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Abstract. The elastic response of flexible polymers made of elements which can be either folded or unfolded,
having different lengths in these two states, is discussed. These situations are common for biopolymers
as a result of folding interactions intrinsic to the monomers, or as a result of binding of other smaller
molecules along the polymer length. Using simple flexible-chain models, we show that even when the
energy ε associated with maintaining the folded state is comparable to kBT , the elastic response of such a
chain can mimic usual polymer linear elasticity, but with a force scale enhanced above that expected from
the flexibility of the chain backbone. We discuss recent experiments on single-stranded DNA, chromatin
fiber and double-stranded DNA with proteins weakly absorbed along its length which show this effect.
Effects of polymer semiflexiblity and torsional stiffness relevant to experiments on proteins binding to
dsDNA are analyzed. We finally discuss the competition between electrostatic self-repulsion and folding
interactions responsible for the complex elastic response of single-stranded DNA.

PACS. 87.14.Gg DNA, RNA – 87.37.Rs Single molecule manipulation of proteins and other biological
molecules – 81.16.Fg Supramolecular and biochemical assembly – 36.20.Ey Conformation (statistics and
dynamics)

1 Introduction

The initial linear elastic response of many polymer mate-
rials is due to the work done against reduction of flexible
polymer entropy [1]. For a single chain, the characteristic
force associated with this “entropic elasticity” is kBT/b,
where b is the statistical segment length of the polymer in
question. For the usual polymers of chemical physics, with
a highly flexible singly bonded backbone and under sol-
vated conditions, b ≈ 0.4 nm, giving an entropic elasticity
force scale ≈ 10 pN.

Many biological polymers and fibers have properties
which undermine simple entropic elasticity as the cause of
their basic elastic response. Many biopolymers have long
statistical segment lengths (relative to flexible chemical
polymers), and are characterized as “semiflexible” poly-
mers with a backbone bending modulus B and a per-
sistence length A = B/kBT . Familiar examples include
dsDNA with b = 2A ≈ 100 nm [2], chromatin fiber with
b ≈ 60 nm [3], and actin filaments with b ≈ 20 microns [4].
Such stiff filaments have a much lower scale for entropic
elasticity < 0.1 pN. For these stiff polymers, other physical
factors can easily replace this weak force scale.
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In this paper we consider one such factor, the “fold-
ing” of a polymer by self-interactions along its contour.
Such interactions might be intrinsic to the polymer itself,
as is the case for single strands of nucleic acids [5–10] or
polypeptide chains (Fig. 1a-b). Alternately, the folding ef-
fects we consider might be a result of interactions between
additional molecules absorbed onto the polymer contour
(Fig. 1c), as is the case for certain proteins which bind
onto double-stranded DNA [11–15]. For either of these
cases, we focus on interactions which are specific enough
to lead to local folding of the polymer without leading
to overall chain collapse. While rare in chemical physics
where interactions are relatively generic (e.g., hydropho-
bicity of entire monomers), this is typical for the spatially
specific interactions found in molecular biology (e.g., hy-
drogen bonding at specific points on amino acid or nucleic
acid monomers).

In Section 2 we introduce a simple, exactly solvable
model of a completely flexible (“freely jointed”) poly-
mer [16] which is composed of elements which can be in
a folded (short) or unfolded (long) state. We show how,
even when the folding interactions are weak, an elastic
response can be observed which is at a larger force scale
than the flexible-polymer entropic elasticity intrinsic to
the backbone. This model includes cases where there is
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Fig. 1. Folding of polymers. A polymer may be folded by spe-
cific interactions between monomers (e.g., base-pairing along
nucleic acids) so as to form “zippered” domains as in (a); al-
ternately, the folds may be localized bends that independently
bind adjacent segments as in (b). (c) Local bends may alter-
nately be produced by binding by an additional molecule which
distorts the polymer backbone (e.g., proteins which bind to and
bend dsDNA).

more than one folding element per statistical segment, and
where the folding elements in a statistical segment length
“unzip” instead of unfolding independently. We then dis-
cuss how unfolding elastic response appears in recent ex-
periments on single-stranded DNA (ssDNA) [5,7,17] and
on “chromatin fibers”, the DNA-protein composite fibers
found in eukaryote chromosomes [3,18,19]. Although less
fundamental than detailed statistical-mechanical models
which consider all possible base-paired structures [9,10],
our theory applied to single-stranded nucleic acids pro-
vides a simple analytical description of their elasticity.

In Section 3 we present a model incorporating semi-
flexible polymer behavior, which can be quantitatively
applied to experiments where the underlying polymer is
double-stranded DNA (dsDNA). Qualitatively, the results
match those of the freely jointed model of Section 2, but
semiflexible chain elasticity is necessary to make quanti-
tative contact with recent protein+DNA experiments by
Ali et al. [14].

Two further developments of the semiflexible poly-
mer model are discussed at the end of Section 3. First
(Sect. 3.5), for the case of proteins binding to and folding
dsDNA, the effect of twisting the DNA is discussed. By
monitoring the stretching elasticity as a function of twist-
ing, experiments can study how DNA linking number is
altered by the proteins which fold it. Second (Sect. 3.6),
Debye-Huckel–type electrostatic interactions are added,
providing a model for ssDNA over a wide range of salt
conditions. Due to the high degree of flexibility of the
ssDNA backbone, modification of screening can drastically
affect the chain elasticity. We show how the strongly salt-
dependent elastic response observed experimentally [5,7,
17] and recently studied using computer simulations [8]
can be analytically understood.

2 Freely jointed polymer with folding
interactions

We consider a flexible polymer containing “folding ele-
ments” which can be organized into either a folded form
of length d0, or unfolded into a longer form of length
d1. The free-energy difference between the unfolded and
folded states of an element is taken to be εkBT . We also
suppose that a statistical segment of the polymer contains
M folding elements, and that the folding elements in the
different statistical segments along the chain are able to
fold and unfold independently. The whole chain is sup-
posed to contain N statistical segments, and thus NM
folding elements.

The folding may be the result of direct polymer-
polymer interactions, or the result of interactions moder-
ated by an additional type of molecule adsorbed from the
surrounding solution (e.g., proteins binding to dsDNA). In
the case where folding is mediated by a binding event, the
folded state will be assumed to include a bound molecule,
with the factor ε representing the total chemical poten-
tial difference between bound and unbound molecules, i.e.
ε = ln(c/Kd) where Kd is the dissociation constant of the
protein to the folded polymer and c is the bulk concentra-
tion of the adsorbing molecule (Mol/litre units are usually
used for Kd and c in the biochemical literature). Increas-
ing ε corresponds to stronger binding.

The degrees of freedom per statistical segment are
therefore M folding element variables ni, i = 1, · · · ,M
which are 0 or 1 for folded or unfolded states, respec-
tively, the elastic stretching of each segment, plus the seg-
ment orientation. For our purposes, the orientation may
be described by the angle θ between the segment and the
z-axis along which an external force acts to stretch the
chain. Elastic stretching of the segment is described by
an additional length change y, giving a total statistical
segment length of Md0+[d1−d0](n1+n2+ · · ·+nM )+y.

In this model, the number of statistical segments along
the chain is fixed. This amounts to the approximation that
we consider no change of flexibility at the boundary be-
tween statistical segments. Although, in general, one ex-
pects a change in chain flexibility as the segments unfold
(note that Ref. [13] discusses effects of changes in chain
bending driven by local protein binding), we want to fo-
cus on just the effect of segment length reduction. In the
calculation to follow, only a single segment needs to be
considered. The total contour length, and the length of
each segment, depend on the unfolding degrees of free-
dom. We take the force to be applied in the z-direction.

The Boltzmann factor for one statistical segment is

exp
{
βMd0tf + (βtf [d1 − d0]− ε) [n1 + · · ·+ nM ]

− βf0
2Md1

y2 + βfty
}
, (1)

where t = cos θ (θ is the polar angle between the seg-
ment and the z-axis), f is the externally applied force, and
β = (kBT )−1. The elastic constant f0 has the dimensions
of a force. In general, the folded and unfolded elements



S. Cocco et al.: Folding polymers 251

will contribute differently to the net segment stretching,
but again to focus on the segment length-change effect we
simplify our calculation by considering the case where the
segment stretching is independent of its folding state. Both
this, and the assumption of no change in the total number
of statistical segments during unfolding, greatly simplify
the analysis of the model, while preserving the essential
feature of segment unfolding. Thus, we will show how the
unfolding —the lengthening of the segments alone— af-
fects the overall chain elasticity.

Integration of the length fluctuations (
∫
dy) reduces

the partition function per segment to

Z =

√
2πMd1
βf0

∑
{n}

∫ +1

−1

dt
2
exp

{
1
2
βMd1
f0

f2t2

+βMfd0t+ (βtf [d1 − d0]−ε) [n1+· · ·+ nM ]
}
. (2)

Next, we carry out the sum on the unfolding variables
ni. In this paper we consider two models. In the first one,
the “independent” model, each unfolding variable is inde-
pendent of the others, and the sum is over 2M states. In
the second, “zipper” model, the unfolding variables open
and close in a definite sequence, and therefore the sum is
over only M +1 states. The “independent” model is suit-
able for considering a series or string of folded elements,
while the “zipper” describes unfolding of hairpin struc-
tures such as those formed by nucleic acids, or the unfold-
ing of protein domains where there is a defined pathway
for chain unfolding.

After carrying out these summations, the partition
functions for the independent and zipper cases are:

Zind=

√
2πMd1
βf0

∫ 1

−1

dt
2
exp

[
1
2
βMd1f

2t2/f0+βMd0ft

]
(
1 + eβft[d1−d0]−ε

)M

,

Zzip=

√
2πMd1
βf0

∫ 1

−1

dt
2
exp

[
1
2
βMd1f

2t2/f0+βMd0ft

]
(
1− e(M+1)[βft[d1−d0]−ε]

1− eβft[d1−d0]−ε

)
. (3)

The extension (projection along the force direction) versus
force of each segment of M unfolding elements can be
computed using

〈zsegment〉 = 〈(y +Md0 + [d1 − d0][n1 + · · ·+ nM ])t〉
=

∂ lnZ

∂(βf)
. (4)

The total extension of a chain of multiple segments is N
times this result, since the segments are independent. We
will also report extension per segment, as a fraction of
the extended segment length Md1 (equivalently the total
chain end-to-end extension as a fraction of the maximum
extended length NMd1).

This model shows initial linear response of extension to
applied force, and the proportionality “elastic” constant
combines usual flexible-polymer entropic elasticity, with
contributions from chain folding. The end-to-end exten-
sion is therefore 〈z〉 = N 〈zsegment〉 = Nβd2f/3 + O(f2),
where the coefficient d is a length, and for a freely jointed
chain without folding interactions would be the statistical
segment length. With folding interactions, the effective
segment length is in between the two segment lengths d0
and d1: for independent and zipper folding we have

d2ind=M2d20+
Md1kBT

f0
+
M(d1 − d0)(d1 + [2M − 1]d0)

1 + eε

+
M(M − 1)[d1 − d0]2

(1 + eε)2
,

d2zip=M2d20 +
Md1kBT

f0
+ 2Md0[d1 − d0]

×
[

1
eε − 1

− M + 1
e[M+1]ε − 1

]

+[d1 − d0]2
[

2
(eε − 1)2

+
e[M+1]ε − 2M − 3

(eε − 1)(e[M+1]ε − 1)

− (M + 1)2

e[M+1]ε − 1

]
. (5)

For M = 1 (one unfolding unit per segment) the indepen-
dent and zipper models are the same, with the form

d2 = d20 +
d1kBT

f0
+

d21 − d20
1 + eε

. (6)

Note that d is the apparent segment length that would be
inferred from a low-force elastic-response measurement,
i.e. where the initial elastic response was interpreted in
terms of the standard Gaussian polymer elastic response
f = (3kBT/[Nd2])z +O(z2).

Equations (5) and (6) show that the apparent segment
length squared, d2, is a sum of terms with different physi-
cal origins. First, the d20-term is the direct flexible-polymer
contribution associated with the folded segment length.
Second, the segment stretching elasticity adds a simple
elastic contribution ∝ kBTd1/f0. The final contributions
are from the unfolding degrees of freedom giving a length
change weighted by the Boltzmann factor for unfolding
at zero force. When d0 is not much smaller than d1, then
the low-force linear response will be mainly due to usual
flexible-polymer elasticity, plus corrections from the other
stretching and unfolding degrees of freedom. In this case,
the additional degrees of freedom simply reduce the effec-
tive spring constant 3kBT/(NMd2) of the polymer.

However, in the situation where d0 is relatively small
or zero (e.g., when the segments fold into compact struc-
tures such as nucleic acid hairpins), and ε is not too large,
then the linear elasticity may be determined mainly by
the unfolding terms. In such a situation, at low forces,
the effective segment length inferred from a force exper-
iment (i.e. d) may be inconsistent with the actual struc-
tural segment length. The apparent d from low-force data
may also be inconsistent with the apparent segment length
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measured at higher forces; for example, beyond the unfold-
ing point (for f 	 kBTε/[d1 − d0]) the apparent segment
length in the M = 1 model would be d1.

We now consider three experimental systems to which
this model is relevant.

2.1 Chromatin fiber

First, we consider recent experiments of Cui and Bus-
tamante [3] on chromatin fiber, the basic structure un-
derlying eukaryote chromosomes. This fiber is made up
of double-stranded DNA (dsDNA) wrapped around com-
plexes of histone proteins, to form a “beads-on-a-string”
structure. These ≈ 10 nm diameter protein-DNA beads
(“nucleosomes”) are separated by ≈ 8 nm long stretches
of dsDNA. With no tension applied to this chain, and un-
der physiological solution conditions (pH 7.5, > 30 mM
Na+ or K+ the nucleosomes associate with one another to
form a “condensed” fiber ≈ 30 nm in diameter.

Experiments [3] at moderate ionic strength show two
low-force elastic regimes, a very-low-force entropic regime
(f < 0.5 pN), where thermal bending fluctuations of the
condensed fiber are removed, and then an almost linear
increase in force to 5 pN over which the fiber is about dou-
bled in length (see inset, Fig. 2). The low-force (< 0.1 pN)
behavior is similar to that of a flexible polymer with sta-
tistical segment length ≈ 60 nm, containing perhaps 20
nucleosomes. The length doubling at larger forces is most
simply explained by the opening of adjacent nucleosome-
nucleosome contacts [3].

The “independent unfolding” model shows a behavior
similar to the experimental data, using parameters ε = 4,
d0 = 5 nm, d1 = 10 nm, f0 = 50 pN and M = 20 (main
Fig. 2, solid line). In this case, there is an initial low-force
regime where the orientational degrees of freedom are po-
larized, followed by a gradual opening of the nucleosome
fiber. The initial elastic response is in the regime where
the first term of (6) is dominant; at larger forces ≈ 5 pN, a
nearly linear elastic response is observed as the chromatin
fiber opens up, with an effective force constant roughly
given by the final term of (6). This interpretation is con-
sistent with that discussed by Cui and Bustamante [3]
based on a previously published model [11]. Finally, at
large forces > 5 pN, the maximum extensibility and in-
trinsic elasticity (second term of (6)) of the fiber is seen;
in this regime, the experimental force curves show appre-
ciable hysteresis, but have the approximate shape given
by the reversible model. It is possible that a reversible
force response would be obtained given a sufficiently slow
force-relaxation cycle.

The dashed curve of Figure 2 shows the force-extension
curve using the same parameters, but now for the “zipper”
model. The zipper model effectively introduces a strong
coupling between the unfolding degrees of freedom, re-
sulting in a sigmoidal transition. This type of transition
is not consistent with the chromatin unfolding data.

Fig. 2. Force-extension curves for chromatin fiber. The main
figure shows theoretical curves; the inset shows experimental
data from Figure 4A and C of reference [3]. In experiment (in-
set), for small extensions (◦) a nearly reversible elastic response
is observed, while for large extensions (+) a hysteresis loop
is observed. The reversible “independent” segment-unfolding
theory of Section 2 can generate the reversible response and
the qualitative shape of the irreversible response (solid curve).
The “zipper” model for the same parameters (dashed curve)
generates a force “plateau” not observed experimentally.

2.2 Single-stranded DNA (ssDNA)

The previous example showed an initial, weak entropic
elasticity regime, followed by a stronger elastic response
associated with opening of weakly folded structures,
which will be typical for polymers which in their initially
folded state, still have an extended fiber structure.
However, some biological polymers will fold in such a
way as to reduce their end-to-end length essentially to
zero. An important example of this are single-stranded
nucleic acids, which can form “hairpin” or “helix-loop”
secondary structure.

Recent studies of elastic response of long ssDNAs have
indicated that under conditions where the double helix can
base-pair (i.e. moderate ionic strength, physiological pH),
the force needed to extend the polymer goes to a nearly
constant value ≈ 2 pN at zero extension (Fig. 3, circles)
[7,17]. This effect is thought to be due to local association
of the hydrophobic and hydrogen-bonding bases along the
ssDNA contour [8,20]. The (weakly sequence-dependent)
2 pN force needed to open up the ssDNA is far less than
the ≈ 15 pN needed to open > 10 bp DNA helix-loop
structures [17] indicating that the self-associated regions
are relatively weakly bound. This is reasonable since long
self-complementary regions, which again require ≈ 15 pN
for opening [21], are not present along large genomic ssD-
NAs [7,17].

The main features of the low-force experimental data
can be qualitatively understood with nothing more than
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Fig. 3. Force-extension behavior of single-stranded DNA. The
main figure shows the polymer-folding model of Section 2, ap-
plied to hairpin formation expected for ssDNA at high ionic
strength and low force. Extension is relative to fully extended
length L of ssDNA backbone in the model, but since there is
linear stretching elasticity, the ssDNA backbone can be ap-
preciably extended beyond z/L = 1. The solid line shows the
zipper model (see text). At low force, the folding interactions
reduce extension to zero; extension of the chain requires ≈ 2 pN
of force. The inset shows experimental data from reference [17],
for ssDNA extension at high ionic strength (◦, 150 mM Na+)
where hairpin formation occurs at ≈ pN forces as in the folding
model. Data for low ionic strength (+, 2.5 mM Na+) show a
different low-force elasticity with no tendency for the chain to
fold up for ≈ 1 pN forces; the behavior at low ionic strength
is discussed in Section 3.4. Note that these experimental data
show extension relative to B-DNA length of 3.4 Å per bp; this
corresponds to an extension of about 0.75 in the main figure.

some weak local self-attraction, plus main-chain flexibility
and elasticity. The “zipper” model, with ε = 0.2, d0 = 0,
d1 = 0.7 nm, f0 = 220 pN and M = 3 produces the
solid curve of Figure 3. This simple model reproduces two
important features of the experimental data: the force ≈
2 pN needed to extend the chain and the slow subsequent
increase of force with extension.

The choice of a zipper model with M = 3 is needed to
generate the lower-force response; this corresponds to for-
mation of small hairpin structures. These hairpins are well
bound enough that the initial elasticity is dominated by
the 3rd term of (6). The interplay between the folding and
the chain extension is responsible for the wide variation in
“segment lengths” of ssDNA when simple flexible polymer
models are fit to experimental data [6,5]; this point is well
emphasized in reference [8].

A microscopic approach to the local self-association
described in our simple model is the formulation of a
detailed theory of all possible base-pairing interactions.
Work of Gerland et al. [9] showed that even for rather
short genomic-sequence single-stranded nucleic acids, a

smooth (self-averaged) elastic response occurs similar to
that obtained here. Other, recent work of Mezard and
co-workers, showed that a model of sequence-nonspecific
base-pairing can describe the lowest-force response [10].
Our simple model describes this behavior by assuming
small hairpin structures to be distributed along a par-
tially extended polymer, which is the situation for ssDNA
once it is partially extended (i.e. over the range of the
experimental data shown in Fig. 3).

Interestingly, ssDNA elasticity has strong salt, or
screening length, dependence [17]. For example, the low-
force threshold behavior seen at high salt vanishes as salt
concentration is reduced. It has been recently shown us-
ing Monte Carlo computer calculations that the extended-
chain elastic response is in part due to Coulomb self-
repulsion along the chain [8]. In Section 3 we will add
such interactions to a simple polymer model to analyti-
cally describe these effects.

2.3 Mitotic chromosome

Another example of polymer folding comes from recent
experiments on the elastic response of whole mitotic chro-
mosomes, in the fully folded “mitotic” form that occurs
during metaphase of eukaryote cell division. The elastic re-
sponse of these objects is peculiar: while their spring con-
stants are too strong to easily attribute to simple entropic
elasticity of chromatin fibers [19,22], reversible extensible
response occurs over a fivefold range of stretching. This
large range of extensibility, plus a slow stress relaxation
behavior, suggests that their elastic response is due to
gradual unfolding of compacted chromatin fiber domains.

We therefore consider the above model with param-
eters chosen so that entropic elasticity plays no role in
the initial elastic response (i.e. the folding is to a com-
pletely compacted state): ε = 2, d0 = 0, d1 = 10 nm,
f0 = 50 pN and M = 1. Thus, extension is relative to
the initial dense state in which usual polymer elasticity
is strongly supressed. As the chromatin domains open, a
gradual elastic response is observed which is solely due
to unfolding, rather like the ssDNA case (Fig. 4). The
“S” shape of the force response is observed experimentally
(Ref. [10], Fig. 4, inset). The experimental data involve
extension of a large number (≈ 103) of folded chromatin
fibers in parallel, and show a proportionally larger force.
It must be noted that the experimental data certainly re-
flect, in addition to chromatin fiber unfolding, the effect
of three-dimensional interfiber interactions, not included
in this approach.

3 Folding of semiflexible polymers

The previous sections presented results for a simple com-
pletely flexible (freely jointed) model. Its advantage is its
simplicity, but its disadvantages include the commensu-
ration of folding (or binding) sites with the flexible seg-
ments, the completely freely jointed nature of the segment
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Fig. 4. Force-extension behavior similar to that of mitotic
chromosome, which can be thought of as a compacted network
of folded chromatin domains. The inset shows experimental
data of Poirier et al. [19], which have a reversible elastic re-
sponse over a fivefold range of extension (extension here is the
change in length, relative to the native or unstretched length).
The large ≈ nN force scale of the experiment comes from the
simultaneous extension of many domains together in a bulk
chromosome. The main figure shows elastic response of the
independent folding model (see text), which displays a sim-
ilar large range of elastic response. In the model, extension
corresponds to the change in length relative to the maximum
extended length. The force scale in the main figure refers to a
single chromatin domain, and has a characteristic force ≈ 10−3

of that in the experiment on a whole chromosome.

joints, and the fixed total number of segments. For appli-
cations where dsDNA is the basic underlying polymer, it
would be advantageous to obtain the semiflexible polymer
behavior characteristic of dsDNA [23] when folding is dis-
rupted. Here a simple semiflexible-polymer–based model
is presented which can describe some of the situations dis-
cussed above.

A long semiflexible polymer of total (fixed) length L
whose ends are separated by a force f (taken to be in the
z-direction) is described by the partition function

Z(L, f)=
∫ {Dt̂

}
exp

{
−

∫ L

0

ds

[
A

2

(
dt̂
ds

)2
−βf t̂ · ẑ

]}
,

(7)
where s is the contour length, A is the persistence length,
and t̂(s) is the tangent to the polymer at point s along
its contour. In the thermodynamic limit L/A → ∞, this
partition function has the form

lnZ(L, f) =
L

A
g(βAf). (8)

The end-to-end extension along the force direction is

〈z〉 = ∂ lnZ

∂(βf)
= Lg′(βAf). (9)

The potential g(x) can be computed to sufficient numeri-
cal precision for all practical problems as discussed in [23].
The asymptotic behaviors of g(x) are known exactly [23]:

lim
x→0

g(x) =
x2

3
,

lim
x→∞ g(x) = x−√

x. (10)

To describe the folding of this type of polymer, we
suppose that each folded unit simply removes a certain
amount of contour length " from the polymer. If the max-
imum number of folded units that can occur along the
chain is K, and assuming that the folded units simply
reduce the chain length L without other effects, the par-
tition function of the chain now with folding degrees of
freedom is

Zfold = Z(L, f) +W1e
εZ(L− ", f)

+W2e
2εZ(L− 2", f) + · · ·

+WKeKεZ(L−K", f). (11)

Here, the binding free energy is εkBT as in Section 2. The
first term describes the “clean” chain, the second term
the chain with one fold, the third term with two folds,
and so on, up to the maximum number of folds K. The
factor Wk is the combinatoric factor equal to the num-
ber of ways that the k folded units may be distributed
along the chain. The factors Wk can also include effects of
interactions (cooperativity) between folding units.

Equation (11) assumes no coupling between polymer
bending degrees of freedom and the folding degrees of
freedom. Thus, k folds are considered to leave behind a
“seamless” piece of semiflexible chain, reduced in length
by k". It is presumed that not only no permanent bends
are induced at fold boundaries, but also that no inhomo-
geneities in deformability occur at the fold boundaries.
Such effects can be accounted for only with substantial
complication; as in Section 2, our aim is to obtain as
much information as possible by analytical calculation.
However, in single-molecule DNA stretching experiments,
the gradual reduction in bending fluctuation correlation
length (ξ ≈ (A/βf)1/2 [23]) means that such an approach
is accurate at low enough concentrations, i.e. when the
mean distance between proteins exceeds ξ.

Using (8), (11) may be written as

Zfold =
K∑

k=0

Wk exp
{[

L− k"

A

]
g(βAf) + kε

}
, (12)

where the index k is the number of folded units along the
chain.

The main limitation of the model (11) is that the fold-
ing and bending degrees of freedom are decoupled (e.g.,
the bending modes of the semiflexible chain are taken to be
those of an infinite chain, even when parts of it are folded
up). Folding simply reduces the total length available for
the semiflexible chain. This is not to say that interactions
between the folding units cannot be taken into account;
below, a simple case with interactions is described. Thus,
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many situations can already be described by (11), and this
model has the virtue of being completely solvable. This
model is a simplified version of a theory of compaction
of DNA by proteins previously studied using a mean-field
approximation [11] and thereby provides a way to check
the validity of that theory in some limits. The model of
this paper is also related to a model of the B-DNA to
S-DNA transition introduced by Ahsan et al. [24].

Here we consider two simple models for Wk which cor-
respond to the cases where: a) there are K folding units at
fixed locations along the chain, and b) where the folding
units can be located at any point along the chain as long
as they do not overlap. The first “fixed” model has a Wk

which is simply the number of ways to choose k of the
units to fold

Wk=
K!

k!(K − k)!
≈ exp(−K[ψ lnψ + (1− ψ) ln(1− ψ)]).

(13)
The final term of (13) indicates the thermodynamical limit
(ψ = k/K = k∆/L is the site occupation fraction) which
is familar as the lattice gas entropy [1]. We suppose that
the arc length along the chain between fold points is fixed
at ∆ = L/K.

In the second “sliding” case we suppose that folding
units are restricted to be farther apart from one another
by more than arc length ∆ (thus ∆ ≥ "). If we suppose no
other constraints on the folding unit positions, then Wk is
the configurational partition function of a one-dimensional
continuum gas of k particles each of length ∆, confined to
a total length L, which is exactly solved [25]. The result
for L 	 ∆ is

Wk =
(K − k)k

k!
≈ exp

[
k ln

(
1− ψ

ψ

)
+ k

]
. (14)

Again, ψ = k/K = k∆/L represents the folded fraction of
the chain. Note that this partition function goes to zero
when ψ → 1 since in that fully filled limit the particles
are fixed in position. For ψ → 0, the entropy per particle
is ≈ −kB lnψ, the usual dilute gas result.

These two cases are relevant to folding of biopolymers.
The first “fixed” case is a situation where some feature of
the polymer itself directs the folding, e.g., the sequence
of nucleotides along a nucleic acid. One might imagine
there to be specific binding sites for a protein which then
mediates folding the nucleic acid (inhomogeneity in the
binding free energy ε associated with the different binding
sites may easily be included in (12)). The second “sliding”
case corresponds to a sequence-nonspecific folding case, for
example where a protein can bind equally well to any site
along a nucleic acid, and thus meditate its folding at any
point along its length.

3.1 Fixed folding sites

Plugging (13) into (12) and carrying out the sum over K
gives the partition function

Zfold = eLg
[
1 + eε−�g/A

]K

. (15)

The end-to-end extension along the force direction is sim-
ply

〈z〉 = ∂ lnZfold
∂(βf)

, (16)

which gives

〈z〉
L

=
[
1− "/∆

1 + e�g/A−ε

]
g′(βAf), (17)

i.e. just the result (9) for the unfolded chain, multiplied
by a factor accounting for the reduction in contour length
due to folding. This factor includes the probability of sites
being folded,

〈k〉
K

=
1
K

∂ lnZfold
∂ε

=
1

1 + e�g/A−ε
. (18)

In this case, the folding degrees of freedom act as sim-
ple two-state systems. Unfolding by force occurs when
"g/A ≈ ε. If this unfolding force is at least kBT/A, then
g ≈ βAf and unfolding occurs at the threshold force
f∗ ≈ εkBT/", in accord with reference [11]. At low force
the chain is fully folded, and we have elastic response:

〈z〉
L

=
(
1− "

∆

)
2Af

3kBT
+O(f2), (19)

i.e. the apparent persistence length appears smaller com-
pared to its “true” value A which would be observed at
large enough forces that unfolding were to occur.

If ε < "g/A so that unfolding occurs at low forces, then
we may use g ≈ (βAf)2/3, and therefore find

〈z〉
L

=
(
1− "/∆

1 + e−ε

)
2Af

3kBT
+O(f2). (20)

As in Section 2, the low-force apparent persistence length
appears smaller than that obtained from high-force mea-
surements.

3.2 Sliding folding sites

Combining (14) and (12) yields the partition function for
sliding folding sites:

Zfold = KeLg/A

×
∫ 1

0

dψ exp {−Kψ [lnψ−ln(1−ψ)+"g/A−1−ε]} . (21)

The sum from (12) has been converted to an integral,
which is accurate for K 	 1, the case we are interested in.
The exponent of the integrand is proportional to K and
therefore can be accurately evaluated as a Gaussian inte-
gral by expansion of the exponent around its stationary
point.

The stationary point of the exponent occurs at ψ = ψ0
as determined by

ln(ψ0)− ln(1− ψ0) +
ψ0

1− ψ0
+ "g/A = ε . (22)
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This equation always has a solution for ψ between 0 and 1,
always corresponding to the maximum of the exponent. If
the RHS of (22) is large and positive (the binding energy
ε dominates the chain elastic free energy), then ψ0 will be
close to 1, and the chain will be folded. If the RHS of (22)
is large and negative (chain elastic free energy dominant),
then ψ0 will be near zero, and the chain will unfold. The
solution of (22) also gives the thermodynamical average
of k, 〈k〉 /K = ψ0.

The extensive part of the partition function is therefore

lnZfold
L

=
g

A
−ψ0

∆
[lnψ0−ln(1− ψ0)+"g/A−1−ε] . (23)

The end-to-end distance follows via (16) as

〈z〉
L

=
[
1− "

∆
ψ0

]
g′(βAf). (24)

This is the same form as (17), the only change being the
different dependence of 〈k〉 on applied force.

In the strong-binding limit ε 	 1 and at low forces
f � kBTε/", (22) indicates that ε ≈ ψ0/(1 − ψ0), and
therefore that

〈z〉
L

=
(
1−

[
ε

1 + ε

]
"

∆

)
2Af

3kBT
+O(f2). (25)

Again, low-force measurements indicate a smaller value of
A than would be inferred from high-force measurements
where the chain unfolds.

3.3 Comparison of freely jointed and semiflexible
models

One can compare the results for this model to those of
Section 2 as follows. First, the relation between statistical
segment lengths is b ↔ 2A. The corresponding lengths of
unfolded and folded units are d1 ↔ ∆ and d0 ↔ ∆ − "
(similarly, the reductions in chain length per folding unit
are related by d1 − d0 ↔ "). The relation between the
total number of folding units per segment of underlying
polymer isM ↔ 2A/∆. Similarly, the relation between the
number of statistical segments along the unfolded chains
in the two models is N ↔ L/[2A].

Although these correspondences allow us to compare
results of the freely jointed and semiflexible models, there
are two important differences between them. First, in the
model of Section 2, there were always a fixed number of
statistical segments, while in the model of this section the
persistence length (segment length) stays fixed while the
total length and therefore the number of statistical seg-
ments are reduced by folding. Second, in Section 2, there
was at least one folding unit per statistical segment length,
while the model of this section can have arbitrary spacing
of folding units.

3.4 dsDNA-folding proteins

A recent experiment of Ali et al. [14] carried out the force-
distance measurement corresponding to the theory of the

Fig. 5. Effect of DNA-binding proteins on elastic response of
dsDNA. The solid curves from top to bottom show extension
for the worm-like chain with folding interactions, for ε = −∞
(bare DNA), and ε = 0, 2, 4 and 9. As ε is increased, succes-
sively more force is required to fully extend the DNA, which
requires unbinding of the protein. Data for ε = 0 and bare
DNA fit well to data of reference [14] (✷ bare DNA; ◦ 1.25 µM
IHF). The dashed curves show the IHF binding as a fraction of
the maximum possible; from bottom to top, curves for ε = 0, 2,
4 and 9 are shown. At a force ≈ ε/(∆− 	) the proteins unbind
and the chain extends.

previous section. IHF protein was put into solution with a
single DNA molecule that was under mechanical control,
via a magnetic bead attached to one end. By measure-
ment of the fluctuations of the bead, the force applied to
it by a nearby permanent magnet could be continuously
monitored. Ali et al. observed that the IHF reduced the
extension of the DNA (Fig. 5, circles) relative to “bare”
DNA (without IHF present, Fig. 5, squares). The shift of
the +IHF data on the log force axis relative to the “bare”
DNA data is the basic elasticity-enhancing (persistence-
length-reducing) effect discussed a few times above.

Based on a previously developed theory [11] which is
an approximate version of the calculations discussed in the
previous subsections, Ali et al. determined that in their
buffer without IHF, dsDNA had a persistence length of
65 nm. From fitting to the theory of reference [11], the
effective size of a binding site was determined to be ∆ =
98 nm. This site size is larger than the actual “footprint”
of IHF on dsDNA, which is thought to be roughly five
helix repeats (52 bp), or about 20 nm.

The length reduction per binding site was found to
be " = 39 nm [14]. This reduction in length is in ac-
cord with the fact that IHF is known to bend dsDNA
through greater than 90◦ (in its sequence-specific binding
mode, IHF can bend DNA through nearly 180◦). It is to be
noted that in this experiment on a large inhomogeneous-
sequence dsDNA, IHF most likely is binding in a mix-
ture of modes, with a few strong-binding sequence-specific
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interactions on top of a background of more numerous but
less energetic nonspecific binding interactions [26]. This
experiment is at present the only experimental realization
of nonspecifically binding, DNA-bending proteins studied
micromechanically with binding near equilibrium, provid-
ing a concrete example for application of the theory.

Using the same structural parameters, the force-
distance of the “sliding” model of this section is shown in
Figure 5, for few different binding free energies ε (equiv-
alently, a few different bulk protein concentrations, see
Sect. 2). From left to right, the solid curves show theo-
retical z/L for ε = −∞ (i.e. bare DNA), 0, 2, 4 and 9.
The dashed curves show the protein binding as a frac-
tion of the maximum possible, for the ε = 0, 2, 4 and 9
(higher occupations correspond to higher values of ε). For
a net binding free energy of ε = 0, the protein partially
binds the DNA at low force, reducing the extension rel-
ative to bare dsDNA. The curves for larger ε correspond
to thermal equilibrium of a protein with a higher binding
free-energy parameter ε. As ε is increased, the force re-
quired to remove the protein and fully extend the dsDNA
increases. The results of this model agree closely with the
corresponding approximate calculations of reference [11].

To apply the theory to the IHF data (symbols, Fig. 5),
we note that ε = 0 fits the experimental data for 1.25 µM
protein concentration, indicating a dissociation constant
Kd = 1.25µM × e−ε = 460 nM. Assuming ideal solution
behavior, ε = ln(c/Kd), the solid curves correspond to
IHF concentrations of 0, 1.25 µM, 9.2 µM, 68 µM and 10
mM. Given the large concentrations, these later predic-
tions for IHF are likely of limited value, and are mainly a
qualitative guide.

However, this kind of model for the concentration de-
pendence of the force curves should apply well to DNA-
folding proteins which bind to dsDNA nonspecifically (to
all sequences with nearly equal binding enthalpy), and
with a smaller value ofKd in the 10 nM range. Examples of
such proteins are HMGB1, a DNA-bending protein which
helps to compact the DNA in eukaryote chromosomes, and
HU, a protein with similar function in bacteria. We note
that for strong binding (ε ≥ 5) it is likely that equilibra-
tion of binding will be very slow. Achieving equilibrium
may not be straightforward; it may instead be possible
to observe the kinetics of approach to equilibrium, i.e.
“coarsening” of “domains” of protein-bound DNA. Also,
at high occupations, interactions between adjacent pro-
teins will most likely occur, giving rise to cooperativity
effects. These effects have been to some extent observed
in the essentially irreversibly binding RecA-dsDNA sys-
tem where essentially the kinetics of a low-temperature
one-dimensional system going through a first-order phase
transition was observed [27] (in that system, note that ds-
DNA is extended longer than B-form as the proteins bind
to it).

3.5 Effects of twisting on dsDNA-protein composites

The recent work of Ali et al. on equilibrated IHF-dsDNA
binding [14] plus the fact that many proteins which bind

to dsDNA in some way constrain or alter DNA twisting,
suggests the study of extensibility of twisted dsDNAs in
the presence of DNA-binding proteins. Our theory can be
extended to the case where DNA linking number is fixed,
since the problem of determining the generalization of (7)
to the ensemble of fixed DNA linking number is in large
part solved in the regime where the stress on the double
helix is small enough that the double helix is not dena-
tured [28–31]. We will assume that the double-helix twist
is small enough that effects of the chirality of DNA wind-
ing are not very strong; effects associated with unwinding
[32–37] or other DNA structural transitions [5,38–40] are
not included here.

The linking number Lk of the two DNA strands is
the control parameter of DNA twisting. In a relaxed ds-
DNA, the two strands wrap around one another once ev-
ery 10.5 bp or 3.5 nm, or with an angular “rate” ω0 =
2π/(3.5 nm). The linking number of a relaxed molecule
is therefore Lk0 = 2πω0L. It is conventional in molecular
biology to use the change in linking, Lk−Lk0, and the frac-
tional change σ = Lk/Lk0− 1 = [Lk−Lk0]/(2πω0L). The
linking number relative to relaxed DNA, Lk−Lk0 = ∆Lk,
has been used as a control parameter for all DNA twist-
ing experiments done to date, since it corresponds to the
number of rotations of a bead at one end of the molecule
when the other end of the molecule is fixed.

Moroz and Nelson [30] have shown that for torques less
than about kBT and for tensions between about 0.2 pN
and 2 pN, dsDNA is described by the partition function
for a semiflexible polymer with twist stiffness. For a chain
of total contour length L under tension f and with linkage
density σ, this is Z = eLg̃(x,y)/A, where

g̃(x, y) = x−√
x+

1
8

y2√
x
− A

2C
y2 + · · · (26)

using an expansion for large force (x) and small twist-
ing (y). Here x = βAf is the rescaled force as before,
y = Cω0σ is a dimensionless measure of the linking-
number change, and C is the twist stiffness in kBT units
with dimensions of length. Since linear twisting elastic-
ity is assumed in (26), y is the mechanical torque in the
dsDNA molecule in kBT units.

To apply (26) to DNA, some limitations must be rec-
ognized. Equation (26) ignores any asymmetry between
overwinding and underwinding, being an even function of
the reduced torque y. At first, the asymmetric-y effects are
small and take the form of a twist-stretch coupling which
is easily added to (26) [41,42]. This type of correction
does not strongly affect results presented here. However,
the torque response of dsDNA becomes highly asymmetric
once the DNA begins to unwind. The threshold unwinding
torque for this is roughly −2kBT [34,35]. For overwinding,
denaturation of DNA also occurs, but at a larger torque
≈ 6kBT [38].

Beyond these torque limits, severe alterations of DNA
secondary structure occur [5,40,36,37], and the theory of
this section cannot apply. Among other complications,
there is the question of the affinity of the protein in
question for single-stranded versus double-stranded DNA.
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Thus we only show results for which the DNA torque is
within −2kBT and 6kBT . We also do not study forces
above ≈ 1 pN, where stretch-driven modification of DNA
structure can occur [5,39,40,36,37]. Between these limits
and at forces between about 0.1 and 2 pN, the harmonic
twist-elastic model of (26) is a reasonable description of
dsDNA, using C between 75 and 100 nm. Finally, we note
that (26) does not include folding of DNA into plectone-
mic supercoils, which occurs at low forces for sufficient
twisting [32].

For proteins which bind to, fold, but also untwist the
double helix, the parameters K, " and ∆ are still relevant.
However, if Lk of the DNA is fixed, we now must also
specify the linking-number change induced in the DNA
by each bound protein, Θ/(2π). For example, a protein
which twists the double helix when it binds would have
a Θ equal to the excess twist angle; Θ < 0 would cor-
respond to unwinding. In general, protein-binding might
also introduce chiral bending (writhing) which will also
contibute to Θ.

When k proteins bind, the linking number of the
protein-free region of the DNA will therefore be Lk −
kΘ/(2π). Combining this with the free DNA length L−k"
indicates that in (26) y should be replaced with

ỹ =
Cω0

(
σ − Θ

ω0∆ψ
)

1− �
∆ψ

, (27)

where, as before, ψ ≡ k/K. The resulting partition func-
tion for the twisted and stretched molecule in the presence
of proteins is therefore

Zfold,tw =
K∑

k=0

Wk exp [(L− k")g̃(x, ỹ)/A+ kε] . (28)

For large K, this sum can as above be converted to an
integral over ψ ≡ k/K which can be evaluated using the
stationary point of the exponent, as done above. The ex-
pectation value 〈ψ〉 = ψ0 is given by the stationary point
equation

0 =
∂

∂ψ
[lnWk + (L−Kψ")g̃(x, ỹ)/A+Kψε]ψ=ψ0

. (29)

The extensive part of the partition function follows as

lnZfold,tw = lnWk + (L−Kψ0")g̃(x, ỹ)/A+Kψ0ε. (30)

The end-to-end extension can be computed again using
(16), and has a form similar to (17):

〈z〉
L

=
kBT

L

∂ lnZfold,tw

∂f

=
[
1− "

∆
ψ0

]
∂g̃(x, ỹ)

∂x

=
[
1− "

∆
ψ0

] [
1− 1

2
√
x
− ỹ2

16x3/2
+ · · ·

]
. (31)

The only difference between these results in the “fixed”
and “sliding” cases discussed above is the form of Wk,

and in turn the precise form of (29) which determines ψ0.
Plugging in either (13) or (14) converts (29) to the forms

0 =
∂

∂ψ

[
ψ lnψ + (1− ψ) ln(1− ψ)

+
"ψ −∆

A
g̃(x, ỹ)− ψε

]
ψ=ψ0

(32)

for the fixed case, and

0 =
∂

∂ψ

[
ψ lnψ − ψ ln(1− ψ)

+
"ψ −∆

A
g̃(x, ỹ)− (1 + ε)ψ

]
ψ=ψ0

(33)

in the sliding case.
We now describe the application of this model to an

IHF-like protein binding to dsDNA with fixed linking
number. The change in DNA linkage induced by nonspe-
cific IHF binding is not well understood, providing a moti-
vation for a micromanipulation experiment. Here, we must
simply guess the value of Θ, the change in linkage (angle)
per bound protein. IHF is known to severely bend dsDNA,
and therefore it should force the double helix to unwind
near the sharp bend. Other DNA-bending proteins such as
HMGB1 or HU should similarly drive helix unwinding in
the bend region. Per bound protein, we will assume that
this unwinding is a half-link, i.e. Θ = π. Then, low-force
binding of IHF at an occupation fraction of 0.50 requires a
half-link of unwinding of the DNA for every 2∆ = 150 nm
≈ 500 bp, or a whole link every 1000 bp.

Figure 6 shows results, assuming (as in the previous
section) ε = 0, A = 65 nm, " = 98 nm and ∆ = 39 nm,
using the “sliding” entropy model. The twisting elastic
constant is taken to be C = 100 nm. Figure 6(a) shows ex-
tension versus force, at fixed linking numbers σ = −0.01, 0
and +0.01. At low forces, the symmetry between positive
and negative linking number that would normally hold
for σ = ±0.01 is broken by the presence of IHF, the bind-
ing of which is stimulated by undertwisting. This binding
drives the σ = −0.01 force curve to be well below that for
σ = +0.01 at low forces. This asymmetry is generated by
the protein binding, since the bare DNA response (26) is
symmetric under σ → −σ.

Figure 6(b) shows extension versus linkage number, at
fixed forces f = 0.125 (bottom curve) and 0.4 pN (top).
The binding of the protein again generates asymmetry in
σ not present in (26), relative to the bare DNA result
(dotted curves). As in Figure 6(a), σ < 0 drives protein
binding, which in turn reduces extension relative to σ >
0. The IHF occupation fraction corresponding to these
force cases is shown in Figure 6(c). Note that the lower
occupation curves correspond to higher forces; high forces
force DNA extension and therefore protein unbinding. As
the DNA is underwound, the protein gradually binds.

The theory presented here has not included a descrip-
tion of the sharp transitions that bare DNA has been ob-
served to undergo when it is strongly twisted and stretched
[5,39,40,36,37]. For this reason we have shown results only
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Fig. 6. Effect of linking-number constraint on elastic response
of dsDNA, in the presence of an IHF-like protein, under the
assumption that each bound IHF introduces an untwisting of
the double helix by Θ = −π radians. Results for the “sliding”
model with a net binding free energy ε = 0.0kBT are shown.
Results are plotted only for DNA twisting torque in the range
−2kBT to 6kBT , where the double helix is known to be stable.
(a) Extension versus force, at fixed linking numbers σ = −0.01
(dashed), 0 (solid) and +0.01 (dot-dashed). At high forces, all
curves converge to the “bare” dsDNA elastic response. At low
forces, the usual symmetry between positive and negative link-
ing number is broken by the presence of the bound protein, the
binding of which is stimulated by undertwisting. Since protein
binding removes length from the chain, the σ = −0.01 curve
is appreciably below the others. (b) Extension versus linkage
number, at fixed forces f = 0.125 (bottom) and 0.4 pN (top).
For bare DNA extension is an even function of linkage num-
ber change (dashed) for these low forces. Addition of protein
(solid lines) breaks this symmetry; undertwisting stimulates
protein binding, and reduction of extension. (c) IHF occupa-
tion fraction corresponding to part (b), f = 0.125 (top), 0.4 pN
(bottom). Undertwisting drives binding of the protein.

in the regime where DNA is not denatured, and where
there is essentially no asymmetry between undertwisting
and overtwisting [32,33]. Against this background, the
chiral asymmetry induced by the binding of the protein
(Fig. 6a,b) provides a clear experimental signal.

For undertwisting beyond σ ≈ −0.01, one can expect
bare dsDNA to strand-separate when it is fully extended;
in this situation the linking number is forced into twist,
and when the unwinding torque reaches about −2kBT
dsDNA becomes unstable [40]. As remarked previously,
these DNA structural transitions can be treated by mod-
els similar to that of this section [24,42]. Structural tran-
sitions of the DNA and protein binding could be there-
fore treated by a generalization of the model of this sec-
tion to one with multiple states [40]. However, we warn of
the complication that the affinity of the protein may vary
greatly with DNA structural state. On the other hand,
if one stays in the regime of low forces < 1 pN and low
supercoiling (|σ| < 0.01) where the model (26) is appro-
priate, our theory can provide quantitative information
about DNA untwisting by protein.

The calculation of this subsection was done for fixed
linkage change σ, which is the control parameter for all
DNA twisting experiments to date. It would be extremely
interesting to carry out DNA twisting experiments as a
function of fixed torque, and the above calculation can
be redone in that ensemble. Roughly, when a length and
angle constraining protein dissociates (at enthalpic cost
kBTε), force-distance work ≈ f" will be done, and at fixed
torque, twisting work τΘ+τ2"/(2C) is also done. The first
term is due to protein-driven unwinding, and the second
term is the twisting free energy of the released DNA. The
protein-dissociated state therefore has lower free energy
when

f >
kBTε− τΘ

"
− τ2

2kBTC
. (34)

Here we have used the harmonic DNA twist energy [11,
28] which applies only when the molecule is not stress-
denatured. Although this condition is only semiquanti-
tative, it indicates how unwinding generated by protein
binding could be measured using the shift in the coexis-
tence force of folded and unfolded states. In the nonde-
natured regime the linear torque-twist relation τ = Cω0σ
[11,28] can be used to express (34) in terms of linking
number. This brings together results for force-removal [11]
and torque-removal [43] of DNA-binding proteins, includ-
ing the effect of protein-induced unwinding.

3.6 ssDNA —folding and electrostatic effects

If we include screened electrostatic interactions, the
model of Section 3.1 can be used to understand the
salt-dependent elastic response of single-stranded DNA
(ssDNA). At relatively high univalent ionic strengths >
100 mM, ssDNA collapses at low force, requiring about
2 pN to start to extend [7,17]. As discussed in Section
2.2, this relatively low-force threshold is most likely due
to opening of short “hairpin” structures [9,10].
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At low univalent ionic strength ≈ 1 mM, ssDNA has a
peculiar extension apparently varying ≈ ln f (Fig. 2, ex-
perimental data), and the 2 pN force threshold seen at low
ionic strength is absent [17]. Recent computer simulation
work has indicated that these effects can be taken into
account by a combination of hairpin formation (i.e. chain
folding) and electrostatic self-repulsion. The basic idea is
that at high ionic strength, screening of electrostatic self-
repulsion allows the chain to fold up at low force.

The electrostatic effects can be taken into account
using Debye-Huckel interactions, and at the harmonic
level of description for a worm-like chain, following Bar-
rat and Joanny [44]. These interactions have been dis-
cussed in connection with force-distance experiments on
dsDNA [23]. Barrat and Joanny’s calculation gives rise to
a scale-dependent persistence length,

A(q) = A0 + "OSFK(q),

K(q) =
2

λ4Dq
4

(
[1 + λ2Dq

2] ln[1 + λ2Dq
2]− λ2Dq

2
)
, (35)

where q is the wave number of bending modes, λD is the
Debye screening length, "OSF = "B(λDν)2/4 is the Odijk-
Skolnick-Fixman length, for chain charge density ν in elec-
tron charges per contour length, and "B is the Bjerrum
length, about 0.7 nm in water at room temperature. The
basic behavior of K(q) is that it goes to 1 for q → 0, and
decays to zero as (ln q)/q2 for large q. Thus, the effective
persistence length increases from its intrinsic elastic value
A0 at small wavelength, to an electrostatically enhanced
value A0 + "OSF at large wavelengths.

The main point is that "OSF can be quite large
(> 10 nm) at low ionic strength; we recall that λD ≈
0.3 nm/c1/2, where c is the univalent ion concentration in
Mol/". For ssDNA, ν ≈ 1.6 nm−1 (this is near the struc-
tural charge, and the Manning condensation limit). Thus
for 1 mMNaCl concentration, we have "OSF ≈ 40 nm. This
is a large enhancement over the intrinsic ssDNA back-
bone persistence length A0 ≈ 1 nm, and thus as force
(and hence the characteristic q for bending modes) is in-
creased, A(q) will decrease. This will make the polymer
progressively more difficult to extend as it is stretched out,
which is qualitatively the effect observed in experiments
at low ionic strength. This effect is far more striking for
ssDNA than for dsDNA [23], due to the two polymers
having about the same charge density, but very different
intrinsic persistence lengths.

All we need to apply the formalism of the previous
sections is to compute the free energy per length of the
unfolded chain as a function of force f . For this problem,
analytical progress is practical only for the harmonic ap-
proximation to the bending modes, where

g(βfA0)=βfA0+
βA0f

2

2f0

−A0

∫
dq
2π

ln
(
[A0+"OSFK(q)] q2+βf

A0q2+1/A0

)
. (36)

The denominator of the logarithm is chosen to set the free
energy to be roughly near zero for forces on the order of

kBT/A0 ≈ 4 pN. Note that the intrinsic persistence length
A0 ≈ 1 nm is used as the reference length scale. The final
term is a harmonic stretch modulus for the chain, where
f0 is the characteristic force (elastic) constant. The chain
extension, in units of the unperturbed contour length, is
obtained by differentiation with respect to βA0f ,

z

L
= 1−

∫
dq
2π

1
[A0 + "OSFK(q)] q2 + βf

+
f

f0
, (37)

which is equation (19) of reference [23]. This model will be
accurate as long as the bending fluctuations are reasonably
small, i.e. as long as the extension z/L > 0.5.

Although there are a number of parameters, there is
little choice as to what they are. The charge density along
the chain will be the Manning limit ν = 1/"B since the
spacing of structural charges exceeds this value (there is
one PO−

4 every 0.7 nm along the fully extended polynu-
cleotide backbone). The intrinsic segment length has been
measured in the high-force regime to be roughly b = 2A =
1.5 nm, and so we adopt A = 0.75 nm. The Debye length
for sodium chloride solution is λD = 0.3M−1/2

NaCl nm. Fi-
nally, the elastic constant f0 should be large, since the
relevant elasticity is that of the chemically bonded back-
bone. We take f0 = 2000 pN, which means that elastic
backbone stretching will play a minor role at the forces
< 200 pN relevant to the single-molecule experiments.

The folding interactions require specification of the pa-
rameters " and ∆; we take the values " = ∆ = 3 nm to
describe the folding up of a few bases of ssDNA into com-
pact structures. We also use the “fixed” folding model
since we are describing sequence-directed folding of the
ssDNA. The remaining parameter is the folding energy,
which we take to be of the form ε = ε0 − ε1 exp[−R0/λD].
This form accounts for the intrinsic self-attraction of the
folded structure, competing with its Coulomb repulsion.
We take ε0 = 3, ε1 = 30, and R0 = 2 nm. At relatively
low ionic strength (λD > 1 nm) Coulomb replusion desta-
bilizes the folded structures. The calculation then just re-
quires numerical evaluation of the q-integrals, and the use
of g and z/L in equation (16).

Results for a few NaCl concentrations are shown in
Figure 7. The solid curves indicate the region where the
unfolded portion of the chain has extension greater than
0.4, and therefore is where the Gaussian calculation (37)
is most accurate. At high ionic strength (1.5 M) the chain
folds up, and requires a force ≈ 1 pN to be extended,
as in experiment. For low ionic strength (1.5 mM and
0.5 mM curves), the Coulomb interactions eliminate the
folded states, and also give rise to the scale-dependent
elastic response discussed in reference [23].

Figure 7 includes experimental data for 0.15 M and
2.5 mM Na+ from reference [17] The data for 0.15 M show
the “collapse” behavior and the ≈ 1 pN zero-extension
force associated with self-adhesion of the single-stranded
molecule. However, by the time the salt concentration is
reduced to 2.5 mM, the self-adhesion is overwhelmed by
the Coulomb repulsion, and a very slow variation of ex-
tension with force (≈ ln f) is observed.
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Fig. 7. Force versus extension for ssDNA at various ionic
strengths. Curves from top to bottom show theory of semi-
flexible chain with folding and electrostatic interactions, for
1.5 M, 150 mM, 15 mM, 1.5 mM and 0.5 mM NaCl concen-
trations. At high salt, the folding of the chain dominates the
low-force elasticity; at low salt, Coulomb repulsion gives rise
to a nearly exponential dependence of force on extension. Ex-
tension is relative to the maximum possible extension of the
ssDNA, corresponding to about 7 Å per base pair. Relative to
this, B-DNA (3.4 Å per bp) has an extension of just slightly less
than 0.5. Data for 2.5 mM (+) and 150 mM Na+ (◦) from ref-
erence [17] are shown for comparison. The experimental data
are the same as those of the inset of Figure 3, but with the
extension coordinate scaled by 0.5.

In this theory, the peculiar force response seen at low
ionic strength is due to the Barrat-Joanny scale-dependent
elasticity rather than to the formation of secondary struc-
ture. This is reasonable since base-pairing is destabilized
at 1 mM ionic strength, while there will certainly be
strong perturbation of chain elasticity by electrostatic in-
teractions. In addition, these results are in good accord
with the conclusions of Zhang et al. [8], who have car-
ried out Monte Carlo simulation of a semiflexible chain
with folding and Debye-Huckel interactions. Very recently,
Dessinges et al. [45] came to similar conclusions, again us-
ing a comparison of Monte Carlo simulation of a polymer
with Debye-Huckel and folding interactions, with single-
molecule experiment data.

The weak (log-like) dependence of extension on ap-
plied force can be roughly understood by examination of
the integrand of (37), which has approximately the form
[f + A0q

2 + "OSFq
2/(1 + λDq

2/4)]−1. The peak value of
the integrand is always ≈ kBT/f (the q → 0 limit). The
integrand goes to zero for large wave number ∼ 1/q2 (ne-
glecting the log q of the large-q limit of K(q)), and the
integral can be estimated from the width of the inte-
grand. For high forces > kBT/A0, the width approaches
the larger “bare” value ≈ √

βf/A0, causing (33) to tend
to the usual WLC form ≈ (βA0f)−1/2. At low forces

< kBT/"OSF, the width is reduced by the electrostatic
stiffening to ≈ √

βf/(A0 + "OSF), which in turn makes
(37) ≈ (β[A0 + "OSF]f)−1/2. The result is that for low
ionic strength, the value of integral (37) changes only by
about a factor of 5 from 1 to 100 pN.

4 Conclusion

In this paper we have studied the effect of “folding” inter-
actions on polymer elastic response. These interactions are
presumed to cause nearby monomers along a chain to stick
to one another, but without the overall chain self-adhesion
that causes collapse of a polymer into a compact “glob-
ule”. Thus, instead of applying to overall hydrophobicity,
the results of this paper apply to polymers which have
localized interactions, as occurs for many biopolymers.

We showed that for simple models of a folding polymer,
the self-interactions lead to a reduction in the apparent
persistence length for low forces (≤ kBT per persistence
length). This might lead to a disagreement between persis-
tence lengths measured from coil sizes or low-force poly-
mer elastic response, and measured from high-extension
force response. For polymers with long persistence lengths,
as is typical for biopolymers, the “folding” interactions do
not have to be strong to lead to large effects.

We have applied our model to single-stranded DNA
(ssDNA), measurements of the persistence length of which
vary over a wide range [46]. The peculiar low-force elastic-
ity observed in single-molecule experiments can be largely
explained using a simple folding model describing the fold-
ing of the chain into numerous small “hairpin” struc-
tures at low force [10]. While a detailed sequence-based
model [9,10] may be necessary to understand the lowest-
force response, a more generic self-interaction model cap-
tures the basic features of experiment. By combining a
folding model with electrostatic self-interaction, we are
able to describe ssDNA elastic response over a wide range
of forces and ionic strengths, providing an analytic the-
ory for effects previously studied using computer simula-
tion [8].

The same model has been used to describe unfolding
elastic response of chromatin fiber, which occurs on the
few-pN scale. This should not be confused with nucleo-
some removal which has been observed near to 20 pN by a
few groups [3,18]. Currently, only Cui and Bustamante [3]
have explored the entropic elasticity of chromatin fiber. It
would be of great interest to see further sub-piconewton
experiments that would provide better determination of
chromatin fiber persistence length, and indeed, stronger
evidence that a flexible-polymer elasticity picture is ap-
propriate for chromatin at low forces.

We have also developed a model where the folding
is on scales large compared to the polymer persistence
length. This is applicable to loops or other folds of dsDNA
that might be formed by proteins which interact with the
double helix. Such loop-forming and DNA-bending pro-
teins have already been studied using single-molecule mi-
cromechanical techniques [15,14]. Examples of other loop-
forming proteins that would be good candidates for this



262 The European Physical Journal E

type of experimental study include site-specific recombina-
tion enzymes [47] and certain restriction enzymes which
bind two target sites [48], under conditions where loops
form, but where enzyme catalytic activity is impaired.

In the model, length is effectively lost from the dsDNA
in a manner similar to a model for DNA structural changes
introduced by Ahsan et al. [24]. Essentially, two phenom-
ena occur in this situation. For low extensions, force en-
hancement occurs due to the effective persistence length
being forced down by the folding interactions. However,
at large extensions, there can be an unfolding “transition”
where the folding proteins are dissociated. This transition
can be observed at moderate forces below those that will
change double-helix secondary structure. To some extent
these effects have already been observed for the protein
IHF in single-molecule experiments of Ali et al. [14]. We
have also predicted force curves for the situation where
DNA linking number is constrained; this is likely relevant
for DNA-bending proteins which are likely to untwist the
double helix.

There are a number of extensions to this model of
DNA folding which are practical. First, cooperativity ef-
fects could be included in our “length loss” model, in order
to model the interaction of nearby DNA-fold structures.
Second, DNA-folding proteins may alter DNA flexibility,
either stiffening or greatly weakening the double helix; this
kind of effect could also be added. Finally, for the case of
DNA bending, it would be desirable to include a better ge-
ometrical model for the actual double-helix bending. All
these effects might be incorporated using discrete transfer
matrix techniques.
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