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This paper focuses on the probability that a portion of DNA closes on itself through thermal fluctuations. We
investigate the dependence of this probability upon the size r of a protein bridge and/or the presence of a kink
at half DNA length. The DNA is modeled by the wormlike chain model, and the probability of loop formation
is calculated in two ways: exact numerical evaluation of the constrained path integral and the extension of the
Shimada and Yamakawa saddle point approximation. For example, we find that the looping free energy of a
100-base-pairs DNA decreases from 24 kBT to 13 kBT when the loop is closed by a protein of r=10 nm length.
It further decreases to 5 kBT when the loop has a kink of 120° at half-length.
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I. INTRODUCTION: DNA LOOPS IN GENE
TRANSCRIPTION REGULATION

Gene expression is regulated by a wide variety of mecha-
nisms. These activities as well as repression phenomena may
occur at all expression steps �translation, transcription, etc�
and do involve interactions between several biological mol-
ecules �DNA, RNAs, proteins, etc�. For instance, proteins
bound on specific DNA sequences may turn on or off gene
transcription by interacting with each other. By bringing
those proteins closer, DNA looping can ease their interac-
tions �1–4�. Such looping events may be observed over a
wide range of lengths spreading from hundreds to thousands
of base pairs �bp�. The looping probability was measured by
cycling DNA segments in solution with cohesive ends. Once
the loop is formed, proteins called ligases stabilize it �5,6�. It
is then possible to count the circular DNAs with respect to
the linear ones. The loop formation mediated by proteins has
also been experimentally studied. Two examples are the
loops formed by the LacR or the GalR transcriptional repres-
sors �7�. Two units of such proteins bind at two specific
positions along the same DNA and associate to form a com-
plex when the binding sites come in contact. The formation
of such loops has been recently studied using micromanipu-
lation experiments on a single DNA molecule �1,2�. The
study of the GalR mediated loop has shed light on the role of
a third protein called HU that sharply bends �i.e., kinks� the
DNA at half-length.

The DNA loop probability depends mainly on its length
and flexibility. Long DNAs �typically longer than 1500 bp�
essentially behave as Gaussian polymers �GP� �8,9�: the cy-
clization cost is mainly of an entropic nature �10�. On the
contrary, for small lengths DNA cyclization is difficult
mainly because of the bending energy cost. The computation
of the elastic energy for the wormlike chain �WLC� model
�8,9,11� can be analytically performed �14�; numerical meth-
ods have also been employed when electrostatic properties
are included �15�. At intermediate length scales �in the range
50–2500 bp� elastic rigidity and entropic loss are both im-
portant. Several approximations have been developed to
study this length’s range �3,12,13,16�, among them the cal-
culations of the fluctuations around the lowest bending en-
ergy configurations performed by Shimada and Yamakawa

�14�. Numerical approaches have also been developed:
Monte Carlo �17� and Brownian dynamics-based simulations
�4,18,19� as well as numerical calculations of the WLC path
integral under the closed ends constraint �20,21�. This latter
method allowed Yan, Kawamura, and Marko to study the
elastic response of DNA subject to permanent or thermally
excited bendings caused by binding proteins �such as HU� or
inhomogeneities along the DNA double helix �21,22�. All
these studies do provide a better understanding of the under-
lying regulation phenomena despite their overall complexity.

In this paper we study two processes that turned out to be
important in DNA looping, namely, the size of the protein
complex clamping the loop �4,18�, acting as a bridge be-
tween the two DNA ends, and mechanisms implying DNA
stiffness loss, which are taken into account in an effective
way by kinking the WLC at half-contour length �4,18,19,23�.
In Sec. II we define the model and the methods: we describe
the numerical approach �Sec. II A� and the analytical saddle
point approximation �SPA, Sec. II B� to calculate the
r-dependent closure factor and the looping free energy. In
Sec. III we compare the numerical and SPA results with pre-
vious experimental and theoretical results. In Sec. IV we
extend the numerical and SPA approaches to a kinked loop;
we discuss our results and we propose a simple formula that
accounts for both the protein bridge and kink effects �Sec.
IV C�. We conclude �Sec. V� by sketching how to include
omitted DNA properties, which may also play an important
role in its closure such as twist rigidity or electrostactic
interactions.

II. DEFINITIONS AND METHODS

We use the well-known wormlike chain �WLC� model
�8,9,11�. The DNA polymer is described as an inextensible
continuous differentiable curve of contour length L, with unit
tangent vector t��s� �0�s�L�. The polymer is characterized
by the persistence length A beyond which tangent vectors
lose their alignment: �t��s� · t��s���=exp�−�s−s�� /A�. The en-
ergy of a configuration of the polymer stretched under an
external force fe�z reads
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e�z · t��s�ds , �1�

where we use �=1/kBT. No twist elasticity or extensibility
will be considered. The partition function is

Z�L, f� =� Dt� exp�− �E�t�;L, f�� . �2�

Notice that summation over all initial and final tangent vec-
tors orientations, t��0� and t��L�, is implicitly understood in
this path integral.

In this paper we are interested in the formation of a loop
in a DNA molecule, and the probability density functions
�PDFs� of end-to-end distances play an important role. The
quantities under study are denoted by Q, S, P, and J respec-
tively and defined as follows: �i� the end-to-end extension
r�= �x ,y ,z� PDF at zero force,

Q�r�,L� =
1

Z�L, f = 0� � Dt��	�
0

L

t��s�ds − r�

�exp�− �E�t�;L, f = 0�� . �3�

In the absence of force, Q depends on its argument r� through
its modulus r= �r�� only, and we may introduce the radial PDF

S�r,L� = 4�r2Q�r,L� . �4�

�ii� The z extension PDF reads

P�z,L� = �
−L

L

dx�
−L

L

dyQ„�x,y,z�,L… . �5�

In the absence of external force, notice the x or y extensions
PDFs are given by P too. Interestingly, the radial and z ex-
tensions PDF are related to each other through the useful
identity �24�,

S�r,L� = − 2r
dP

dz
�r,L� . �6�

�iii� The cyclization factor

J�L� = Q�0,L� , �7�

defined as the density of probability that the two ends of the
DNA are in contact with one another. �iv� The r-dependent
closure factor is

J�r,L� = 	�
0

r

S�r�,L�dr�
�4

3
�r3� . �8�

It gives the density probability for the two ends of the chain
to stay within a sphere of radius r. It is easy to check that
J�r ,L�→J�L� when r→0. For experimental convenience,
units used for J�L� and J�r ,L� are moles per liter: 1 M
�1 mol/L�0,6 nm−3. In these units J�r ,L� gives directly
the concentration of one binding site in proximity of the
other. �v� Finally we consider the looping free energy cost

��G�r,L� = − ln	J�r,L� �
4

3
�r3
 . �9�

Note that this definition does not include the details of the
geometry or the affinities of the DNA-protein and protein-
protein interactions. We actually assume all the sphere of
radius r to be the reacting volume, i.e., that the loop will
form if the DNA ends happen to be in this sphere.

Despite intense studies of the WLC model, no exact ana-
lytical expression is known for Q and the quantities of inter-
est here, namely J and S. However, approximations expand-
ing from the two limiting regimes �entropic �12,13� and
elastic �14,16�� along with exact numerical computations are
available. Hereafter, we have resorted to numerical as well as
approximate analytical techniques �SPA� for calculating the
cyclization factor J and the probability of almost closed
DNA configurations.

A. Numerical calculation of the probabilities P, S, and J

Our starting point for the calculation of the z extension
PDF is the Fourier representation of the Dirac �-function in
�3� and �5�,

P�z,L� = �
−�

+� dk

2�
e+ikzZ�L, f = − ik/�� . �10�

At fixed momentum k we are left with the calculation of the
partition function Z�L , f� at �imaginary� force f =−ik /�. The
path integral �2� defining Z is interpreted as the evolution
operator of a quantum system, the rigid rotator under an
external imaginary field

Z�L, f� = �final�exp�− L/A � Ĥ�f���initial� . �11�

The entries of its Hamiltonian Ĥ are easily expressed in the

spherical harmonics �� ,m� basis: �� ,m�Ĥ�f���� ,m��
=H�,���f��m,m� with

H�,���f� =
��� + 1�

2
��,�� − �Af

����,�−1 + ����,��−1

��2� + 1��2�� + 1�
. �12�

The entries of Ĥ do not depend on the azimuthal number m
due to cylindrical symmetry around the force axis. Finally,
integration over all initial and final orientations for the tan-
gent vectors at the ends of the polymer chain selects
�initial�= �final�= �0,0�.

A recent paper �24� used MATHEMATICA to compute the
vacuum amplitude �11� through a direct matrix exponentia-
tion. We have instead used the EXPOKIT library �25� since it
proves to be more accurate and faster for intensive numerical
calculations. We truncated Hamiltonian �12� in such a way
that the outcome is insensitive to the cutoff on the harmonics
order. The �inverse� Fourier transform �10� is then handled
by a fast Fourier transform �FFT� algorithm �26�. This task is
in particular facilitated thanks to the inextensibility con-
straint which makes the distribution bandwidth limited. Our
results for the z extension PDF are shown in Fig. 1. The
crossover from the rigid elastic regime �L /A=0.1,0.5,1� to
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the flexible entropic regime �L /A=5,10,15� is clearly vis-
ible. Using �6� then gives us access to S, the radial extension
PDF �see Fig. 2�. The most probable value for the distance r�

switches from full extension r�	L for contour lengths
L	A �elastic dominated regime� to the GP most probable
extension �4LA /3 for longer ones L
A �entropic dominated
regime�. Also note that S always goes continuously to zero in
the r→L limit due to WLC inextensibility. We have finally
calculated the r-dependent closure factor J according to �8�
by numerical integration of S, and the looping free energy
cost �G defined in �9�.

Let us now discuss the numerical errors that could be
important when calculating probabilities of rare events. Main
sources of error are the Hamiltonian �12� truncation and the
integration step to compute the r dependent closure factor
�8�. As mentionned above, the cutoff on the harmonic order
was systematically chosen to observe convergence. We have

used �=50 after having verified that the result is unchanged
for �=100. Concerning integration, limitation comes from
the number of available data in the range 0�r��r which is
directly related to the k sampling of the partition function Z.
For r=1 nm the numerical integration is still reliable, but
decreasing further r turns out to be critical. Other potential
sources of error are negligible. Indeed, bandwidth limitation
of P�z ;L� prevents any aliasing �26� during FFT �10� and the
derivative of P �6� can actually be skipped by an integration
by part of �8� to compute J. Further hypothetical errors
would then come from the EXPOKIT library �25� itself but its
routines were coded to accurately compute matrix exponen-
tials over a broad range of matrices �27�. We have checked
the numerical precision of our method by the comparison
with the exact values for the first even moments of S�r� �Fig.
2 inset�; moreover, as shown in Fig. 2, S�r� agrees with the
Wilhelm and Frey expansion for small L /A values; finally,
we will see in Sec. III that the numerically calculated cy-
clization factor J�L� �8� is in agreement with the Shimada-
Yamakawa and Gaussian approximation results for respec-
tively small and large L �Fig. 3�.

B. Saddle point approximation for J

In addition to the exact numerical calculations detailed
above, we have carried out approximate calculations based
on a saddle point estimate of the partition function �2�. We
follow the Shimada and Yamakawa calculation for the saddle
point configuration �14�, extending it for an opened DNA.
The saddle point configuration for a closed loop is shown in
Fig. 3 inset: it is a planar loop. The tangent vector at position
s along the chain is characterized by its angle ��s� with re-
spect to the end-to-end extension r�. The optimal configura-
tion is symmetric with respect to the perpendicular e��-axis
while the half-length angle is ��L /2�=180°. The initial angle
��0� is chosen by the minimization of the bending energy of

FIG. 1. Numerical computation of the z extension PDF over a
wide range of contour lengths L. As expected, the agreement with
the SPA prediction �see Sec. II B� improves as L decreases �upper
bound L /A	1�. The long WLC behavior is caught by the GP ap-
proximation �8,9� as soon as, say, L /A�5.

FIG. 2. Numerical computation of S, the radial r extension PDF.
The outcomes of the numerical calculations are tested against ex-
actly known values for the first even moments �r2n� �inset� �8,9�.
The shape of S compares very well to the widely used Wilhelm and
Frey �W&F� expansion �16�, valid up to L /A	2. Similar tests were
achieved with other popular approximation schemes �3� �data not
shown�.

FIG. 3. Cyclization factor as a function of the DNA length with
the Gaussian model �gray line�; the WLC model with the Shimada
and Yamakawa formula �dotted black line�; the WLC model with
the numerical calculation �full black line�. The most probable length
is 500 bp. Inset: the lowest bending energy configuration of a closed
loop.
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the chain. The optimization gives rise to the following con-
dition on the parameter x=cos���0� /4�

�1 + r/L�K̂�x2� = 2Ê�x2� , �13�

where K̂�x2�=K�� /2 ,x2� and Ê�x2�=E�� /2 ,x2� are the com-
plete elliptic integrals of the first and second kinds respec-
tively �28�. The corresponding elastic energy is

��E�r,L� =
4

L/A
K̂2�x2� � �2x2 − 1 + r/L� . �14�

The end-to-end extension PDF is then approximated as

Q�r,L� = C�r,L�exp�− ��E�r,L�� . �15�

The prefactor C�r ,L� should be calculated by taking into
account quadratic fluctuations to the saddle point configura-
tion. Since such calculation is quite involved, we will actu-
ally only extend the Shimada and Yamakawa results, which
were computed considering fluctuations to a closed loop. In
M=mol/L units this reads

CSY�L� =
1.66

A3 �
112.04

�L/A�5 exp�0.246 � L/A� . �16�

For this factor to fit the correct fluctuations �of the opened
loop� we have to consider the fluctuations of a fake closed
loop of similar bending energy. Such a loop may be obtained
by considering the optimal configuration of a loop of contour
length �L+2r� instead of L, as shown in Fig. 4 �bottom,
inset�. The choice of the factor 2r derives from the following
geometrical considerations: the closed saddle point configu-
ration has an initial angle ��0�=49.2°, the �L closing the
loop could be calculated for each value of r by requiring

�
0

�L

cos ��s�ds = r . �17�

The angle ��s� increases slightly on the first part of the tra-
jectory ��s���0� and �L1.53r. We have chosen �L=2r
as an approximate value; this approximation has the advan-
tage that it can be directly put in the fluctuation expression
C�r ,L��CSY�L+2r� in Eq. �15� to obtain:

FIG. 4. Closure factor �left panel� and free energy �right panel� with a protein bridge of sizes: r=1 nm �dashed line�; 5 nm �dotted line�;
10 nm �full line�. The error bars are shown when they are larger than the symbol sizes. Top: numerical calculation of the constrained path
integral. The r=1 nm curve coincides with the r=0 cyclization factor. Bottom: closure factor obtained by the extension of the Shimada and
Yamakawa calculation, which includes r. Theoretical results are in very good agreement with Monte Carlo simulations obtained by
Podtelezhnikov and Vologodskii �filled circle, �� �17�, and in fair agreement with Brownian dynamics simulations obtained by Langowski
et al. �empty square, �� �4,18�. Inset of the bottom left panel: lowest bending energy configurations for 100 bp and r=0 �bottom� or
r=10 nm �top�, the closure of the r=10 nm configuration is shown by a thin line.
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Q�r,L� = CSY�L + 2r�exp�− ��E�r,L�� , �18�

where �E is given in formula �14� and CSY is given in for-
mula �16�. The validity of this approximation for the fluctua-
tions prefactor was checked out by comparing J�r ,L� ob-
tained from Q�r ,L� through formula �8�, with the numerical
results. The good agreement shown in Fig. 4 allows us to
obtain a semianalytical formula for the loop probability with
a finite interacting volume, which is valid for molecules of
up to 2 kb �kilo base pairs�.

III. RESULTS: THE EFFECT OF A PROTEIN BRIDGE

In Fig. 3 we show the cyclization factor J�L� for lengths L
up to 3 kb. The most probable loop length is of about L�

=500 bp that is L� /A�3.5 �4,14�. Both shorter and longer
cyclized lengths are less probable: stiffness makes difficult
the bending of smaller polymers while entropy makes longer
polymers ends unlikely to meet. The numerical cyclization
factor is compared with the saddle point calculation of Shi-
mada and Yamakawa �14� and with the Gaussian polymer
�GP� model. The former is in good agreement with the nu-
merical results for lengths smaller than about 1.5 kb while
the latter works well for loops larger than 2.5 kb.

The effects of the finite size r of the protein bridge are
displayed in Fig. 4, which shows J�r ,L� �on the left� and
�G�r ,L� �on the right� for lengths L ranging from 75 bp �i.e.,
25 nm� to 300 bp �i.e., 100 nm� and r respectively ranging
from 1 nm to 10 nm. The numerical results �on the top� are
in good agreement with the SPA results �on the bottom�.
Note that for small lengths L, J�r ,L� has a peak for the
L�r event corresponding to rigid rodlike configurations.
Figure 4 does not show this peak, occurring for r=10 nm at
about L=30 bp �or L=10 nm� because we focus on the cy-
clization events. As shown in this figure, r values ranging
from 1 nm to 10 nm make no difference for the r-dependent
closure factor, considering contour lengths L larger than 300
bp �or 100 nm�. The cyclization factor J�L� is evaluated as
the limit r→0 of J�r ,L�. In practice, convergence is reached
as soon as r is about one order of magnitude smaller than L.
In the range L75 bp �25 nm�, J�5 nm,150 bp� converges
to J�1 nm,150 bp�. On the other hand, J�r ,L� is consider-
ably different from J�L� when r is of the same order of
magnitude as L. For example, for loops of L=100 bp
�34 nm� an end-to-end extension of 10 nm increases by two
orders of magnitude the closure factor. Therefore proteins of
size �10 nm are expected to produce drastic enhancements
in looping short DNA sequences.

In terms of energetics �see Fig. 4, right� cycling a 100 bp
DNA sequence costs 25 kBT when the loop ends are required
to stay within a sphere of radius r=1 nm. This cost decreases
to 13 kBT if the sphere has the typical protein size of
r=10 nm. For loop lengths larger than 300 bp the only dif-
ference in the three curves of Fig. 4 �right� is a free energy
shift due to the difference in the reacting volume. For in-
stance, a reaction radius of 10 nm decreases the looping free
energy of 3� ln�10��7 kBT with respect to a 1 nm reaction
radius.

Our results for the closure factor and the looping free
energy are compared in Fig. 4 with the Monte Carlo �MC�
and Brownian dynamics �BD� simulations results, obtained
respectively by Podtelezhnikov and Vologodskii �17� �shown
in the figure with filled circles, �� and Langowski et al.
�4,18� �displayed in the figure with empty squares, ��. Nu-
merical and SPA data �that for r=1 nm converge to the Shi-
mada and Yamakawa curve� are in better agreement with the
MC data than with the BD ones; indeed numerical, SPA and
MC data are obtained with a simpler model than BD ones,
which does not include twist rigidity and electrostatic effects.

Considerations about Lac operon repression energetics
will help us illustrating our results and compare them with
other previous results. Expression of proteins enabling bac-
teria E. Coli to perform the lactose metabolism can be pre-
vented at the transcriptional level by cycling two different
sequences �1�, the smallest one including the operon pro-
moter. Let O1O3=76 bp and O1O2=385 bp denote these two
resulting DNA loops where the so-called operators O1,2,3 ac-
tually are the small specific DNA sequences �10 bp or so� at
which the tetrameric repressor protein LacR can bind thus
clamping the desired loop. Notice both processes are needed
for efficient repression: despite O1O3 containing the operon
promoter, its cyclization is much less probable to occur than
the O1O2 one �see cyclization factor J�L� in Fig. 3�.
The LacR size is estimated from its crystallized stucture to
r�13 nm �7�. In the in vitro experiments many parameters
are under control, among which are the operators’ sequence
and location. The distance between the two operators, which
defines the length of the DNA loop, has been fixed in �2� to
about 100 bp. Our results are in good agreement with the
experimental measured stability of a 114 bp DNA loop me-
diated by a LacR protein, obtained by Brenowitz et al. in
1991 �7�. By measuring the proportion of looped complexes
present in a solution with respect to the unlooped molecules
they obtained a looping free enegy of 20.3±0.3 kBT to which
they associated a closure factor of 8�10−10 M. From Fig. 4,
the closure factor of a loop of 114 bp with a protein bridge
of r=10 nm is J�10 nm,114 bp�=10−9 M to which we asso-
ciate, from formula �9� a cyclization free enegy
�G�10 nm,114 bp�=12 kBT. Note that the very good agree-
ment between the closure factor contrasts with the bad agree-
ment for the cyclization free energy. The latter could have
been calculated considering a different reaction volume or it
could also include the competition with configurations that
do not allow the formation of a loop �see Fig. 2 of �7��. To
explain the high value found for the closure factor, Brenow-
itz et al. already included the size of the protein in the analy-
sis of their results by comparing their J result with the value
expected for the cyclization probability of a free DNA when
the length of the protein is included in the size of the loop.

Another result on a DNA loop mediated by LacR protein
has been obtained by Balaeff et al. �15� who have numeri-
cally calculated the elastic energy of the O1O3 loop from a
WLC model also including: the twist rigidity, the short range
electrostatic repulsion and the details of the LacR/DNA com-
plex crystal structure. The elastic energy is estimated to be
23 kBT in �15�, of which 81% �that is 18 kBT� is due to the
bending and 19% is due to the unwinding. The bending en-
ergy of 18 kBT is to be compared to the saddle point energy
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�14� of 15 kBT for a 75 bp loop with an end-to-end extension
of r=10 nm. The corresponding free energy of loop forma-
tion obtained by �18� and after integration over the reacting
volume �9� is �G�10 nm,75 bp�=14 kBT �see Fig. 4,
bottom/right�. For a 400 bp loop since LacR is only �10%
of the loop length, its size is expected to play a less impor-
tant role. Indeed the cyclization probability does not depend
on r�10 nm and the free energy of forming such a loop
decreases from 15 kBT for r=1 nm to 8 kBT for r=10 nm
only because the reaction volume increases by a factor
3� ln�10��7 kBT.

IV. EFFECT OF THE PRESENCE OF A KINK

The previous protein mediated DNA looping modelization
�Sec. III� assumes that the only intervening proteins are the
ones clamping the loop ends �e.g., the Lac operon repressor
LacR�. Actually regulation phenomena involve several pro-
teins which may bind along the whole DNA. Indeed naked
DNA situations barely exist in vivo. For instance, single mol-
ecule manipulations �2� have shown that efficient Gal operon
repression needs a stiffness loss of the 113 bp DNA portion
to be looped. The HU protein produces such loss by kinking
the sequence.

A. Numerical calculation of J for a bridged and kinked loop

Such stiffness loss may be taken into account in an effec-
tive way by kinking the WLC at half-length L /2. Let us call
�− and �+ the angles of the DNA just before and after the
kink respectively. We assume that the kink plane is vertical
and choose it to define the origin of the azimuthal angle �:
�−=�+=0. Using the quantum language of Sec. II A, we
replace the calculation of the evolution operator Z�L , f� �11�
with its kinked counterpart

Zkinked�L, f� = �final�exp	−
L

2A
Ĥ�f�
��+,�+�

� ��−,�−�exp	−
L

2A
Ĥ�f�
�initial�

= �
�,��

�0,0�exp	−
L

2A
Ĥ�f�
��,0����,0�

�exp	−
L

2A
Ĥ�f�
�0,0� � Y�

0��+,0�Y��
0 ��−,0� ,

�19�

where we have used the change of basis from angles to
spherical harmonics

��±,�± = 0� = �
��0

Y�
0��±,0���,0� . �20�

Although calculations are a little bit more involved, the
evaluation scheme for the cyclization factor J remains un-
changed in its principle �Sec. II A�. We now have “��
�0,0� elements” corresponding to particular orientations ar-
riving at ��� and leaving from ��� s=L /2. The kink angle �
is intuitively defined from these WLC tangent vectors at

half-length �in spherical coordinates� through

� = �+ − �−. �21�

B. Saddle point approximation of J for a bridged and kinked
loop

The saddle point calculation of Sec. II B can be straight-
forwardly extended to the case of a kinked loop. In Fig. 5 we
show the configurations with the lowest bending energy for a
100 bp DNA loop with an end-to-end extension r=10 nm.
The kink is accounted for by a bending angle in the middle
of the chain �=2���L /2�−� a priori different from the
previous trivial value �=�, ranging from 150° to 90°. We
introduce the phase �=arcsin�sin��−� /4� /x�. The param-
eter x is now obtained from equation

FIG. 5. Lowest bending energy configurations for a 100 bp
DNA loop with an end-to-end extension r=10 nm and kinks
�=90° ,120° ,150° ,180°, respectively. The gray configurations are
the closed loops used in the calculation of the fluctuation.
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�1 + r/L��K̂�x2� − K��,x2�� = 2�Ê�x2� − E��,x2�� �22�

and the total bending energy is

��E�r,L,�� =
4

L/A
�K̂�x2� − K��,x2��2�2x2 − 1 + r/L� .

�23�

In analogy with �15� we obtain the end-to-end extension r�
PDF

Q�r,L,�� = CSY�L + 2r�exp�− ��E�r,L,��� , �24�

where CSY is given in �16�, from which we calculate
J�r ,L ,�� through formula �8�. Note that �24� reduces to the
loop probability given in �23� for a closed and kinked DNA.
Again the good agreement obtained with numerical results
allows us to establish a semianalytical formula for the loop
probability with a finite interacting volume and kink.

C. Results for a kinked and bridged loop

In Fig. 6 results for the looping probability density �left�

and free energy �right� are shown for a typical end-to-end
extension r=10 nm and kinks �=150°, 120°, and 90°. The
curve with no kink ��=180° � is also shown for comparison.
The numerical results on the top of the figure are in very
good agreement with the extension of the Shimada and Ya-
makawa saddle point approach on the bottom of the figure
�black lines�. In Fig. 6 �inset� we show the results obtained
by BD simulations by Langowski et al. �4,18� for J
�10 nm,L ,�� �empty squares, �� fitted by Rippe �19� with a
simple formula containing one fitting parameter for each
curve. The curves in the inset of Fig. 6 reproduce the same
behavior with L and � of our numerical �top of Fig. 6� or
SPA curves �bottom of Fig. 6�. The numerical gap with BD
results increases for large kinks: at �=90° our closure factor
is 10 times larger than the closure factor obtained by BD
simulations. The electrostatic and twist rigidity effect could
indeed play a more important role when the chain is kinked.
Note that the lengths’ range of the numerical results are from
100 bp to 500 bp, while the lengths’ range of the saddle point
results is from 75 bp to 1500 bp. The lengths’ range of the
SPA is limited by the validity of the approximation �1500
bp shown in Fig. 3. As an example, the closure factor J

FIG. 6. Closure factor �left� and free energy for a loop with r=10 nm and a kink � in the middle of the chain: �=180° �full lines�;
�=150° �dotted lines�; �=120° �dashed line�; �=90° �long dashed lines�. Top: numerical calculation of the constrained path integral.
Bottom: extension of the Shimada and Yamakawa calculation �black lines� and approximate formula �gray line� given in the text �25�.
Numerical results are in very good agreement with the SPA approximation and the approximate formula �25�. Inset: Brownian dynamics
simulations point obtained by the Langowski and collaborators �empty square, �� �4,18�, fitted by a simple formula by Rippe �19�.
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�10 nm,113 bp,�� of a 113 bp fragment, obtained by the
numerical calculations, increases from the value of 10−9 M
for a nonkinked loop ��=180° � to 4�10−8 M, 2�10−6 M,
and 4�10−5 M for, respectively, �=150°, 120°, and 90°.
The corresponding looping free energy is �G
�10 nm,113 bp,��=13 kBT, 9 kBT, 5 kBT and 2.5 kBT for
�=180°, 150°, 120°, and 90° respectively. With the saddle
point approach we find similar results: J �10 nm,113 bp,��
=2�10−9 M, 10−7 M, 5�10−6 M, and 8�10−5 M while
�G�10 nm,113 bp,��=11 kBT, 8 kBT, 4.4 kBT, and 1.7
kBT. As it is shown in Fig. 6, the presence of the kink be-
comes irrelevant for DNA segments larger than about 1500
bp. The example of a 113 bp DNA segment has been chosen
to compare the results with the single- molecule experiments
on the GalR mediated loop of an �113 bp DNA portion
between the two operators. From the kinetics of the loop
formation mediated by the GalR and HU proteins, Lia et al.
�2� have deduced a looping free energy of 12 kBT, that with
respect to our values should correspond to a kink angle of
more than 150° or to an end-to-end extension smaller than
r=10 nm. Another significant change in the cyclization prob-
ability is that the stiffness loss induced by � reduces the most
probable loop length from 500 bp for a nonkinked DNA to
340 bp and 190 bp �from the numerical calculation� or to 300
bp and 150 bp �from SPA� for kinks of respectively 150° and
120°. Note that for a kinked loop with an end-to-end exten-
sion r the minimal length L0 corresponding to the rigid rod-
like configuration fulfills the relation L0 sin�� /2�=r and
therefore it is of �42 bp for �=90° instead of �30 bp for
�=180°. For �=90° the most probable loop length is the
rigid kinked rodlike configuration of the two half-DNA por-
tions. To catch both kink and protein bridge effects in a
simple formula, we have calculated the cyclization factor
with the extension of Shimada and Yamakawa formula for a
kinked closed loop of length �L+2r�. This approach is simi-
lar to what was suggested in 1991 by Brenowitz et al. �7� to
interpret their experimental data, i.e., to directly consider the
protein as part of the length of the loop. A linear fit �26� of
the bending energy �23� for the optimal closed configuration
�r=0� in the presence of a kink �expressed in degrees�,
��E�r=0,L ,����−7.1+0.1155�� / �L /A�, is shown in Fig.
7. It gives the following approximated formula for the clo-
sure factor as a function of the protein size r, the length L of
the DNA, and the kink angle �

Japprox�L,r,�� = CSY�L + 2r�exp	7.1 − 0.1155�

�L + 2r�/A 
 , �25�

where CSY is given in �16�. Notice the integration step �8�
has been skipped since it does not make any significant dif-
ference. Formula �25� allows us to obtain a simple prediction
for the loop probability in the presence of a kink in the
middle of the sequence and a finite separation between the
extremities. As shown in Fig. 6 this formula �gray lines� is in
good agreement with the loop probability obtained with the
exact calculation of the saddle point energy of the open con-
figuration �full line�. In particular, Fig. 6 shows that for kink
angles in the range 90° ���150° this simple formula
works remarkably well for lengths L larger than about 5r,

that is 150 bp for r=10 nm. For smaller lengths the optimal
configuration is more a rigid rodlike configuration and can-
not be approximated by a closed loop. Similar simple formu-
las that includes a kink angle � and a finite end-to-end dis-
tance r in an effective way have also been written down by
Rippe or Ringrose to fit their Brownian dynamics simulation
�19� or experimental data �29�, but these formulas contain a
parameter that must be fitted for each values of r and � from
the data points �Fig. 6�.

V. CONCLUSION

We performed both numerical and analytical calculations
of the closure factor J, even in the presence of a protein
bridge and of a protein-mediated kink. More precisely we
have numerically calculated the path integral of the WLC
polymer model under the constraints of a fixed end-to-end
distance r and a kink � in the middle of the DNA portion.
Analytically we have extended the Shimada and Yamakawa
saddle point approximation �14� to the case of a bridged and
kinked loop. We have seen that the formation of DNA loops
is significantly sensitive to the size of the protein bridge
when this size r is more than 10% of the loop length L, that
is, 300 bp �or 100 nm� for a typical protein bridge size of
r=10 nm. To give an example, the closure factor for a 100
bp DNA segment increases from J �100 bp,0��10−11 M to
J�100 bp,10 nm��10−9 M. Correspondingly, looping free
energy decreases from �G�100 bp,0�=24 kBT to �G
�100 bp,10 nm�=13 kBT. A kink ranging from 150° to 90°
produces a significant increase of J for DNA fragments of
lengths up to about 2500 bp. For instance, the closure factor
for a 100 bp DNA segment with a protein bridge r=10 nm
and a kink of 90° is J�100 bp,10 nm,90° ��10−4 M, and the
corresponding looping free energy �G�100 bp,
10 nm,90° ��2 kBT. A kink also changes the most probable

FIG. 7. The “�” points: saddle point energy in units of L /A
�that is, �=�E�L /A� for the saddle point configurations �also
displayed in the figure� with kink angles of �=90° ,120° ,150° ,
180°. Dotted line: linear interpolation used in formula �25�.
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loop length from 500 bp �no kink� to about 175 bp for a kink
of 120°, going to the rigid kinked rodlike configuration for
smaller � values. This is an interesting mechanism because
the loop lengths implied in in vivo DNA processing by pro-
teins spread on a large lengths range. Our results were com-
pared to previous analytical approximations �in particular the
results of the Gaussian model, the Wilhelm and Frey expan-
sion �16� and the Shimada and Yamakawa formula �14�� and
numerical calculations �in particular the Monte Carlo simu-
lations data obtained by Podtelezhnikov and Vologodskii
�17�, and the Brownian dynamics simulations data obtained
by Langowski et al. �4,18,19�� as well as experimental re-
sults �1,2,7� �e.g., the ones obtained by Lia et al. on the
looping dynamics mediated by the Gal and HU proteins�.
Finally a simple formula �25� including both the protein
bridge and kink effects has been proposed. This formula has
the advantage of not containing adjustable parameters with
respect to the existing formulas that include both these
effects �19�.

Still, many effects omitted in this work can be included
without significant changes in the numerical algorithm. The
kink we considered is actually permanent �that is, not ther-
mally excited�, site specific �at half-length�, and rigid ��
fixed�. Although this rigidity seems relevant to most protein
bindings to DNA at first glance �30�, it was pointed out in the
works of Yan et al. �20,22� that kinks may also be semiflex-
ible �exhibiting higher or lower rigidities than the bare DNA�
or even fully flexible �21,31�. For instance, the HU/DNA
complex was recently observed to be very flexible under spe-
cific experimental conditions �32�. Flexible hinges were also

stated to occur along the DNA due to the opening of small
denaturation bubbles �21,33�, such as the one needed by HU
to fit in the double helix �2�. Such flexibility could be taken
into account �30� in our model. These kinds of defects could
also be thermally activated, occurring at multiple nonspecific
sites along the DNA �20,22,30,31,34�. Both effects may be
included in our model. Note that using effective persistence
lengths could turn out convenient, despite little information
about the kink properties �number, location, rigidity, etc.�.
Actually this would be equivalent to study DNA stiffness
loss due to sequence effects �35� by cutting WLC in different
stiff fragments, depending on the CG or AT content of the
whole sequence to cycle. The same approach may allow an
approximative study of the DNA polyelectrolyte nature too
�36�; otherwise, electrostatic potential has to be included in
WLC energy. Twist elasticity leads to slight modifications of
the quantum analog we used although requiring some care
�37�. This is expected to play an important role in looping,
especially when specific alignment of the loop extremities
are required. Finally cyclization dynamics could be modeled
using a simple two-states model where DNA is “closed” or
“opened,” that is, cycled or not. Such study relies on the
�statics� cyclization factor we computed in this article �38�.
Direct comparison to experimental lifetimes measures would
be possible �1,2�.
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