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We propose that the liquid-gas spinodal line of 3He reaches a minimum at 0.4 K. This feature is
supported by our cavitation measurements. We also show that it is consistent with extrapolations of
sound-velocity measurements. Speedy [J. Phys. Chem. 86, 3002 (1982)] previously proposed this pecu-
liar behavior for the spinodal of water and related it to a change in sign of the expansion coefficient a,
i.e., a line of density maxima. 3He exhibits such a line at positive pressure. We consider its extrapolation
to negative pressure. Our discussion raises fundamental questions about the sign of a in a Fermi liquid
along its spinodal.
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Because of its high purity, liquid helium is an ideal ma-
terial in which to study homogeneous nucleation. During
the past years, a powerful experimental method has been
developed to investigate the gas nucleation in the stretched
liquid. It consists in focusing a high amplitude sound wave
in a small region far from any wall, thus making hetero-
geneous nucleation unlikely. In this Letter, we present a
detailed analysis of results recently obtained in 3He [1].
We show that these results disagree to some extent with
existing theoretical descriptions of the liquid at negative
pressure. We then propose an estimation of its stability
limit [the spinodal line, where �≠V�≠P�T and �≠V�≠T �P

diverge] based on sound velocity measurements by Roach
et al. [2]. The spinodal Ps�T� we obtain exhibits a mini-
mum at 0.4 K and gives a temperature dependence of the
cavitation pressure consistent with our measurements. For
water, Speedy [3] previously proposed a spinodal with a
minimum and showed that this change in slope of Ps�T �
was linked to the change in sign of the isobaric expansion
coefficient a. This change in sign, which corresponds to a
line of density maxima (LDM), also occurs in liquid 3He
at positive pressure. We give an extrapolation of the LDM
at negative pressure and finally give theoretical arguments
about the sign of a near the spinodal line.

In any substance below its saturated vapor pressure, the
liquid phase can be metastable since an energy barrier Eb
must be overcome for liquid-gas separation to occur, that
is, for a bubble to nucleate in the liquid. The experiments
in liquid helium reported in Ref. [1] measure the proba-
bility of these cavitation events. For a given experiment
performed in an experimental volume V and during an ex-
perimental time t, this probability is, at a pressure P and
a temperature T ,

S�P, T� � 1 2 exp

∑
2G0Vt exp

µ
2

Eb�P, T �
kBT

∂∏
, (1)
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where G0 is a prefactor discussed below. The experi-
mental measurements are reproduced by the asymmetric
S-curve formula of Eq. (1) with great accuracy [4]. G0
has the dimensions of frequency times an inverse volume.
It is natural to estimate G0 as an attempt frequency n

at which the fluctuations try to overcome the nucleation
barrier multiplied by the density of the critical nuclei
which can be taken to be spheres of radius Rc [5–7]. Typi-
cally, Rc is around 1 nm and the attempt frequency varies
from kBT�h to Eb�h; all the different estimates thus
lie between 5 3 1036T and 1.5 3 1038T m23 s21 K21.
Pettersen et al. [7] have calculated V and t for the
experimental method which uses an acoustic wave to
produce a negative pressure swing in the liquid. For
3He and for a 1 MHz acoustic wave as in Ref. [1],
this gives Vt � 1.2 3 10222 m3 s [8]. The theoretical
estimates of the factor G0Vt thus vary from 6 3 1014T
to 1.8 3 1016T K21. Although this range extends over
2 orders of magnitude, it does not significantly affect the
value of the energy barrier: for S � 0.5, all estimates give
Eb � �34 6 3�kBT .

Recently, Caupin and Balibar [1] have given experimen-
tal limits for the pressure at which the cavitation probabil-
ity is one-half [the cavitation line Pcav�T�] in liquid 3He
and liquid 4He. The upper and lower bounds deduced from
their measurements in 3He are shown in Fig. 1(a). The
actual cavitation line is located between these limits and
parallel to them. For both isotopes, Caupin and Balibar
made a comparison with the spinodal pressure at which
the nucleation barrier vanishes; they used the values ob-
tained by Maris at low temperature: Ps � 29.6 bars for
4He [9] and Ps � 23.15 bars for 3He [10]. In fact, be-
cause of thermal or quantum fluctuations in the liquid, the
cavitation pressure is always higher than the spinodal pres-
sure, and the difference can be calculated from Eq. (1) if
the expression of Eb�P, T� is known.
© 2001 The American Physical Society 145302-1



VOLUME 87, NUMBER 14 P H Y S I C A L R E V I E W L E T T E R S 1 OCTOBER 2001
-3

-2.8

-2.6

-2.4

-2.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Pr
es

su
re

 (
ba

r)

Temperature (K)

(a)

0

0.1

0.2

0.3

0.4

0.1 0.2 0.3 0.4 0.5 0.6

∆P
 (

ba
r)

Temperature (K)

(b)

FIG. 1. (a) Comparison between experimental and theoretical
cavitation pressures. The experimental limits for the cavitation
line are given by circles for the upper bound and squares for
the lower one; dotted lines are guides to the eye. Other lines
are theoretical cavitation lines calculated with G0Vt � 6 3
1014T K21 using two different sources for the spinodal pres-
sure (see Fig. 2): Guilleumas et al. [6] (dashed line) and this
work (solid line). (b) Temperature variation DP � Pcav�T � 2
Pcav�0.1 K� of the cavitation pressure. DP obtained from the
experimental lower bound is given by squares; the dotted line is
a guide to the eye. Other lines are calculated DP according to
Guilleumas et al. [6] (dashed line) and this work (solid line).

Maris [10] has calculated Eb�P� at low temperature by a
density functional method; close to the spinodal, his results
are well represented by a power law:

Eb

kB
� b�P 2 Ps�d , (2)

with b � 47.13 K bar23�4 and d � 3�4. However, to cal-
culate the cavitation pressure up to 0.6 K, we need to
know the temperature dependence of Eb. The strongest
source of this dependence is that the spinodal pressure
varies with temperature; therefore we write Eb�P, T� �
Eb�P 2 Ps�T�� and assume that Eq. (2) remains valid at
higher temperature with parameters b and d held constant.
The temperature dependence of the cavitation pressure fol-
lows from Eq. (1):
145302-2
Pcav�T� � Ps�T� 1

∑
T
b

ln

µ
G0Vt

ln2

∂∏1�d

. (3)

Guilleumas et al. [6] have calculated the spinodal
pressure as a function of temperature; they find a
monotonically increasing pressure as shown on Fig. 2.
Guilleumas et al. have also calculated Eb�P, T� and
deduced the cavitation line Pcav�T�. Their estimate of
Pcav�T� does not agree with our results. However, this
estimate was based on a value of Vt of 2.5 3 10219 m3 s
which is much larger than the one corresponding to our
experiment. We have therefore used our approximation of
Eb�P, T � and their result for Ps�T � to calculate Pcav�T� for
the appropriate value of Vt. Figure 1(a) shows the line
obtained with Eq. (3) for the lowest possible value of the
prefactor, namely G0Vt � 6 3 1014T K21. We first note
that this line does not lie between the experimental limits
at low temperature [12]; however, this could be due to
some systematic error in the lower bound estimate, which
would result in shifting each pressure by the same amount
(up to 60.15 bar as explained in Ref. [1]). Let us focus
on the temperature dependence of the cavitation pressure,
which is free of this systematic error: Fig. 1(b) displays
the quantity DP � Pcav�T� 2 Pcav�0.1 K� for the three
lower lines of Fig. 1(a). The temperature variation of DP
we obtain with the Ps�T� curve of Guilleumas et al. is
stronger than the experimental one.

How can we explain this discrepancy? Of course, one
can assume that the theory fails in estimating the value
of G0. However, to reproduce the experimental tempera-
ture dependence of Pcav would require G0Vt to be at
least 3 orders of magnitude smaller than expected. We do
not see any reasons to support this hypothesis. Instead, we
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FIG. 2. Comparison between two theoretical estimates of the
spinodal line: Guilleumas et al. [6] (dashed line) and this work
(full squares; the solid line is a guide to the eye). The spinodal
found in this work shows a minimum at 0.4 K. The dotted line
is a linear extrapolation of the LDM as measured by Boghosian
et al. [11] between 0 and 11 bars (see Fig. 3). Notice that the
pressure scale is different from Fig. 1.
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think that the experimental measurements question the
shape of the spinodal limit.

Before proceeding further, we need to recall how the
spinodal pressure Ps can be obtained: Maris’ method
[9,10] consists in extrapolating measurements of the sound
velocity c at positive pressure with a law of the form
c � �b�P 2 Ps��1�3. Maris used for c the measurements
of Abraham et al. at low temperature [13]. We used the
same method with a set of data from Roach et al. [2]: they
measured the first sound velocity along isochores at start-
ing pressures from 1.6 to 28.1 bars and as a function of
temperature from 0.01 to 0.6 K. The spinodal line we ob-
tained is shown in Fig. 2: the spinodal pressure reaches a
minimum of 22.9 bars around T � 0.4 K. We emphasize
that none of the previous estimates of the spinodal pressure
in liquid 3He [6,10,14,15] has mentioned the possible ex-
istence of a minimum in the spinodal line. The new shape
of the spinodal curve we propose is sufficient to remove
the discrepancy stated above: using again Eq. (3) with the
value G0Vt � 6 3 1014T K21, we find a cavitation line
which has a temperature dependence consistent with the
experimental results [see Fig. 1(b)]. One can wonder if
the use of Maris’ method to estimate the spinodal pres-
sure is relevant for the points at higher temperature. Ther-
modynamically, the spinodal line is the locus of points at
which the isothermal sound velocity cT vanishes, whereas
the measured sound velocity is the adiabatic one, cS. This
was stated before [16], along with the fact that the differ-
ence vanishes at zero temperature. We made the appropri-
ate corrections. Both spinodal lines, obtained with either
cS or cT, show a minimum, and their difference is less than
30 mbar. We have actually plotted the spinodal obtained
with the isothermal data in Fig. 2, and we used it in the
above reasoning.

We shall now turn to the physical origin of such a mini-
mum in the spinodal. A similar behavior was first pro-
posed by Speedy in the case of water [3]. This was the
basis of the stability limit conjecture introduced to ex-
plain anomalies of supercooled water: in his theory, the
liquid-gas spinodal was assumed to be reentrant at tem-
peratures below 35 ±C. A review of this topic also de-
scribing alternative theories can be found in Ref. [17].
Following a thermodynamical analysis first developed in
the case of helium [18], Speedy shows that close to the
spinodal the sign of the isobaric thermal expansion coef-
ficient a of the liquid is the same as the sign of dPs�dT .
Therefore, if the locus of points such that a�P, T � � 0
intersects the spinodal, this results in an extremum in the
curve Ps�T�. Water and 3He have in common that both
liquids exhibit a LDM: in some temperature range, they
expand upon cooling. Therefore they may exhibit such a
minimum in the spinodal. We have tried to adapt Speedy’s
conjecture to the case of 3He. The measurements of Roach
et al. give the expansion coefficient, but unfortunately they
are made in a region of the phase diagram where a is
always negative; to obtain the LDM in 3He, we need to
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know the temperature where a vanishes. Therefore we
used measurements by Boghosian et al. [11], which extend
to higher temperatures and agree well with Roach values
in the region where both sets overlap; the result is shown
in Fig. 3. A simple linear extrapolation of the LDM for
pressures below 11 bars extends down to the minimum in
the spinodal as shown in Fig. 2. In his original paper [3],
Speedy shows that the expansion coefficient at the spin-
odal undergoes a jump from 2` to 1` at the tempera-
ture at which the LDM meets the spinodal. To find some
evidence to support this prediction, we follow Speedy’s
analysis for water and derive the slope �≠a�≠T �P around
a � 0 for each isobar in the measurements by Boghosian
et al. This slope should diverge when the pressure reaches
the spinodal. Figure 3 shows that the experimental values
are consistent with this prediction.

We now give some theoretical arguments concerning
the sign of a. The negative sign of a in 3He at low
temperature was first observed experimentally in 1958 by
Lee et al. [19]. The same year, Brueckner and Atkins [20]
pointed out how this behavior was related to the variation
of the effective mass with density. Indeed, using a Maxwell
relation, we can write

a � 2
1
V

µ
≠S

≠P

∂
T

. (4)

In the Fermi liquid region, the heat capacity CV is linear
in T and we have S � CV � �m��m�CF where CF is the
heat capacity of the Fermi gas. Using Greywall’s measure-
ments of the effective mass [21] and extrapolating them at
negative pressure as we did before [16], we find that a

given by Eq. (4) remains negative down to the spinodal.
Of course, we should consider the corrections to the lin-
ear regime of the heat capacity and their evolution close
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FIG. 3. Temperature of density maximum (empty squares) and
inverse of �≠a�≠T �P around a � 0 (full circles) as functions of
pressure, derived from measurements by Boghosian et al. [11].
The dotted line shows the extrapolation of the LDM used in
Fig. 2. The solid line is a parabolic fit to 1��≠a�≠T�P forced to
vanish at the pressure of the minimum in the spinodal.
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to the spinodal. We see two sources of corrections. The
first one is the contribution of phonons to the heat capac-
ity, which varies as �T�c�3, where c is the sound velocity;
this term could become important near the spinodal where
the isothermal sound velocity vanishes. However, this is
relevant only for the long wavelength phonons: as stated
by Lifshitz and Kagan [22], the first correction to the linear
dispersion gives for small momentum

v2
k � k2�c2 1 2rlk2� , (5)

where l is a constant. As the spinodal is approached, the
dispersion relation thus becomes quadratic. A calculation
shows that the correction to a remains negligible at tem-
peratures of interest here. We also note that, if the sound
remains adiabatic at small k close to the spinodal, the use
of cS, which does not vanish at Ps, instead of cT would
further reduce the phonon contribution. The second cor-
rection is due to the coupling of the quasiparticles to the
incoherent spin fluctuations and varies as T3 lnT . This ef-
fect has been studied by Greywall [23], who has shown that
its amplitude decreases when pressure decreases; it is not
clear to us if this is the case until the spinodal is reached,
and this point requires further investigation.

We will end with some remarks about 4He. Its liquid
phase exhibits two lines of density extrema at positive pres-
sure. Clearly, it would be interesting to know how they
extend into the metastable liquid region to determine the
shape of the spinodal line. This problem is also related to
the behavior of the roton minimum in the excitation dis-
persion curve and to the slope of the superfluid transition
line in �T , P� coordinates at negative pressures. Several
authors [24] have addressed some of these issues, but a
unified picture is still lacking.

In this Letter, we have studied the temperature depen-
dence of the cavitation pressure in liquid 3He. We have
shown that recent measurements disagree with existing
theories. We then proposed a new picture for liquid 3He
at negative pressure. From the pressure and temperature
dependence of the sound velocity in 3He, we obtained
a liquid-gas spinodal different from what was previously
predicted: this new spinodal is reentrant, that is to say
that the curve Ps�T � exhibits a minimum of 22.9 bars at
T � 0.4 K. This new feature in the phase diagram of liq-
uid 3He agrees with our measurements of the temperature
dependence of the cavitation pressure. Following an analy-
sis by Speedy in the case of water, we have emphasized the
relationship between this behavior and the negative expan-
sion coefficient in 3He. Finally, we have given theoretical
145302-4
arguments to estimate this expansion coefficient at nega-
tive pressures.
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