. Two pairs of recordings are superimposed on top
(transmission) as well as on the bottom (reflection) of this figure. They
used sound bursts with a width of 6 cycles. Nucleation of solid helium was
observed when the sound amplitude exceeded a threshold density of order
0.003 g/cm?. The two signals in transmission were recorded with the same
excitation level corresponding to this nucleation threshold; the probability
of nucleation was 0.45 in this case.
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(240 to 360 microns). From the known equation of state of liquid *He (see
Section 2), we could convert densities into pressures. The amplitude of the
acoustic pulse shown in Fig. 10 is 0.003 g/cm?® corresponding to 4.3 bar
around a static pressure Pyt which is the liquid /solid equilibrium pressure
FP,, = 25.3 bar. We could produce acoustic amplitudes about 5 times larger in
liquid helium, despite its low acoustic impedance which makes the coupling
of the transducer to the helium weak.

In Fig. 10, two pairs of signals are superimposed. They were obtained
during a study of the nucleation of solid helium from overpressurized lig-
uid helium. The lowest pair corresponds to the reflection of light at the
glass /helium interface. As explained above, it allows us to measure the in-
stantaneous density of liquid helium in the acoustic wave. Below a certain
threshold in amplitude, the signal shape is sinusoidal with an envelope which
is governed by the quality factor of the transducer (it is excited during 6 pe-
riods and it keeps ringing for some more time after the excitation voltage is
switched to zero). This signal is due to the acoustic burst only. Above the
threshold, the reflection of light is modified by the nucleation of a crystal
near the maximum pressure reached. These two signals are averaged over
1000 pulses.

On top of this graph, the other two superimposed signals are recordings
of the light transmitted through the acoustic focal region. They are single
shot recordings which were obtained with exactly the same excitation ampli-
tude. One shows light scattering by the acoustic wave only while the other
one shows a large negative signal due to additional scattering from the nucle-
ation of a small crystallite. Thanks to the analysis of the transmitted light,
it was possible to show that the nucleation was stochastic, and to measure
its probability by counting the number of nucleation events divided by the
total number of bursts. As shown in Fig. 11 (upper part), Chavanne et al.?*
found that the nucleation probability varied continuously from zero to one
in a narrow but finite amplitude domain, as one expects from the standard
theory. The solid line is a fit of Eq. (9) where the energy F was expanded as
a function of density instead of pressure. The asymmetric S-shape of such
curves is characteristic of this double exponential formula. It has a rounded
foot and a sharper head. One obtains such curves, which are nothing but the
integral of events histograms, whenever the prefactor is large enough so that
the ratio /T is significantly larger than one, and a linear expansion of F is
thus allowed in the vicinity of the nucleation threshold. Many other exper-
iments have seen such asymmetric S-shape curves in various other contexts
as we shall see below.

As also explained by Chavanne et al.?* their fit of the probability curve
leads to a measurement of the quantity dF/dp, the dependence of the activa-
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Fig. 11. The nucleation probability (top graph) increases continuously from
0 to 1 in a narrow density interval around p.. The temperature dependence
(lower graph) shows a quantum plateau below 300 mK above which it de-
creases with temperature, as expected for a thermally activated process.?*
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tion energy on the control parameter (here the local instantaneous density).
They found dE/dp = -3.84 Kem?/g. Furthermore, since In 'V 7 does not
vary much with temperature, one can consider that the ratio £//T is constant
along the nucleation line, as a first approximation. Writing d(E/T")/dT = 0,
one obtains
E_dndp) )
T dp dr
where p. is the threshold density corresponding to a probability 1/2. We
thus also studied the temperature dependence of the nucleation line (see
Fig. 11, lower part). We obtained d(p.)/dT = -2.6 10~* g/cm®K and finally
E/T = 10.

I have presented the above description of Chavanne’s experiment to
show first how the acoustic nucleation technique works, secondly how the
analysis of results can distinguish between homogeneous and heterogenous
nucleation. If homogeneous nucleation occurred, one could estimate the
activation energy from the standard theory. This is because, contrary to
previous cases, the liquid/solid interfacial energy is accurately known.?> E
should be of order 3000 K, in obvious contradiction with Chavanne’s result.
His experiment showed that, thanks to the acoustic technique, it was possible
to overpressurize liquid helium by several bars while previous experiments
were much more sensitive to impurities or defects and had found only a few
mbars.!® However Chavanne et al. demonstrated that his nucleation was
still heterogeneous, i.e. favored by the glass wall. A further check was to
calculate the number of nucleation sites after assuming that the attempt
frequency was a thermal frequency kg1 /h. He found that it was about
one, meaning that one defect was a little more favorable than others to solid
helium. If he had observed homogeneous nucleation, this number would have
been the ratio of an experimental volume to the critical nucleus volume, a
number in the range 107 to 10! (depending on whether one considers only
the area of the glass/helium interface in the acoustic focal region or its entire
volume). This experiment having shown that the optical detection is very
sensitive to the nucleation of solid, it opens interesting perspectives in the
search of homogeneous nucleation of solid helium, which should occur at
much higher overpressures, possibly +200 bar.?*32

2.5. Terraces and Steps on Crystal Surfaces

Another interesting example is the nucleation of terraces on crystal sur-
faces. Below the “roughening transition” crystal surfaces are facetted and
the crystal grows by the lateral displacement of steps bounding terraces.?>~27

Usually, the steps are provided by screw dislocations emerging at the crystal
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surface, and the growth rate is a quadratic function of the driving force ac-
cording to the Frank-Read mechanism.?% It was shown by Wolf et al.?” that,
close to the roughening temperature T, the dominant growth mechanism is
the nucleation of terraces. This new example of nucleation is similar to the
one considered above, with two differences.

First it is a two-dimensional process, so that the energy of a terrace
with radius R is

F(R) = 27RB — mR*ap;Ap (20)

where 3 is the step free energy per unit length, ¢ is the step height and
Ap = py — ps is the difference in chemical potential per unit mass between
the liquid and the solid. This equation is similar to Eq. (1) and shows that
there is a critical radius

B
C = ] 21
f apsAp (21
and an energy barrier
2
pe (22)
apsAp

for the nucleation of terraces. Wolf et al.?” studied this mechanism with
4He crystals where they had to distinguish three different regimes. At high
temperature and driving force, terraces nucleate everywhere at a high rate
so that the surface is covered by terraces, this is the “dynamic roughening”.
At very low temperature, and moderate driving force, the nucleation prob-
ability is small and the completion of each layer results from the growth
of terraces nucleated one by one. In this case, the growth rate should be
simply proportional to exp —(F/T) with F given by the above equation. In
practice, this mechanism is difficult to observe because, at low temperature,
it is dominated by the Frank-Read mechanism. However, in the vicinity of
Tr, the step energy 3 vanishes, so that the nucleation of terraces becomes
dominant. Its probability being large, terraces nucleate simultaneously at
different places and have time to grow on the surface. One thus has to con-
sider their coalescence. There is a characteristic time in this process, which
is a/v, the time for the completion of one layer if the growth velocity is v.
The density of terraces is the product of this time 7 by the nucleation rate
I', so that the average distance between terraces is 1/(I'7)'/2. Furthermore,
in a time 7, the terraces grow by an amount vge,7. Coalescence occurs for

UstepT = 1/(F7—)1/2 ) (23)

and we find a time 7 proportional to the cubic root of the rate I'. As
a consequence, the Arrhenius factor in the growth velocity has to contain
exp (—F/3T) instead of exp (—£/T).
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Fig. 12. Wolf et al.?® measured the relaxation of the height of a helium crystal
surface. Its velocity v depends on a height difference H which is proportional
to the difference in chemical potential between the liquid and the solid (see
text). From this semi-log plot, Wolf ef al. obtained the evidence that the
crystal grows thanks to the two-dimensional nucleation of terraces. Each
slope is proportional to the square of the step energy which vanishes as the
roughening temperature is approached.

Wolf et al. studied this by looking at the relaxation to equilibrium of a
crystal surface. They could force the existence of a height difference between
two parts of a solid-liquid interface in helium. Due to the superfluidity of the
liquid, there is no viscosity nor any problem of heat diffusion to slow down
the growth process of helium crystals. One can thus watch their relaxation
to an equilibrium shape in short times, even when the driving force is as
small as a difference in gravitational energy (a height difference). In their
experiment, they had Au = (ps — p1)gH, where H is the height difference
driving the relaxation. They compared their measurements of the growth
velocity v with the standard nucleation result:

73 ]
1

—_— 24
3apsApkgT (24)

v=kApexp— [
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where the prefactor kAp was chosen such that when the surface becomes
rough due to the proliferation of terraces, the growth rate has to be linearly
related to Ap through a known coefficient k. As shown by Fig. 12, they
found very good agreement. In a way similar to what Taborek or Seidel
et al. did, they used the standard theory to extract the step energy 3 and
its temperature variation, which are crucial quantities in the study of the
roughening transition.

2.6. When Does the Standard Theory Work?

The standard theory works when the nucleus is large enough compared
to the width of the interface between the stable and the metastable phase.
Taborek noticed that, in his case, R. was about 12 A, which is larger than
the thickness of the ice/water interface, although not much.! For cavitation
in helium at 4.2 K, R, is about 40 A, which is also significantly larger than
the width of the liquid/gas interface (less than 10 A). In the case of Wolf’s
terraces, R, is 5000 A at 1.15 K for a height difference of 2.5 mm, and
the step width, which is the correlation length on the facet, is about 1500
A at this temperature. Wolf et al.?> noticed that at higher temperature
(T > 1.23 K) their model failed because the width of the steps was larger
than the radius R, as estimated from Eq. (21). Cavitation studies in the
close vicinity of the liquid/gas critical point could not be interpreted easily
in the frame of the standard theory either, since the width of the liquid-
gas interface diverge there. Sinha’s experimental data do not extend in this
regime. Furthermore, as we shall see below, the standard theory cannot be
applied at low temperature either, nor very far from equilibrium.

3. INSTABILITIES AND SPINODAL LIMITS. DENSITY
FUNCTIONAL THEORIES

3.1. Cavitation at Low Temperature: the Standard Nucleation
Theory Fails

Let us consider the simple case of cavitation again, in the framework of
the standard theory. In usual situations, the gas density is negligible, so that
AG = =P, and, according to Eqgs. (3 to 9), the cavitation pressure should
be

3 1/2
167y )] (25)

Pcav = -
lSkBTln(FOVT
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Fig. 13. Summary of cavitation results in *He.!1:19:21:2345 Comparison with
theory. The experiments by Caupin et al.?® confirm that the cavitation
pressure deviates from the predictions of the standard theory at low temper-
ature. Agreement is found with the density functional theory of Guilleumas,
Barranco et al.*34%6% in Barcelona.

This equation predicts a 1/y/T divergence as T tends to zero, and this does
not seem realistic. It is hard to imagine that a liquid can stand an infinite
stress. Furthermore, the critical radius R. = 2y/ | P | is predicted to tend
to zero, and this is not realistic either. It is not possible to use macroscopic
quantities such as the surface tension v at an atomic scale. As we shall see
now, our cavitation studies in liquid helium have shown that the standard
theory fails at low temperature.

We have extended cavitation studies down to 0.04 K by using the acous-
tic technique described in Section 2.4.2%2? Instead of finding a divergence of
the cavitation pressure at low T, we found a limiting value of about -10 bar.
In Fig. 13, the prediction from the standard theory is shown for the product
V7 = 2.1071'6 cm®s which corresponds to the experiment by Caupin et al.?3
Their results are shown as vertical bars between lower bounds and upper
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Fig. 14. Chavanne et al.?®* found strong non-linear effects in the focusing
of large amplitude sound waves. The positive excursions of the pressure are
sharper and larger than the negative ones. These two signals were recorded
with a static pressure of 2 bar at 0.2 K. For an excitation of 29.4 Volt,
cavitation is observed at the most negative pressures.

bounds for the cavitation pressure. In this experiment, the hemispherical
transducer was used to focus sound into bulk liquid helium, with no glass
surface at the acoustic focus, just as in Nissen’s original set-up.?! In the
absence of local measurement, it is difficult to know the exact amplitude of
the acoustic wave. Nissen et al.?! assumed that non-linear effects are negli-
gible, so that the amplitude of the wave at the center is proportional to the
voltage applied to the transducer. This is correct at small amplitude, but
it was shown incorrect for the large amplitudes reached in Caupin’s experi-
ment. Evidence for the existence of non-linear effects is illustrated by Fig. 14
which shows data taken by Chavanne et al.?3?9 at 2 bar. The peak to peak
amplitude is about 30 bar and the sinusoidal shape is clearly distorted: the
minima are broad and the maxima are sharp, moreover, the shape of the
negative swings is not symmetric in time. This is of course because the am-
plitude is so large that the sound velocity near the minima is much smaller
than what it is near the maxima (one half in this case).

Appert et al.?®29 have reproduced such shapes in their numerical calcu-
lations of the focusing of large amplitude acoustic waves, and they showed
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that the main source of non-linearities is the shape of the equation of state
P(p), with amplification due to the spherical geometry. Caupin et al.?® have
analyzed the dependence of the cavitation threshold as a function of the
static pressure. By considering the sign of non-linear effects, they showed
that two different kinds of extrapolations respectively lead to an upper bound
and to a lower bound for the cavitation pressure in their experiments. A sim-
ilar calibration method was applied to cavitation in *He, where they found a
limiting cavitation threshold of -3 bar at low temperature (Fig. 15). In ®He
also, the standard theory of nucleation was shown to fail. In Fig. 15, the
1/+/T divergence predicted by the standard theory is shown for two different
volumes and times, one corresponding to the experiment by Lezak et al. (V1
= 4x107° c¢m?®s) and another to Caupin’s case (V7 = 7x1071 cm?s).29:%3
As can be seen, due to the logarithmic dependence, the nucleation line is
only weakly dependent on volume and time, but the divergence at low 7T is
stronger, consequently easier to test, for smaller volumes.

3.2. Spinodal Limits and Equations of State. Density Functional
Theories

Just like a solid, a liquid cannot be stretched up to infinite stress without
breaking. This is what the existence of a “spinodal limit” means. The exis-
tence of such an instability is already present in the van der Waals equation
of fluids. This equation writes

2

(P—I—a%)(V—bN):NkBT7 (26)
where a describes an attractive interaction between atoms, and b describes
their repulsive hard core a short distance. As we know, this equation
describes fluids very well in the vicinity of the liquid/gas critical point
(P. = a/27b% kgT. = 8a/27b, V. = 3Nb). After normalizing pressures,
temperatures and densities by their respective values at the critical point,
the van der Waals equation of state writes:

P=8Tp/(3-p)—3p". (27)

Figure 16 shows that this equation of state has one maximum and one
minimum which merge together to form an inflexion point at T.. At the
extrema, which are called spinodal points, the derivative dP/dp is zero. This
means that the compressibility of the fluid is infinite there. If one stretches a
liquid so strongly that its density reaches the spinodal point, it cannot resist
anymore, it is unstable and has to fall into the gas state. Symmetrically,
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Fig. 15. Summary of cavitation results in 3He.2%?? Comparison with theo-
ries. In *He as in *He (Fig. 13), the cavitation pressure is found close to the
spinodal limit at low temperature. The nucleation line and the spinodal line
labelled “Barcelona” are from the most recent results of Guilleumas, Bar-
ranco et al.*>%1 The two broken lines correspond to the standard theory
and two different values of the product V7, respectively 4x 1075 em®s (upper
curve) and 7x107'% em?s (lower curve). If calculated from an extrapolation
of sound velocity measurements by Roach et al.,’® the spinodal line shows a
shallow minimum near 0.4 K.
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Fig. 16. The van der Waals equation of state describes fluids near their
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spinodal lines, the compressibility is infinite, i.e. dP/dp = 0.

one cannot pressurize a supersaturated vapor above the gas-liquid spinodal
limit. The two spinodal points Py, (7) form two “spinodal lines” in the phase
diagram. Only one of them is shown in Fig. 19.

The spinodal limit also appears when considering the graph of the en-
ergy E(V) of a system with molar volume V. As explained by Maris,>** F
diverges to plus infinity as V tends to zero, it has a minimum for some finite
volume and it tends to the reference value ¥ = 0 when V tends to infinity
(Fig. 17). If one assumes that F' is a continuous analytic function of V', then
there is an inflexion point in this curve at some value V,. The pressure P
being the derivative of I with respect to V', P’ has a minimum at Vg, where
it should vary as (V — V;,)?. We see that the compressibility is infinite at
Vip- Since the sound velocity ¢ is the square root of dP/dp, it should vanish
near P, as (P — P,p)'/%. Maris®® modified this argument in 1991, and ex-
plained that (V') is non-analytical in the vicinity of Vi, and that ¢ should
vary as (P — P,p)'/3. In fact, he also found a much better agreement of the
sound velocity measurement with such a cubic law. As shown in Fig. 18,
a plot of ¢® vs P allowed him and later Caupin et al.?® to determine the
spinodal pressure at T = 0. They found -9.6 bar in *He and -3.1 bar in 3He.
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Fig. 18. As explained Maris,®" the cube of the sound velocity varies linearly
with the pressure P. This extrapolation by Caupin et al.?® allows to deter-
mine the spinodal limit where the sound velocity vanishes (-9.64 bar in “He

and -3.14 bar in *He).

According to the latest fit by Caupin et al.?® the equation of state for liquid
4He has the cubic form:

b2
o7 —=(p— pSp) ) (28)

with b = 1.4030 10° g~tem*s™, P, = -9.6435 bar and ps, = 0.094175
-3
g.cm™",

P-P,=

A similar equation of state was found by at least two other groups using
different approaches (see Fig. 19). One is a Monte Carlo calculation by
Boronat.®® The other one, by Dalfovo,>* uses a “density functional” method
which is a fundamental improvement of the standard nucleation theory. It
was first introduced in 1959 by Cahn and Hilliard®® in their historical series
of papers. In order to describe a system such as our critical nucleus, where
the density is not homogeneous in space, they expanded the energy to first
order in powers of the density gradient Vp and integrated in space:

F= / )+ A(Vp)2d%r (29)
In this expression, f(p) is the Helmholtz free energy per unit volume for a

system with homogeneous density p. This is the simplest form of density
functional. Without the coefficient A, the interface between a liquid and its
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gas would be infinitely thin. Thanks to the coefficient A, the energy of the
interface v can be calculated by looking for the particular density profile
which minimizes it. The surface tension + is given by

1/2

v= [ i - L sipo)| " dp. (30)

where pg is the liquid density at the equilibrium vapor pressure. This is how
A is adjusted, of course when + is known.

Maris?®37 used this simple density functional to calculate the size, den-
sity profile and energy of a spherical nucleus at any pressure. Indeed, at -8
bar for example, the standard theory predicts R. = 10 A, about the same
size as the thickness of the liquid/gas interface, so that a more elaborate
description is needed. Since the pressure is related to the quantity f(p) by

P =—f+pdf/dp, (31)

one can calculate f if one knows the equation of state. It takes into ac-
count the existence of the spinodal limit. More elaborate forms of density
functionals have been used by Guirao et al.® who wrote

(Vp)?
P

and could reproduce not only the value of the surface tension of liquid helium
but also most of the thermodynamic properties as a function of temperature.
This allowed them to calculate the whole spinodal line from T'=0to T = T..
As for Dalfovo et al.,>* they included other terms to describe the short range
order in the liquid. This allowed them to obtain the whole dispersion relation
of phonons in liquid helium as a function of wavevector, which has a famous
structure at atomic scale named the “roton minimum” (see Fig. 21).3°

All the results obtained for the spinodal limit in liquid *He are sum-
marized in Fig. 19. Not only the calculation by Maris, Boronat et al. and
Dalfovo et al. agree with each other, good agreement is also found with other
numerical results obtained in 1996 by Campbell*® and in 2000 by Bauer.*!:42
As can be seen, the spinodal limit in liquid *He is rather well established as
a line joining the point Py, (T = 0) = —9.3 & 0.4 bar to the critical point
(+2.289 bar at 5.2 K) where there is no difference between the gas and the
liquid.

f=FpT)+5 +E&(Vp)?, (32)

3.3. Comparison with Experiments

Since the compressibility diverges at the spinodal limit, the energy bar-
rier vanishes there: a local density gradient does not cost any energy and
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Fig. 19. A comparison between different theoretical predictions of the spin-
odal limit in liquid *He. Consistent results are obtained with different meth-
ods.

the liquid is unstable. If a system could be quenched down to its spinodal
line, its instability would lead to “spinodal decomposition”, a scale invariant
fractal structure. This is not our case. Indeed, our liquid has a finite size,
and it cannot be quenched to negative pressure at infinite speed. Further-
more, this quench cannot be made at strictly zero temperature so that there
are thermal fluctuations which allow the system to overcome a finite energy
barrier (we will also consider quantum fluctuations in Section 3). As a con-
sequence what is expected and observed is the nucleation of a critical nucleus
which has a finite size R., not spinodal decomposition. The nucleation is
followed by growth which leads to a macroscopic invasion by the stable phase
(the gas in the case of cavitation). The existence of the spinodal line is still
important to consider in our experimental situation because, in its vicinity,
the energy of the nucleus is strongly reduced.

Figures 13 and 15 show nucleation lines which were calculated by using
the results of the Barcelona group.?®4341 To draw such lines, one needs to
know the spinodal line and the activation energy F as a function of pressure
and temperature. In the range of activation energies of interest (1 to 100 K
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at most), ' can usually be well represented by a power law:
E=AT)[P - Pyp(T)]", (33)

so that the nucleation line is given by

= [ (B2 o

It can be calculated numerically after estimating the prefactor I'y and the
product V7.

Our experiments have confirmed that *He is about three times more
fragile than *He. Indeed, they confirm that nucleation takes place, in the
low temperature limit, near a spinodal pressure which is about -3 bar in *He
and -9 bar in *He. However, the temperature variation of the experimentally
observed cavitation pressure is not very well reproduced by the theoretical
predictions. First, the experiments show some kind of cusp in *He, near
the superfluid transition at T, = 2.2 K. We have no clear explanation for
this. It might be due to the proliferation of vortices near T which act as
nucleation sites for cavitation. The calibration of the negative pressure in
the experiments by Pettersen et al.'!
for Hall et al..*® In their Monte Carlo simulations Bauer et al.*! have shown
that the superfluid transition temperature is nearly independent of pressure,

is probably not very precise, as well as

equal to 2.2 K in the metastable pressure region between the equilibrium
line and the spinodal line.

At low temperature in *He, although the magnitude of the cavitation
pressure is consistent with predictions, its temperature variation does not
seem to agree with them. In Section 3, we will consider this more precisely,
since its understanding includes a crossover from the thermally activated
nucleation which we have only considered above, to a quantum nucleation
below a “crossover” temperature T,

In ®He, the magnitude of the cavitation pressure is again in agreement
with theory, but its temperature dependence looks too weak. Caupin et
al.*® explained this as a consequence of the anomalous sign of the expansion
coefficient of *He at low temperature. As explained in Section 3.4, the role
of such an anomaly was first considered in the case of water.

3.4. Maximum Density Lines: the Complex Case of Stretched
Water

3He and water have a common anomaly: when sufficiently cold, they
contract instead of expanding when heated up. In water, we have seen
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that it is a consequence of the H-bonds geometry. In liquid He, it is due
to its Fermi liquid properties. As recalled by Caupin et al.,*® the thermal
expansion coeflicient is

1 /70V 1 /0S
ov=v(55).= v (5p), (35)

As for the entropy of a Fermi liquid, it is given by:

m*

S=Cy=——Cp, (36)

m

where m™ is the effective mass of the Fermi quasiparticles and Cp is the
heat capacity of an ideal Fermi gas. The variation of S is dominated by
the pressure variation of the effective mass m* which increases with P. As
a result, the isobaric expansion coefficient ap is negative in the degenerate
Fermi regime of liquid *He.

The next interesting point is that the sign of ap is the same as the sign
of the slope of the spinodal line F,,(T") in the phase diagram, as noticed
by Debenedetti et al.*” Indeed, it can be shown that the spinodal line is an
envelope of isochores, so that its slope is

P, (0P
=L (G—T)V , (37)
and L /OVN /9P AP
e B i _ sp
Wy <8P)T <8T)p AT (38)

If a system has a negative ap at low T, and a positive ap above some
temperature, then its phase diagram has a line of maximum density (MD)
where ap = 0. If this MD line meets the spinodal line, then the spinodal line
has a minimum there. On the spinodal line below the minimum, the slope
is negative and ap is -oo, while, above it, it is +00. This is a remarkable
singularity.

In 1982, R.J. Speedy*® proposed a “stability conjecture”, according to
which the spinodal limit of water had a minimum at +35°C and -1500 bar,
because the MD line of water met it at that point. The MD line of water is
known at positive pressure. It goes through the point (4°C, 1 bar), but its
extrapolation at large negative pressures is not easy. This is why the shape
of the spinodal limit in water is still a matter of debate. In particular, a

different phase diagram was proposed later by Sastry et al.*®

who argued
that the MD line bends back to low temperature at negative pressure and
never meets the spinodal, which is consequently monotonic in temperature.
Acoustic cavitation studies in water could thus allow a crucial test of the

theory of water.
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Fig. 20. The temperature dependence of the cavitation threshold in *He.
The best fit is obtained with a spinodal which was calculated by Caupin et
al.,*® from sound velocity measurements by P. Roach et al..?°

1.%6 also noticed that an extrap-

Let us come back to *He. Caupin et a
olation of sound velocity measurements by Roach et al.°® led to a shallow
minimum in the spinodal line around 0.4 K. The link with the sign of the
expansion coefficient was not only supported by theoretical considerations
but also by measurements of the expansion coefficient by Boghosian et al.>!
Finally, the existence of this minimum slightly modified the temperature de-
pendence of the cavitation line in liquid *He. As shown on Fig. 20, it is still
monotomic but with a smaller slope than predicted by the Barcelona group

who used a monotonic spinodal line in their calculation.

3.5. Other Possible Instabilities

The spinodal limit is a line in the phase diagram where the system is
unstable. Its compressibility being infinite, its response to a macroscopic
stress is infinite. This phenomenon can be generalized. In the case of the
liquid /solid transition, no experiment has ever shown the existence of a
similar instability. It is not even obvious that it exists. However, the case of
helium is again interesting for the following reason. The dispersion relation of
elementary excitations in superfluid *He is known to show a “roton” branch
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taken from the neutron scattering experiments of Gibbs et al.’? at 0.5 K.
The solid lines are guides to the eye.

first proposed by Landau in 1941 (Fig. 21). Originally, Landau thought
that rotons were kinds of quantized elementary vortices. In fact, it is now
generally accepted that rotons are particular phonons. Their wavevector
is so short that they can be considered as single particles dressed by the
interactions of their neighbors.*! It has been shown experimentally that the
minimum energy of rotons ( their “energy gap” A) decreases with pressure.
This behavior is reproduced by the density functional theory of Dalfovo.?* It
seems that, as the density increases, the short range order around each *He
atom increases, and the phonon-roton spectrum resembles more and more
the phonon spectrum of a crystal in extended zone representation.
According to recent calculations using Dalfovo’s functional, the roton
energy should vanish around 4200 bar.?? Supposing that one could overpres-
surize liquid helium up to such a high pressure, what should happen? This
is reminiscent of another instability which concern the free surface of lig-
uids when charged. As shown by Leiderer,”® it is possible to charge the free
surface of superfluid helium. Electrons float on top of the liquid and their
density can be varied by applying a variable voltage across the surface. The
presence of charges modifies the dispersion relation of surface waves. At large
electron densities, this relation acquires a minimum at a wavevector which is
the inverse capillary length. If the voltage is further increased, the minimum
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goes to zero. A soft surface mode has appeared and a “dimple instability”
develops. This means that a corrugation spontaneously forms, and the free
liquid surface changes into a regular array of dimples. Could a similar phe-
nomenon occur in liquid helium at 4+200 bar? Why not? The wavevector of
the roton minimum is 27 over the average distance between neighbors (3 A)
and this possible instability would probably trigger the appearance of the
crystalline state. This was first proposed in 1971 by Schneider and Enz.?*
A soft roton mode corresponding to a divergence of the response function
at finite wavevector (instead of zero wavevector for the usual case of the
liquid/gas transition), I do not see why one could not call this instability a
“liquid /solid spinodal line”. Its study is in progress in our laboratory.

There are more common instabilities which play a role in nucleation.
When a non-wetting fluid is pushed through a hole, it makes first a small
meniscus with a small curvature. As the pushing pressure increases, the
curvature increases. When the meniscus reaches a hemispherical shape, its
curvature radius has its minimum possible value and it becomes unstable,
the liquid pops through the hole. This is a generic example of a system
in a cubic potential well V (z) which depends on some parameter A. The
instability occurs at a critical value A, where the potential barrier becomes
an inflexion point. One can show that the energy barrier varies as the 3/2
power of (A — X;). There are several examples of this behavior. One is the
heterogeneous nucleation of solid helium on defects. As shown by Ruutu
et al.,’® the threshold pressure at which helium crystals appeared in their
experiment was drastically reduced by the presence of favorable defects on
the walls of their cell.'® They modelled the observed activation energy as a
function of pressure by such a 3/2 power law. I believe that this 3/2 power
dependence is present in many examples of heterogeneous nucleation where
the barrier does not correspond to the creation of an interface but to the
escape of an already existing interface from a favorable site.

Another example is the nucleation of vortices in a superfluid flow through
a hole. Vortex rings are nucleated as soon as the flow velocity exceeds a crit-
ical value v.. According to Varoquaux et al.,”® this occurs in the fluid near
a wall defect which locally induces a maximum velocity. The energy of a
vortex ring depends on its size and on the velocity of the fluid around. It
vanishes at the critical velocity. As well as several other groups, they have
observed the stochastic nature of the nucleation of vortices and its temper-
ature dependence. In their model, the energy barrier for vortex nucleation
has the same 3/2 power dependence on (v — v.). A last, similar example is
that of the Josephson junction in superconductors. A weak link between two
superconductors can pass a current with zero voltage up to a certain value
I.. Above I., the voltage across the junction is finite. Devoret et al.>” have
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performed an extensive study of how the junction jumps from a zero voltage
state to a finite voltage state. Their model uses again a (I — I.)/? depen-
dence of an energy barrier, and they have found excellent agreement with a
linear dependence of the 2/3 power of the logarithm of their nucleation rate
as a function of the current I through the junction.

4. QUANTUM NUCLEATION
4.1. The Main Theoretical Ideas and Predictions

In order to pass an energy barrier, a system does not necessarily have
to use thermal fluctuations and go over it, it may tunnel through it by
a quantum mechanism. Since thermal fluctuations vanish in the T' = 0
limit, one expects the quantum mechanism to be dominant below a certain
“crossover temperature”. This is a further improvement which has to be
made to the standard theory of nucleation. 1 wish to describe first the
predictions in the case of the one dimensional particle, and then explain
how calculations have been made in the more difficult case of a condensed
matter sample.

Let us again consider a one-dimensional potential well (Fig. 3) and a
particle of mass M inside it. As explained in Landau and Lifshitz,’® the
tunneling rate can be expressed as

B
g =Tgoexp (—%) , (39)

where B is an action which can be calculated in the WKB approximation.

It is expressed as
T2
B = 2/ 2MV (z)dz . 40
[ o (10)

The particle is supposed to enter the barrier with zero kinetic energy at xy
and to leave it with the same zero energy at xz,. An alternative expression
is obtained when one knows the time evolution which minimizes the action.
It writes

ta 11

B=2 | [§Mv2 + V(ac(t))] dt | (41)

1
where the sum of the kinetic energy and of the potential energy appears.
As noticed by Maris,?” Eq. (41) illustrates the fact that the rate at which
the particle wavefunction is attenuated as a function of time is the amount
by which its energy is not conserved. The time for the particle to tunnel
through the barrier is v = t3 — ¢;. The difficult problem, of course, is to
calculate B. Even more difficult is the calculation of the prefactor I'go.
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This problem has a long history marked by the names of Langer,®® Lif-
shitz and Kagan,?®% Coleman,?® %! Caldeira and Leggett,®> among others.
In order to include the effect of dissipation in Kramers’ problem, Grabert
et al.? used the “functional integral approach” introduced by Caldeira and
Leggett. He calculated the classical escape rate, the quantum escape rate
and the crossover from one to the other. As we saw in Section 1.1.2, he
found that, in the classical regime at high temperature, the escape rate is

_“ 21/2 _ _&)
F_Qﬂ- {(1—|—0¢) a}exp( T (42)

where wq is the frequency of oscillations in the well, V, is the potential
barrier, and the dimensionless coefficient o = 7/2w; describes the damping
of the motion in the well. We had noticed above that, in this classical limit,
dissipation reduces the prefactor but does not affect the Arrhenius exponent.
The situation is the opposite in the quantum limit. When 7T tends to zero, for
weak damping and in the simpler case of a cubic potential where wy = wy,
Caldeira and Leggett predicted a quantum rate which was reproduced by
Grabert as

12 wo [V [ 36 V, . 45((3)
= ——/— - 1 43
V67 27\ hwg R hwo( + s ) (43)

where the Rieman function ((3)=1.202. As one sees, it is now the action
which depends on dissipation, not the quantum prefactor. We also see that
the action B is about 27V} /hwy and that dissipation increases it, so that it
reduces the quantum tunnelling probability. On the contrary, the quantum
prefactor is independent of dissipation.

Finally, Grabert also gives an expression for the crossover temperature:

o T 2\1/2
k5T _ﬁ{(l—l—a) —a] (44)

which shows that it is determined by the curvature of the potential at the
top of the barrier, and that dissipation reduces it. The quantity 27 /wy is the
typical tunnelling time 7. These predictions have been accurately compared
with the properties of superconducting Josephson junctions.”” Very good
agreement was found for the effect of dissipation which could be varied with
a resistor in parallel with the junction. A similar comparison is in progress
for the nucleation of vortices in superfluid junctions.?®
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4.2. Quantum Cavitation in the Thin Wall Approximation and
in a Continuous Medium

The problem of cavitation is more difficult to calculate. The physics
involved may be easier to appreciate if we start with the thin wall approxi-
mation. It has been calculated first by Lifshitz and Kagan,®° then revisited
by Maris.3" In this approximation (Fig. 2), the bubble enters the barrier at
R = 0 where the energy is zero, and it leaves the barrier at Ry = 3v/ | P |
where the energy is also zero (see Fig. 2). A calculation of the kinetic en-
ergy K of the fluid makes it possible to obtain the effective mass M of the
moving bubble. As it expands, it pushes the liquid away. This creates a
radial velocity field which is easy to calculate since it is assumed that there
is no viscosity. The total kinetic energy is the integral of pv?/2, given by the
expression:

K =27pR°R* = 1/2M R? (45)

so that the mass is

M(R) = 4rxpR® . (46)

We see that the mass depends on the variable R, and consequently varies
during the tunnelling process. The action B is then calculated as

B = QARl,/QM(R)V(R)dR

R 1/2
= 2/ 1 (327?2,07]%5(1—]%/]%1)) / dR
0

B 135\/677274p1/2
- O (47)

We see that the action B has a pressure dependence which is slightly different
from the energy barrier £/, which was proportional to 1/ | P |2.

Nakamura et al.®3
which is a bubble with zero radius, this calculation by Lifshitz and Kagan was
wrong by many orders of magnitude. They considered that the bubble had
a zero point energy which was large, since the mass was zero. According to
them, the tunnelling should take place from some energy level intermediate
between zero and the top of the barrier. 1 believe that this is an artefact
of their thin wall approximation, and that it is not physical. The initial
state is homogeneous, it is not a narrow hole in the liquid, such as a bubble
with zero radius. Since quantum nucleation occurs close to the spinodal
limit, density functional calculations show that the initial state is a wide
shallow depression in density, not a narrow deep hole. This is a very different
configuration which we now have to examine.

argued that, due to the zero mass in the initial state
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Fig. 23. In the inverted potential, the energy barrier becomes a well. In
order to find the optimum trajectory which minimizes the action, one has
to find a “bounce trajectory”,®! i.e. a trajectory which starts from C;, goes
down in the well, bounces at Cy and comes back exactly at C; with zero

velocity.

places V' by -V. Then the system has a real evolution in a potential well.
If one finds a particular trajectory which is such that the system goes from
C4 to (5 and bounces back exactly to €7, then this is the trajectory which
optimizes the quantum action (Fig. 23).

Maris®? first made a guess of what a good final configuration Cy could
be. For this he used a combination of cosine and gaussian functions. Then
he used the equations of hydrodynamics in the inverted potential to calculate
the real evolution of the system. He also neglected dissipation completely,
which is certainly justified in the case of superfluid *He. He then optimized
this configuration so that it bounces back on itself. He could also calculate
the action and, in fact his numerical procedure converged more rapidly if
he minimized both the action and the error in the bounce together. Once
he had found an optimal trajectory at a given pressure, he repeated the
calculation at all the successive pressures of interest and obtained B(P).
This calculation was done at T = 0, for *He and for 3He.
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At this stage, one might object that for the optimal trajectory, since the
system reaches the final configuration with zero kinetic energy, it should take
an infinite time. This is true except that the system always has fluctuations,
either thermal or quantum, so that the condition of zero kinetic energy is only
an approximation. In fact, the tunneling time is finite. Maris also noticed
that, in a multidimensional space of configurations, the system does not
necessarily go through the configuration which corresponds to the minimum
energy barrier (a saddle point in the landscape).

As shown in Fig. 24, Maris found configurations which are about 10 A in
size and evolve in a “tunneling time” 7, of order 20 to 40 ps. This time was
about the ratio of the action B to the energy barrier F, as expected. He also
found that, when starting close enough to the spinodal pressure, the critical
nucleus was not empty, it was a broad shallow minimum in density, very dif-
ferent from the standard theory bubble. This is because the compressibility
being large, it does not cost much energy to have density gradients extending
over a large space. He then estimated, as usual, that, in the prefactor, the
attempt frequency was the inverse of the tunneling time and that the density
of independent sites was the inverse volume of the nucleus [1/(10A)?]. He fi-
nally obtained a prediction for the tunneling rate and could compare it with
the classical nucleation rate, in order to determine at which temperature T
they had a comparable amplitude. He summarized his results in the graphs
shown in Fig. 25: the cavitation pressure depends logarithmically on the
product V1 as before. With no dissipation, the crossover is sharp between a
temperature independent quantum regime which he had calculated at T=0
only, and the classical regime. With V7 in the range 107% to 1072° em?s, he
found no significant variation of T*, which he predicted to be about 240 mK
in *He and 120 mK in He.

The Barcelona group. made a different kind of calculation with similar
results.®? They used Leggett’s “functional integral approach” and calculated
the crossover temperature from the oscillation frequency wy in the inverted
potential. As shown in Fig. 26, T™* depends on the pressure P.,, at which
cavitation occurs. This pressure changes if one varies the product Vr. For
a very small system, cavitation occurs very close to the spinodal limit. On
the contrary, for a very large system, it may occur at much larger pressure.
Guilleumas et al.5 showed that T tends to zero in these two limits and has
a maximum value in between, which is comparable to Maris’result. This is
interesting but, for realistic values like 107%° < V7 < 1 em?®s, P.,, is only
0.1 to 0.5 bar above the spinodal limit, so that the crossover always takes
place near the maximum of 7(P).
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Fig. 26. The crossover temperature from quantum to classical nulcleation,
as calculated by Guilleumas et al.%* in both *He [top graph labelled (a)] and
3He [lower graph labelled (b)]. In practice, experimental volumes and times
are such that the crossover temperature is close to its maximum value. The
broken line corresponds to the calculation in the thin wall approximation as
done by Lifshitz and Kagan.®®

4.3. Quantum Cavitation in Superfluid *He. Comparison with
Experiments

Caupin et al.?? have checked the common predictions of these two quan-

tum theories in liquid helium. Their data show a rather large scatter in
Fig. 13, but this is mostly due to the extrapolation used to calibrate the
pressure. Since we are now more interested in temperature variations than
in absolute pressures, it is better to come back to the raw data shown in
Fig. 27. The three sets of measurements were done at three different static
pressures in the cell. They all show a temperature independent plateau be-
low 0.7 K, and a decrease of the cavitation threshold at higher temperature.
In order to compare with theory, we used the following procedure. We knew
that V7 was about 2.107'6 ¢cm?s in this experiment. Following Maris, we
then estimated the prefactor as Iy = 1.7 x 10%! cm ™35! so that the action
had to be B =1In(I'¢V7) = 35 I if the theory was correct. Furthermore, Maris
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Fig. 27. As observed in *He by Caupin et al.,?® the cavitation threshold shows
the expected crossover from a quantum regime to a thermally activated one
at higher temperature. The crossover temperature is found independent of
the static pressure.

had calculated that the action B should be 35k at P = F, 4+ 0.25 bar and
according to the Barcelona group it had to be at F, + 0.34 bar. These two
values being inside the large error bars of the experimental measurements,
we considered this first comparison as satisfactory. However, the theory also
predicted a crossover temperature 7™ three times lower than observed.
This was only an apparent contradiction. Indeed, 0.3 bar above the
spinodal, the sound velocity c is strongly reduced compared to its value at
positive pressure. According to the equation of state by Maris, it is 71 m/s
at Py, + 0.3 bar, to be compared to 240 m/s at P = 0 bar. Since we used
an acoustic wave to produce negative pressures, and since this wave was
nearly adiabatic, there was a substantial temperature oscillation associated
with the wave. The entropy of superfluid helium is proportional to (T'/c)? in
the low temperature region where phonons dominate the thermodynamics.
As a consequence, when the pressure swing reached its minimum negative
value, the temperature had to be reduced by the factor 240/71 = 3.4 with
respect to its static value. The temperature indicated in Fig. 27 is the static
temperature in the cell of course, and it thus needs to be corrected by a fac-
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Fig. 28. Comparison of the temperature dependence of cavitation in *He
with quantum cavitation theories. The experimental temperature has been
corrected for the adiabatic cooling in the acoustic wave (see text).

tor 3.4 for the comparison with theory. We did a more precise temperature
correction by using the recent calculation by Edwards and Maris of constant
entropy curves in the phase diagram.?? Once corrected this way, Caupin’s re-
sults show a good agreement with the quantum nucleation theories (Fig. 28).
The crossover temperature 1™ is now correct and the temperature depen-
dence of the classical regime has about the right magnitude as well. We
have tried a last check with the width of the probability curve. In order
to be precise, the measurement of this quantity needs an analysis of a very
large number of events. As far as we can tell, the order of magnitude of
this width is also consistent with theoretical predictions, but it would need
further study, in particular the temperature dependence of this width in the
classical regime should be studied carefully.

4.4. Nucleation in a Fermi Liquid: *He at Low Temperature

When studying liquid *He, Caupin et al.?* found no crossover to a quan-
tum cavitation regime at the temperature (120 mK) which had been pre-
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Fig. 29. The cavitation threshold voltage shows no quantum plateau in *He,
as opposed to *He. This was attributed to the existence of a zero sound
mode in Fermi liquids by Caupin et al.*® (see text).

dicted. As shown in Fig. 29, instead of finding a plateau as in *He, Caupin et
al. found a sudden increase of the cavitation threshold below 80 mK. Note,
however, that the vertical coordinate on this graph is the voltage applied to
the transducer, not the calibrated pressure at the acoustic focus.

At first sight, one could argue that this is because *He is not a su-
perfluid. The quantum cavitation is a remarkable quantum tunnelling at a
mesoscopic scale: liquid *He tunnels from a homogeneous density configura-
tion to an inhomogeneous configuration which is some kind of hole concerning
several hundreds of atoms. If the tunnelling resulted from the independent
tunnelling of individual atoms, the tunnelling probability would include the
product of a large number of small exponential factors and would be totally
negligible. Is the superfluid coherence involved? Is it the macroscopic wave
function of the superfluid liquid which extends through the barrier in con-
figuration space and allows the system to tunnel? Yes, but what is needed is
the coherence in a density wave, and this has nothing to do with the quantum
coherence associated to superfluidity. In a solid at low temperature, there
are quantum fluctuations of density, the zero point phonon modes, and no
superfluidity. The coherence required for the tunnelling does not concern
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liquid *He. On the contrary, the velocity of zero sound tends to the Fermi
velocity which is finite.%¢

the same degrees of freedom as the superfluidity.

It has been argued also that liquid *He is a viscous liquid at low tem-
perature, so that the quantum cavitation regime should be pushed down to
much lower temperature than one initially thought.®® This may be true, but
it is the low frequency viscosity which diverges as 1/T?2, and at the scale of
our nucleus, dissipation seems much smaller. In fact, quasiparticles are bal-
listic on a scale of 10 A at 100 mK, so that there seems to be no dissipation
at all during the tunnelling time we have considered above. This leads us to
another interpretation of Caupin’s results which we think is more likely. It
is a particular property of Fermi liquids.

At the spinodal limit, the diverging quantity is the static compressibil-
ity of the liquid. Only the low frequency sound has a vanishing velocity.
Furthermore, being a Fermi liquid at low temperature, >He has a quantum
stiffness at high frequency. As temperature decreases, the collision time be-
tween 3He quasiparticles increases, and when it is larger than the sound pe-
riod, the ordinary sound (“first sound”) enters a collisionless regime called
“zero sound”. This quantum mode is a deformation of the Fermi surface
which propagates in the liquid. At positive pressure in *He, the zero sound
velocity ¢g is only slightly larger than the first sound velocity ¢;. As pressure
is reduced towards the spinodal limit, ¢; tends to zero but ¢y tends to the
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Fermi velocity, which is about 80 m/s at -3 bar (Fig. 30).

In the above theory, the nucleation of bubbles proceeds via a density
fluctuation with a short typical wavelength (10 A) At 100 mK, sound waves
with such wavelengths are well inside the zero sound ballistic regime, so
that they are not soft, due to the presence of quantum effects which would
need to be included in the theory. In fact, for the energy barrier to be low
enough, one needs the radius R, to be larger than the mean free path I,
of quasiparticles, so that, nucleation proceeding in the hydrodynamic first
sound mode, the energy barrier is small. The mean free path [y, is 11 nm
at 100 mK and 45 nm at 50 mK. The condition R. > [y, can be achieved
because R, diverges as P tends to the spinodal limit F,. This divergence
had been already noticed by Lifshitz and Kagan, and also found by Maris
in his calculation. It is proportional to (P — Psp)_1/47 so that it happens
only very close to Fy,. For E. to be 10 nm, one needs P = P, 4+ 0.02 mbar.
Now, in such a vicinity of the spinodal limit, the non-linear effects become
very large in the focusing of our acoustic wave: it is very difficult to build
a negative pressure in a system which becomes infinitely soft. This is why
cavitation suddenly needs a much larger voltage applied to the transducer.
The temperature at which this happens is a crossover temperature from
first sound to zero sound for density fluctuations of typically 1 to 10 nm
wavelengths. It might still be possible to observe quantum cavitation in
liquid *He, but, apparently, this should occur at a temperature much lower
than originally thought.

5. CONCLUSION AND OPEN PROBLEMS

We have seen that the standard nucleation theory is simple and useful,
and that it applies to many experimental situations where the radius of the
critical nucleus is large enough. This was shown to be true with several
examples. We have seen how many liquids can be studied in a metastable
state, away from their equilibrium conditions. We then saw that at low
temperature, nucleation may require that the system be under much larger
departure from equilibrium so that the standard theory needs to be im-
proved. The first of these improvements is the consideration of instabilities.
A particularly important one is the spinodal limit, which is a bulk instability
of the system whose response function diverge at a certain pressure which
depends on temperature. It is best considered in the framework of density
functional theories which proved very useful too. A further improvement is
the consideration of quantum tunnelling, which is the only nucleation regime
left when thermal fluctuations disappear. We have seen that the theory of
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quantum nucleation is difficult in a system with many degrees of freedom
such as a macroscopic sample of liquid at negative pressure. The theoretical
understanding of this benefits a lot from the theory of the quantum escape
out of a one-dimensional potential well. Results have been obtained in the
case of the quantum cavitation in liquid *He. They support the available
theoretical results, but the comparison is not yet as precise as was done for
the tunneling of superconducting Josephson junctions.

To be exhaustive, I should have also considered cavitation in presence of
electrons in liquid helium.®” Electrons form bubbles which are well defined
and well understood objects. In a sense, they are calibrated impurities which
can be injected in liquid helium. Their study allowed other progresses, in
particular a better understanding of how bubble chambers work.5® I should
also have considered cavitation in the presence of vortices. Maris®® and
Dalfovo™ have shown that the presence of vortices lowers the cavitation
threshold in superfluid *He, but no experiments have brought clear evidence
for this mechanism yet.

If one considers the absence of nucleation as a possibility of studying
metastable states, many interesting problems would need further investiga-
tion. Is the spinodal line of water monotonic in temperature or “re-entrant”?
Is there a spinodal limit for the liquid/solid transition as well, and could it
be observed by overpressurizing liquid helium very strongly? What is the
exact shape of maximum density lines in water and in liquid helium in the
metastable regions 7 How does the superfluid transition (the “lambda line”)
extrapolate either at negative pressure or in highly overpressurized liquid
1He? Would it be possible to study the influence of dissipation on quantum
cavitation by adding *He impurities in superfluid *He? In fact, I have not
considered the phase separation of mixtures either in these lectures, and it
seems to me that there is not yet any consensus on the understanding of
nucleation in *He/*He mixtures.™
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