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Frédéric Caupin, Sébastien Balibar and Humphrey J. Maris∗

Laboratoire de Physique Statistique de l’Ecole Normale Supérieure
associé aux Universités Paris 6 et Paris 7 et au CNRS

24 rue Lhomond 75231 Paris Cedex 05, France
∗Department of Physics, Brown University, Providence, Rhode Island 02912

We propose the existence of a new feature in the phase diagram of liquid
helium 3. Instead of being monotonic in temperature, the liquid-gas spin-
odal line should present a minimum at 0.4K. In analogy with cold water
where this was proposed by Speedy, we explain that such a minimum is a
consequence of the thermal expansion coefficient being negative down to the
spinodal line. We justify this from a comparison with our recent measure-
ments of the temperature dependence of cavitation in liquid helium 3 and
from new theoretical arguments.
PACS numbers: 67.55.Cx, 64.60.Qb, 65.20.+w

The high purity of liquid helium makes it an ideal material in which
to study homogeneous nucleation. During the past years, cavitation, that
is the gas nucleation in the stretched liquid, has been extensively studied.
The negative pressure at which cavitation occurs is obtained by focusing a
high amplitude sound wave in a small region far from any wall, thus making
heterogeneous nucleation unlikely. In this contribution, we present a detailed
analysis of results recently obtained in helium 3 1. We show that these results
disagree to some extent with existing theoretical descriptions of the liquid
at negative pressure. We then propose an estimation of the stability limit
for liquid 3He based on sound velocity measurements by Roach et al.2. The
new spinodal line Ps(T ) we obtain exhibits a minimum at 0.4 K and gives a
temperature dependence of the cavitation pressure which is now consistent
with our measurements. For water, Speedy3 previously proposed a spinodal
Ps(T ) with a minimum and showed that this behavior was linked to the
change in sign of the isobaric expansion coefficient α. This change in sign
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corresponds to a line of density maxima, and also occurs in liquid 3He at
positive pressure. We give an extrapolation of the line of density maxima at
negative pressure and finally present theoretical arguments about the sign
of α near the spinodal line.

In any substance below its saturated vapor pressure, the liquid phase
can be metastable since an energy barrier Eb must be overcome for liquid-
gas separation to occur, that is for a bubble to nucleate in the liquid. The
experiments in liquid helium reported in Ref. 1 measure the probability of
these cavitation events. For a given experiment performed in an experimen-
tal volume V and during an experimental time τ , this probability is, at a
pressure P and a temperature T :

Σ(P, T ) = 1− exp
[
−Γ0V τ exp

(
−Eb(P, T )

kBT

)]
, (1)

where Γ0 is a prefactor discussed below. The experimental measurements
are reproduced by the asymmetric S-curve formula of Eq. (1) with great
accuracy4. Γ0 has the dimensions of frequency times an inverse volume. It
is natural to estimate Γ0 as an attempt frequency ν at which the fluctuations
try to overcome the nucleation barrier multiplied by the density of the critical
nuclei which can be taken to be spheres of radius Rc

5–7. Typically, Rc is
around 1 nm and the attempt frequency varies from kBT/h to Eb/h; all the
different estimates thus lie between 5×1036 T and 1.5×1038 T m−3 s−1 with
T in K. Pettersen et al.7 have calculated V and τ for the experimental
method which uses an acoustic wave to produce a negative pressure swing
in the liquid. For 3He and for a 1 MHz acoustic wave as in Ref. 1, this gives
V τ = 1.2× 10−22 m3 s 8. The theoretical estimates of the factor Γ0V τ thus
vary from 6× 1014 T to 1.8× 1016 T . Although this range extends over two
orders of magnitude, it does not significantly affect the value of the energy
barrier: for Σ = 0.5, all estimates give Eb = (34± 3)kBT .

Recently, Caupin and Balibar1 have given experimental limits for the
pressure at which the cavitation probability is one half (the cavitation line
Pcav(T )) in liquid 3He and liquid 4He. They made a comparison with the
spinodal pressure at which the nucleation barrier vanishes as calculated by
Maris at low temperature: Ps = −3.15 bar for 3He 9. In fact, because of
thermal or quantum fluctuations in the liquid, the cavitation pressure is al-
ways higher than the spinodal pressure, and the difference can be calculated
from Eq. (1) if the expression of Eb(P, T ) is known.

Maris9 has calculated Eb(P ) at low temperature by a density functional
method; close to the spinodal, his results are well represented by a power
law:

Eb

kB
= β(P − Ps)δ , (2)
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Fig. 1. Comparison between experimental and theoretical temperature vari-
ation ∆P = Pcav(T ) − Pcav(0.1K) of the cavitation pressure. The experi-
mental ∆P is given by full squares ; the dotted line is a guide to the eye.
Other lines are the theoretical ∆P calculated with Γ0V τ = 6× 1014 T using
two different sources for the spinodal pressure (see Fig. 2): Guilleumas et al.6

(dashed line) and this work (solid line).

with β = 47.13 and δ = 3/4, when Eb/kB is expressed in K and P in
bar. However, to calculate the cavitation pressure up to 0.6 K, we need
to know the temperature dependence of Eb. The strongest source of this
dependence is that the spinodal pressure varies with temperature; therefore
we write Eb(P, T ) = Eb(P−Ps(T )) and assume that Eq. (2) remains valid at
higher temperature with parameters β and δ held constant. The temperature
dependence of the cavitation pressure follows from Eq. (1):

Pcav(T ) = Ps(T ) +
[
T

β
ln

(
Γ0V τ

ln 2

)]1/δ

. (3)

Fig. 1 displays the quantity ∆P = Pcav(T ) − Pcav(0.1K): the squares
correspond to experimental data1; the two other lines are theoretical ∆P
calculated with Eq. (3) for the lowest possible value of the prefactor, namely
Γ0V τ = 6× 1014 T . For Ps(T ) we first use the curve calculated by Guilleu-
mas et al.6, which leads to the dashed line for ∆P ; we notice that the
temperature variation of ∆P thus obtained is stronger than the experimen-
tal one. How can we explain this discrepancy? Of course one can assume
that the theory fails in estimating the value of Γ0. However, to reproduce
the experimental temperature dependence of Pcav would require Γ0V τ to be
at least 3 orders of magnitude smaller than expected. We do not see any
reasons to support this hypothesis. Instead, we think that the experimental
measurements question the shape of the spinodal limit.

Before proceeding further, we need to recall how the spinodal pressure
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Fig. 2. Comparison between two theoretical estimates of the spinodal line:
Guilleumas et al.6 (dashed line) and this work (full squares). The spinodal
found in this work shows a minimum at 0.4K. The dotted line is a linear
extrapolation of the line of density maxima as measured by Boghosian et al.10

between 0 and 11 bar.

Ps can be obtained: Maris’ method9 consists in extrapolating measurements
of the sound velocity c at positive pressure with a law of the form c =
[b (P − Ps)]

1/3. Maris used for c the measurements of Abraham et al. at
low temperature11. We used the same method with a set of data from
Roach et al.2: they measured the first sound velocity along isochores at
starting pressures from 1.6 to 28.1 bar and as a function of temperature from
0.01 to 0.6K. The spinodal line we obtained is shown in Fig. 2: the spinodal
pressure reaches a minimum of −2.9 bar around T = 0.4K 14. We would like
to emphasize that none of the previous estimates of the spinodal pressure in
liquid 3He 6,9,12,13 has mentioned the possible existence of a minimum in the
spinodal line. The new shape of the spinodal curve we propose is sufficient
to remove the discrepancy stated above: using again Eq. (3) with the value
Γ0V τ = 6× 1014 T , we find a cavitation line whose temperature dependence
is consistent with the experimental results (see Fig. 1, solid line).

We shall now turn to the physical origin of such a minimum in the
spinodal. A similar behavior was first proposed by Speedy in the case of
water3. This was the basis of the stability limit conjecture introduced to ex-
plain anomalies of supercooled water: in his theory, the liquid-gas spinodal
was assumed to be reentrant at temperatures below 35oC. A review of this
topic also describing alternative theories can be found in Ref. 15. Speedy
shows that close to the spinodal the sign of the isobaric thermal expansion
coefficient α of the liquid is the same as the sign of dPs/dT . Therefore, if
the locus of points such that α(P, T ) = 0 intersects the spinodal, this results
in an extremum in the curve Ps(T ). Water and 3He have in common that
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both liquids exhibit a line of density maxima: in some temperature range,
they expand when cooled. Therefore they may exhibit such a minimum in
the spinodal. We have tried to adapt Speedy’s conjecture to the case of
3He. The measurements of Roach et al. give the expansion coefficient, but
unfortunately they are made in a region of the phase diagram where α is
always negative; to obtain the line of density maxima in 3He, we need to
know the temperature where α vanishes. Therefore we used measurements
by Boghosian et al.10, which extend to higher temperatures and agree well
with Roach values in the region where both sets overlap. A simple linear ex-
trapolation of the line of density maxima for pressures below 11 bar extends
down to the minimum in the spinodal as shown in Fig. 2.

We now give some theoretical arguments concerning the sign of α. The
negative sign of α in 3He at low temperature is related to the variation of
the effective mass with density16. Indeed, using a Maxwell relation, we can
write:

α = − 1
V

(
∂S

∂P

)

T
. (4)

In the Fermi liquid region, the heat capacity CV is linear in T and we have
S = CV = (m∗/m) CF where CF is the heat capacity of the Fermi gas.
Using Greywall’s measurements of the effective mass17 and extrapolating
them at negative pressure as we did before18, we find that α given by Eq. (4)
remains negative down to the spinodal. Of course we should consider the
corrections to the linear regime of the heat capacity and their evolution
close to the spinodal. We see two sources of corrections. The first one is the
contribution of phonons to the heat capacity, which varies as (T/c)3, where
c is the sound velocity; this term could become important near the spinodal
where the isothermal sound velocity vanishes. However, this is relevant only
for the long wavelength phonons: as stated by Lifshitz and Kagan19, the
first correction to the linear dispersion gives for small momentum:

ωk
2 = k2(c2 + 2ρλk2) , (5)

where λ is a constant. As the spinodal is approached, the dispersion rela-
tion thus becomes quadratic. A calculation shows that the correction to α
remains negligible at temperatures of interest here. We also note that, if the
sound remains adiabatic at small k close to the spinodal, the use of cS, which
does not vanish at Ps, instead of cT would further reduce the phonon contri-
bution. The second correction is due to the coupling of the quasiparticles to
the incoherent spin fluctuations and varies as T 3 ln T . This effect has been
studied by Greywall20, who has shown that its amplitude decreases when
pressure decreases; it is not clear to us if this is the case until the spinodal
is reached, and this point requires further investigation.
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We have studied the temperature dependence of the cavitation pres-
sure in liquid 3He. We have shown that recent measurements disagree with
existing theories. We then proposed a new picture for liquid 3He at nega-
tive pressure. From the pressure and temperature dependence of the sound
velocity in 3He, we obtained a liquid-gas spinodal different from what was
previously predicted: this new spinodal is reentrant, that is to say that the
curve Ps(T ) exhibits a minimum of −2.9 bar at T = 0.4K. This new feature
in the phase diagram of liquid 3He agrees with our measurements of the
temperature dependence of the cavitation pressure. Following an analysis
by Speedy in the case of water, we have emphasized the relationship between
this behavior and the negative expansion coefficient in 3He. Finally we have
given theoretical arguments to estimate this expansion coefficient at negative
pressures.
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