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Abstract. The ground-state properties of several systems showing the Toulouse frustration 
effect are investigated analytically. First. the energy and entropy of the random-bond king 
chain in a uniform field are obtained for all concentrations of antiferromagnetic bonds, using 
the transfer-matrix method. The susceptibility has discontinuities for an infinite number of 
critical values of the field. where the entropy shows spikes in addition to discontinuities. We 
relate these effects to the physics of frustration. The second system studied consists of 
frustrated strips, which we argue are the proper one-dimensional limit of spin glasses. Two 
kinds of strips are considered and the results are compared with recent numerical works on 
two-dimensional spin glasses and with the exact results for random (3 x 3) squares. 

1. Introduction 

A new fundamental concept, frustration, was recently introduced to interpret the 
remarkable properties of such disordered systems as spin glasses (Toulouse 1977). As 
emphasised by Toulouse, it is necessary to study the frustration effect in its own right, a t  
first on simple cases unobscured by all the intricacies of real spin glasses. Like percolation, 
its older counterpart, the frustration effect raises a large number of questions: What are 
the numerical values for the critical concentration of competing bonds? How can one 
define critical exponents? What scaling laws do they obey? How d o  they depend 011 spin 
and lattice dimensionality? Up to now, most work on the problem has relied on numerical 
methods (Bray et ~111978, Kirkpatrick 1977, Vannimenus and Toulouse 1977). It appears 
very difficult to find solvable models other than the completely frustrated ‘odd model’ 
(Villain 1977). 

The natural idea is to look at one-dimensional models, but a chain of spins with 
randomly ferromagnetic and antiferromagnetic bonds is not frustrated. A simple change 
of variables makes the problem trivial and this approach looks unprofitable at first sight. 
The same situation exists in percolation theory for a chain with randomly cut bonds, 
since one cut suffices to disconnect the chain. To obtain an interesting one-dimensional 
problem, one has to modify the original problem, for instance by introducing a ‘ghost site’ 
(Reynolds et a1 1.977). In this way one obtains critical exponents in one dimension, which 
verify the scaling laws for percolation. In the present paper we follow a similar line of 
thought, and study some models which are essentially one-dimensional and still exhibit 
non-trivial frustration effects. 
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The first model we consider is the random-bond chain of Ising spins in a uniform 
magnetic field, at zero temperature and for an arbitrary concentration of antiferromagnetic 
bonds. At a series of field strengths, it becomes favourable to flip well-defined spin 
clusters and the magnetisation jumps suddenly. In general, there are several equivalent 
choices for the spins to flip, because it is not possible to satisfy ev.ery bond at the same time. 
This is a typical frustration effect and it gives rise to jumps in the entropy of the ground 
state. The same qualitative features appear in another related model we have studied, the 
ferromagnetic chain in a random magnetic field. 

Next, we consider two random chains of Ising spins coupled by random bonds, with 
periodic boundary conditions. One can analyse this system in terms ofa strip of frustrated 
plaquettes, following Toulouse (1977). Indeed, such a strip is the real one-dimensional 
version of the frustration problem, and we compute its energy and entropy for two 
different assumptions on the bond distribution. Actual calculations are rather intricate 
and we have only performed them at zero temperature and without external field. 

It is tempting to study several coupled chains and see whether any indication of a 
singularity in the entropy of the 2D frustrated model shows up for a small system. Unfor- 
tunately, our methods lead to prohibitively long calculations, so we turned to the simpler 
case of periodic frustrated squares. We present the results for the ground-state energy 
and entropy of the 3 by 3 square, which give some insight into the behaviour of the 2 D  
model. Here again a lot of work is needed to proceed to the 4 by 4 square, and these 
difficulties seem inherent to disordered frustrated systems. 

2. Ising chains 

2.1. Thc random chain in a uniformfield 

The model is defined by the Hamiltonian: 

x =- p i , i + l S i S i + l  - H I S i  

where the exchange integral Ji, i + ,  equals J with probability (1 - x) and - J with prob- 
ability x, and the bond disorder is quenched. The problem has already been studied by 
several authors, mostly by integral equations or numerical methods (Matsubara 1974, 
Landau and Blume 1976, Fernandez 1977), but to our knowledge the analytical expres- 
sion for the magnetisation at arbitrary x and H is not available. The behaviour of the 
entropy, which is important to understand frustration effects, has not been investigated. 

To get some physical understanding of what happens, let us examine a group of three 
successive antiferromagnetic bonds in an otherwise ferromagnetic chain. If H is larger 
than 25, all spins must point up. If it is smaller, either of the spins surrounded by two 
negative bonds flips in order to minimise the total energy, but it is not favourable to flip 
both spins, so the degeneracy is 2. To compute the total entropy of the disordered chain, 
one must take into account all possible configurations. The direct approach is not practi- 
cal, however, and one has to use the transfer-matrix method. The difficulty then comes 
from the fact that one has to consider several non-commuting matrices, and study the 
product of a large number of randomly chosen matrices. For the present problem, the 
two transfer matrices are: 

/ , - l + a  , l + a  \ 

M l = ( ; l - a  
z -  ' 1 - a  )with probability x 
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with probability (1 - x) 
z l + a  Z-l+z 

M 2  =( z - l - a  Z 1 - a  

where z = exp(J/kT) and H = aJ. For very low temperatures, it is possible to follow the 
evolution of the dominant term (in powers of z )  under successive matrix products; this 
yields the free energy directly. Since the calculations are lengthy, we defer details of the 
solution to Appendix 1, and only present the results here. The ground-state energy per 
spin is given by: 

(3) 
r2x2 + rx(2 - x) + (2x - I) (x - I) + a(I - x) (2rx + I )  

(1 + rx ) ( l  - x + rx) 
E =  -J 

and its entropy per spin is 

_ -  s - x ( l  - x)2 2 ( rx2 )"-'inn. 
k ,  (1 - x + rx)' 1 - x + rx (4) 

In these formulae the integer r is defined by 

r < 2 / a < r + 1  

Both magnetisation and entropy are constant in the intervals corresponding to successive 
values of r ,  and they jump when H = 2J/r. At these critical values of the field, the 
arrangement of spins changes and the degeneracy of the ground state is much 1arger.The 
entropy is then: 

I - x  
1 + ( r - 2 ) x  S/k, = 1 R,(t) In t .  (5) 

The summation bears over all points t that can be reached from to = 2 by the following 
non-commuting operations : 

t + T,(t) = 1 + t 
t + T2(t) = 1 + l / t  

with 

~ ~ ( 2 )  = xz(l  - x)/[l + ( r  - 1)x] 

R,[T,(~)] = ~ , ( t )  x2(r - 1)/[1 + ( r  - 2) x] 

R,[T,(t)] = R,(t)x(l - x)/[l + ( r  - 2 ) x ] .  

For H = 2 J  (I '  = I), only T2 contributes and formula (5) reduces to a simple series: its 
value is 0.1428 for x = 0.5, much larger than the value obtained from equation 4. 

The same kind of generalised series also appears in the strip problem and it seems 
likely that this is a general feature of problems involving products of random non- 
commuting matrices. Necessary details on their derivation are given in the Appendix and 
here we only present some comments on the results displayed in figures 1 to 4 for a few 
selected values of the parameters: 

(i) All properties are continuous with respect to the concentration x ofnegative bonds, 
and for x = 0.5 the magnetisation is in agreement with the low-temperature numerical 
results (Fsrnandez 1977), except in the very low-field region which the numerical method 
could not study in detail. 
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X 

Figure 1. Magnetisation of the random-bond Ising chain in a uniform field H as a function of 
the concentration x of antiferromagnetic bonds at zero temperature. The different curves 
correspond to a range of values of H :  2/r > H / J  > 2/ (r  + 1) for r = 0 (a), 1 (b), 2 (c), 10 (d), 
100 (e). 
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Figure 2. Magnetisation as a function of H for different concentrations x = 0.2 ( t i ) ,  0.5 (b), 
0.8(~.). When H tends to zero, the magnetisation of the chain shows an infinite number of 
discontinuities but the susceptibility has a finite limit (equation 6). 

r 

X 

Figure3. Entropy of the random-bond chain as a function ofx for two ranges of values of the 
field: 2 z H / J  > 1 (a) ;  1 > H / J  > 5 (b). The slope dS/dx is infinite for x = 1 (equation 7). 
Note that at low x, the entropy is smaller in a larger field. 
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H/J 

Figure4. Entropy as a functlon of H for x = 0.5. The spikes for the critical values ( 2 J l H  = r )  
are drawn only up to r = 6 for clarity. For I = 1, the numerical value is S / k ,  = 0.143 and 
lies outside the figure. 

(ii) For very small values of the field, the magnetisation at fixed x undergoes an 
infinite number of discontinuities (figure 2) but the susceptibility has a finite limit (at 
T = 0): 

( H  + 0) ~ ( 0 )  = lim(M/H) = (1 - x)/x. (6) 

At finite T, the susceptibility is just ( J / k T )  ih zero field (Bray et al1978), so it is not con- 
tinuous when T tends to zero. In other words, the limits T + 0 and H -+ Odo not commute 
for the random-bond chain. This behaviour is linked to the existence of very large clusters 
of spins that flip in very small external fields and it may be regarded as a quasi-collective 
effect. 

(iii) The entropy shows a broad maximum for rather large values of x, at a given 
field, and it vanishes with infinite slope when the chain becomes antiferromagnetic. The 
general term in the series (equation 4) behaves as x" In nand one finds for the singular part: 

S 
kB r(1 + r )  

(1 - x) ln ( l  - x) 
( l - x < l ) - - -  (7 )  

The non-analyticity of S is a remarkable feature, which is also linked to large clusters, as 
is readily seen from the series expansion (equation 4). 

(iv) The spikes in the entropy for integer values of ( 2 5 / H )  are quite high and corres- 
pond to a very large degeneracy (figure 4). The complicated form of their analytical 
expression (equation 5) shows they are not just due to a simple set of configurations as 
in the general case. That such effects are physical may be directly seen in the pure anti- 
ferromagnet where the calculations are tractable for all H and T :  the entropyis continuous 
in T and at T = 0, it vanishes except for H = 2 5  where its value is h[(l + J 5 ) / 2 ] .  More 
generally, for non-zero T, the discontinuities will be smoothed out and the spikes will 
turn into sharp maxima, indicating strong changes in local ordering at the critical values 
of ( H / J )  though no real transitions subsist in one dimension. 

2.2. The ferromagnetic chain in a random field 

In the absence ofan external field, the random-bond chain is equivalent to a ferromagnetic 
chain, through a simple change of variables. However, the pure chain in a field of fixed 
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magnitude and random sign is not in general equivalent to the random chain in a uniform 
field. The calculations are somewhat more complicated but follow the same lines as in 
the preceding section and we do not give them here. Keeping the same notation (x is now 
the probability of a negative field), one obtains for the energy per spin: 

E 

and for the entropy: 

-J{1 + x[ap0 + (1 + r )aqr  - 2qr] + (1 - x)[Lx~, + (1 + r)apr - 2p,]} (8) 

with 

/3 = (1 - 2X)X2*+2/[(1 - X ) 2 r + 3  + x2r+3 - X * + l ( l  - x y + q  

p , ( x )  = qi(l - x) = B[(1 - x)l+*/xl+r - (1 - X)i/xi]. 

These formulae are invariant when x is changed in (1 - x), as it should be, and they 
simplify in the symmetric case (x = t), which is entirely equivalent to the corresponding 
case for the random-bond problem. The qualitative behaviour ofthe model is very similar 
to that of the random chain for all values of x, with discontinuities in magnetisation and 
entropy at critical values of H .  The model may be useful to understand qualitatively the 
response of an ordered system to a finite random field, and to assess the validity of usual 
perturbation expansions. 

These discontinuities also exist at T = 0 for 2 D  systems and some of them may give 
rise to transition lines at finite T, as is observed for the pure 2 D  antiferromagnet in a uniform 
field. So we may hope that the behaviour of chains at zero T gives some insight into the 
behaviour of disordered 2 D  systems at non-zero temperatures. 

3. Frustrated strips 

3.1. Description of the models 

In the study of coupled random-bond Ising chains, it is convenient to impose periodic 
boundary conditions; this is equivalent to wrapping the chains on a cylinder.To make the 
model as simple as possible we choose equal strengths and equal probabilities for 
intrachain and interchain bonds. Then, the ground states may be analysed in terms of 
frustration: every time the number of negative bonds around an elementary square 
(‘plaquette’) is odd, it is not possible to satisfy all four bonds at the same time and the 
plaquette is frustrated. For Ising spins, a ground state is determined by a pairing of such 
plaquettes, with strings of minimal total length (Toulouse 1977). 

We have considered two possibilities for the distribution of random bonds (figure 5): 
(i) the symmetric strip (ss) for which both interchain couplings in a given column are 

constrained to be equal. Due to this restriction, the pattern of frustrated plaquettes is 
symmetric and purely one-dimensional (case A). 

(ii) the completely random strip (CRS) for which all couplings are independent random 
variables. In this case, the pattern has a bit of 2 D  character (case B) and the comparison 
with case A is instructive. 
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3.2. The symmetric strip 

The frustrated plaquettes always appear in blocks on the ss (figure 5). In a ground state, 
such blocks cannot be linked by frustration strings and they are independent. Our task is 
then reduced to obtaining the energy, degeneracy and probability of individual blocks. 
This may be ratiier easily accomplished by solving recurrence equations on the block size 
and taking into account the periodic boundary conditions on the spins. 

Figure 5. Schematic diagrams for random strips. The wavy lines represent antiferromagnetic 
bonds, and the strips are periodic, i.e. the top and bottom rows of spins are identical. When the 
number of negative bonds around an elementary square ('plaquette') is odd, the four bonds 
cannot all be satisfied. The plaquette is frustrated and denoted by a cross. In model A (a), 
both vertical bonds in a given column are equal, so the pattern of frustration is symmetric 
(symmetric strip model). In model B (b), no restriction is placed upon the bonds(complete1y 
random strip model). 

The final result for the probability of a block of size n (i.e. containing 2n frustrated 
plaquettes) reads: 

Pn = (i+ - 1)2 n:P+(z) + ( 2 -  - 1 ) 2  3,"-(z) 
with 

z = 1 -2x ,  

A+= [I - z2  f (1 + 222 - 324)'<2]/4, 

and 

The ground-state entropy per spin is here: 

S / k ,  = ZPn(z) In Wn (11) 
where Wn = [(l + J2)" (2 + 42) + (1 - J2)" (2 - J2)]/4. 

(z = 0), its numerical value is 0.199. As for the energy, it is simply found by 
noting that one bond is frustrated for every pair of plaquettes. The density cp of frustrated 
plaquettes equals (1 - z4)/2 and the ground-state energy per spin is: 

(12) 

For x = 

- 

EIJ  = - 2  + cp/2 = - (3 + 24)/2. 
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We defer the discussion to the next section, where we compare the results with the 
CRS case. Other important quantities are the correlation functions, but the usual corre- 
l a t i o n 0  is not simply related to the frustration of the strip. Rather, the quantity of 
direct interest here is the correlation function defined by: 

q(M) = N -  1 ( S i S i + n j Z  
i 

where the bar corresponds to an average taken over all ground states for a given distri- 
bution of bonds. What q(n) measures is the degree of solidarity of spins n sites apart, 
irrespective of their orientations: it is equal to 1 if these spins always keep the same 
relative orientations, it is 0 if they have the same probability of being parallel as anti- 
parallel. 

It proves very difficult to obtain q(n) and instead, we focus on another related quantity, 
the distribution of 'packets' of solidary spins. A 'packet'? is defined as a cluster of spins 
which always keep the same relative orientation in all possible ground states. Their 
internal solidarity is complete, but different packets may have some solidarity, and q(n) 
might have a non-zero limit for large n even though there is no infinite packet. In the 
present case, spins separated only by non-frustrated plaquettes belong to the same packet, 
and spins separated by an odd block of frustrated plaquettes have no correlation at all. 

For commodity, we define Bn as the probability of a sequence of exactly n non- 
frustrated pairs of plaquettes, i.e. a packet of (2n + 2) spins (for n # 0). Using similar 
recurrence methods, we obtain : 

where 

P* (z) = [l + z2 'c (1 - 2z2 + 5z4)"2]/4 

1 I - z 2  + 2z4 
(1 - 222 + 524)1'2 . q $ - ( z ) = i  1 +  I 

Two limits have special interest. The probability that a spin is isolated is 

Bo = [I - 2z4 + z 6 ~ j 4  

and when the concentration x is small, the probability of large packets occuring is: 

Bn - 9x2 exp( - 3nx) (a B 1). (15) 

The factor (3x) just comes from the three independent bonds at each step, and these 
results may be regarded as the analogue for frustration of the cluster size distribution 
studied in percolation theory (Wolff and Stauffer 1978). Adopting the same notation, we 
see that Bn is of the form: 

Bn - Cn-T f [ M " ( X  - XJ] 

x, = 0, T = 2, 0 = 1. 

with 

t The term 'packet' has been proposed by G Toulouse (Toulouse 1978) 
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3.3. The completely random strip 

In the CRS, it is no longer possible to isolate groups of frustrated plaquettes and enumerate 
all configurations (figure 5). We must then use the transfer-matrix method described in 
Appendix 2. The calculations are essentially identical to the random-chain problem, but 
much more tedious because they involve 16 random matrices. The three-chain problem 
involves 64random matrices and looks too big a job, considering that no definite answer 
would emerge, but just a trend in ground-state properties (for the 2D problem). 

The ground-state energy is most simply expressed with the variable z = 1 - 2.u: 

E 
J 2 - z 2 + z 4  

10 - 32’ + 8z4 + z6 _ -  - -. - 

It is higher than the energy of the symmetric strip, because it is no longer possible to 
pair only adjacent frustrated plaquettes. Comparison with numerical results in 2D 
(Kirkpatrick 1977, Vannimenus and Toulouse 1977) shows that the 2D energy lies 
between this result and the ss energy (equation 12), which always constitutes a lower 
bound. The ground-state entropy reads: 

Slk, = t c [ R ( T 2 ( t ) )  + Q(T,(t))l In t .  (18) 
Here the summation is over all points t that can be reached from to = 2 by the following 
operations: 

t -+ T,(t) = 2 + t 
t -+ T2(t) = 2 + l/t .  

The weights R and Q are rational fractions in x and their explicit expression is given in 
the Appendix. 

For x = 0.5, the numerical value of S is 0,156, to be compared with the 2D estimates, 
which lie between 0.08 and 0.10. In figure 6, we have plotted the derivatives dS/dx 

- C R S  

--- s s  

X 

Figure 6. Derivative of the entropy of random strips as a function of x (the curves for 
x > 0.5 may be obtained by symmetry). Note that dS/dx is monotonic for the symmetric 
strip (ss), whereas it shows a maximum at x - 0.06 for the completely random strip (CRS). 

This effect is related to the incipient two-dimensional character of the latter model. 
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rather than the entropies, in order to point out what we believe is a significant trend. In 
the CRS model, a maximum appears in dSldx for x - 0.06, and we suggest that for a larger 
number of chains, this maximum shifts to a larger value of x and sharpens progressively, 
finally turning into a singularity at xc for the two-dimensional model. The other note- 
worthy feature is the negative part in dSldx for x above 0.32: in this region, increasing x 
decreases the degeneracy of the ground states and the symmetric distribution of bonds 
(x = 0.5) does not correspond to the largest disorder: detailed study shows that the lead- 
ing term in S near x = 0.5 is in zz ,  as in the energy. Such terms arise here because the 
shortest frustrated closed path on the strip contains two bonds and has probability z2: 
this pecularity is due to the periodic boundary conditions and does not exist for systems 
with four chains and more. We therefore think the paradoxical effect is due to the boun- 
dary conditions, although we have no simple physical explanation for it. Incidentally, 
the same reasoning proves that for 2D systems these two quantities have a leading term 
in z4 near x = 0.5, which means linearity in the concentration of frustrated plaquettes, a5 
is observed in numerical experiments. 

4. Frustrated squares 

Since our efforts to study a larger number of coupled chains were frustrated, we turned to 
the simpler problem of finding the ground-state properties of random squares. To take full 
advantage of the frustration concept, we always consider bonds of equal strength and 
random sign and we also impose boundary conditions of a slightly different nature. 
Instead of periodic conditions on the spins, we impose them on the frustrated bonds: 
the spins may have a periodic or antiperiodic arrangement on the fundamental square. 
These conditions are much more convenient for our purpose, because it is possible to 
forget completely the spins and considerably reduce the number of different configurations 
to be studied; moreover, the effective sample size is larger, and the boundary conditions 
do not favour ferromagnetic order over disordered states. 

Practically, the task consists of classifying all different configurations of frustrated 
plaquettes, using symmetries and periodicity to reduce their number, then computing 
their probability, energy and degeneracy. The difficulty increases very quickly with size : 
there are 13 configurations for the (3 x 3) square and about 200 for the (4 x 4) square! 
We have not been able to go beyond the (3 x 3) case, which we have solved by two 
independent methods. The first approach uses a computer and directly counts the 
number of realisations for all thirteen classes. The second approach consists of following 
the evolution of the configurations when the signs of bonds are randomly changed, and 
leads to a set of 13 linear differential equations which may be solved analytically. Once 
the probabilities are obtained, it is straightforward to compute any quantity of interest. 
In particular, the energy and entropy per spin are given by: 

E = -(J/64)(93 + 25z4 + 16z6 + 7z8  - 162" + 32") (19) 
S / k ,  =((1n2)/96)(9 - 12z4 - 8z6 - 3z8 + 2 4 ~ ~ '  - 1 0 ~ ' ~ ) .  

Such polynomial expressions cannot lead to any singularity, but it is instructive to compare 
them with the strip and 2D results. The energy is slightly higher than the ss lower bound 
and lower than the 2D case, and it does not show any remarkable feature. The entropy is 
more interesting (figure 7), it starts as 6x2 In 2 like the 2D case and has an inflection point 
at x = 0.092. For x greater than 0.30, S flattens out and the leading term in z4 seems to 
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differ little from what is found in 2D. These features confirm the trend observed in strips 
and are consistent with the suggested exjstence of a singularity in dS/dx in two dimen- 
sions. 

X 

Figure 7. Entropy and its derivative for the (3 x 3) random square with periodic conditions 
on the frustrated bonds (see text). The maximum of dS/dx is at x - 0.09. 

5. Conclusion 

We have presented an analytic study of ground-state properties for several simple models 
with quenched disorder. This work will look somewhat disparate in its aims and methods, 
but our motivation is to gain a better understanding of one unifying concept, frustration, 
and we think a few general conclusions emerge. Firstly, these problems are non-trivial 
in spite of their essentially one-dimensional character and the restriction to ground-state 
properties. Secondly, the entropy is the most interesting physical quantity in frustrated 
systems: the hallmark of frustration is to push up together, to equivalent energies, very 
different states that would be well separated in the ordered system, and that effect is 
most obvious in the entropy. By contrast, the ground-state energy is affected in a much 
smoother way by the existence of frustration. At several places, we have pointed out the 
possibility that some of the observed effects subsist in systems of higher dimensionality at 
finite temperatures, and that the one-dimensional systems will fit naturally into a general 
pattern for frustrated systems. Finally, we hope these kinds of non-trivial models may be 
used as a testing ground for renormalisation-group or decimation methods and will 
prove richer than the simple disordered Ising chain for this purpose. 
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Appendix 1 

We want to find the free energy of a random-bond Ising chain in a uniform magnetic 
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field H. For a chain of N spins, the partition function is: 

where JdN is a 2 x 2 matrix: 

AN = ]II Mi. 

Z = Tr (~'4.~) 

N 

i = l  

The matrices M i  are randomly chosen: 

with probability 1 - x (positive bond) ) 
Zl+a Z-l+e 

( Z - l - a  Z 1 - a  
M i  = 

with probability x (negative bond) 

where z = exp(J/k,T) and U = W J .  

( lim 1/N In (Tr AN)) 

To find the free energy per spin, in the thermodynamic limit, one has to calculate: 

N-* m 

where the average is taken over all the possible choices of matrices Mi. As these matrices 
have all their elements positive, one can verify that: 

lim (1/N In (Tr A!,)) = lim (l/ln(any element of A!,)). (AI)  
N - ,  m N-*m 

We perform the calculation only in the low-temperature limit, which means that we keep 
for each element of J&" the leading term in z. 
Let 

zaeu zbe" 
A!,=( . . . .  ...I 

when z + 00. Then if 

one can find A,  B, U ,  V knowing a, b, U, v and M,. 

C = A - B  W = U - V  

c = a - b  w = U - - .  
call{ 

With probability 1 - x, one has: 

I f - 2 4 c < 2 - 2 a :  A = a + l + u  U = U  
B = b + l - ~  V = t .  
c = c + 2 u  w = w. 

B = b + 1 - a 
C = c + 2 c r  

I f 2 - 2 a < c < 2 :  A = a + l + a  U = u  
B = a - l + a  V = u  
c = 2  w = 0. 

I f c  = 2 - 2ci: A = a + l + a  U = u  
V' = ln(e" + e') 
W = -ln(l + eCw). 
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With probability x, one has: 

I f - 2 < ~ < 2 - 2 a :  A = b + l - a  U = U  
B = a + l + a  V = u  
c =  - c - 2 a  w =  - w .  
A = b + 1 - a 
B = a + l + o r  v = u  
e =  -2 

I f 2 - 2 a < c < 2 :  A = a - l + a  U = U  
B = a + l + a  v = u  
c =  -2 w = 0. 

I fc  = 2 - 2a: U = ln(e" + e") 

W = ln(1 + e-W). 

From these recursion relations which define a Markov chain, one can relate the probabi- 
lity density pN(a,  b, U, U) for matrix AN to the density pN+ l(A, B, U ,  V )  for matrix .AN,+ 

The quantity we want to find is: 

lim (1/N Tr A,) 2: lim 1/N (a lnz  + u)p,dadbdudu 
N - +  m N-rm 

This will give the ground-state energy and entropy per spin: 

E = J lim (a),/N = J lim - (a),) 

S / k ,  = lim ( u ) ~ / N  = lim ( ( u ) ~  + - (U),). 
(N-+w N-tw (A21 

N+ m N+CC 

One can see easily that to calculate ( a ) N + l  - (a), or ( u ) , + ~  - (U),, one does not 
need the complete probability pN(a, b, U ,  U) but it is enough to know a reduced probability 
oN(c, w)  defined by: 

aN(c, w )  = ] j ]JpN(a ,  b, U,  U) 6(a - b - c) 6(u - v - w) da db du du. 

When N .+ CO, even though p N  spreads out, the density CJ, tends to a limit density CJ, 
from which the energy and the entropy (A2) may be deduced. 

Ground-state energy 

Let us suppose that 

2 
- < a < - .  
r + l  r 

2 ------<<<---, 2J or 
r + l  r 

2J 

Then the only possible values for c are: 

c = f ( 2  - 2ig) with 0 < i < r .  

Let pi be the probability that c = -2 + 2ia, qi be the probability that c = 2 - 2ia. 
To find CJ we must look for a probability distribution invariant under the recursion 
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relations. This gives equations for the set of (p i ,  qi): 

1 < i < r - 1 pi = (1 - x)pi - l  + xqi+l 

and 
4i = (1 - 4 4 i + 1  + V i - 1  

P, = (1 - X ) P r - l  

Po = x(Pr + 40 + 41) 
40 = (1 - X ) ( P r  + 40 + 41). 

4, = X P r - l  

One can solve this system: 

p i  = p(i + 1 - r - l/x) 
qi = p(i - r - 1) 
qo = p(1 - r - l /x)( l  - x)/x 

O < i < r  
l , < i , < r  

with p = xz/[(l + r x )  (1 + r x  - x)] toensure the normalisation: Zi(pi + qi) = 1. 

state energy: 

E 

Using these probabilities and the recursion relations, we can now obtain the ground 

- = lim ( ( ‘>N+l - (‘)NI 
N + m  

r - 1  

= (1 - x) ( l  + a) + x C pi(2 - 2ia + 1 - a) + xpr(a - 1) 

+ x 1 qi ( -2  + 2ia + 1 - a) + xqo(a - 1) 

i = O  

r 

i = l  

r2xz + rx(2 - x) + (2x - l ) (x  - 1) + cr[2rx(1 - x) + 1 - x] - - 
(1 + rx)(l  + r x  - x) 

One can verify that ( b ) N +  - ( b ) ,  gives the same result and this agrees with (Al). 

Ground-state entropy 

To find the T = 0 entropy one has to distinguish two cases: 
(i) H # 2J/r  with r an integer 
(ii) H = 2J/r .  

( i )  2J/(r + I )  < H < 2J/r .  To describe the limit density a(c, w), one notes that the only 
possible values for (c, w )  are: 

c = 2 - 2ia 

w = -Inn 

c = - 2  + 2ia 

w = I n n  

with 

0 ,< i < r and n an integer 3 1, 

Let Ri(n) be the probability that c = -2 + 2ia, w = In n, and Si(n)  be the probability 
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that c = 2 - 2ia, w = -In n. One has the relations: 

S,(n) = (1 - x)S,(n - 1) 

R,(n) = x Sl(n - 1). 
n > 2 {  

The solution of this system is: 

f o r O < i < r  
R,(n) = p,(l - p)p"-' 

Si@) = 4x1 - p ) p  

with p = rx2/(1 + r x  - x). 
It is now possible to obtain the entropy: 

S 
- = lim(<u)'v+1 - <U>,) 
kB 

n = l  \ i = o  i = 2  

(ii) H = 2J/r .  Now the possible values for c and w are: 

c = -2  + 2ia 
w = & lnz 

(0 < i < r)  

with probability R,(z) for the (+) case and S,(z) for the (-) case. Here z is a point reached 
from 1 by the successive action of the functions T,(z) = 1 + z and T2(z) = 1 + l/z. The 
possible values for z are (1,2,3, $, 4, t, i. . .). The calculation gives for the probabilities: 

R,(z) = R,(z)[I + ( r  - 2 - i)x]/(l + r x  - 2x) 
Si(z)  = R,(z) ix/(l + rx  - 2x) 

0 6 i < r - I 

Rr(z) = 0 
S J Z )  = R,(z)(l - x)/x 

with ~ ~ ( 2 )  = x2(1 - x)/(l + r x  - x) 

x2(r  - 1) 
R,(T,(z)) = R,(1 + z )  = 1 + ( r  - 2)x ROW 

x(1 - x) 
R,(T,(z)) = R, 1 + - = R&). ( :) 1 + ( r - 2 ) x  
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One can then find S, the entropy per spin: 

1 - x  
- - 1 R,(z) In z. 

l + ( r - 2 ) x  I 

In these two cases, one can find the same result by calculating (u)~+ - (U), and this 
agrees with (Al). 

Appendix 2 

We give here only the result for the CRS. The calculation can be done as in Appendix 1 
and the entropy S is: 

S = [R(T2(t)) + Q(T'(t))l In t 
t 

where the sum is done on all the points t reached from 2 by the functions 
T,(t) = 2 + t 
T2(t) = 2 + l/t .  

R(t) and Q(t) are rational fractions in x:  if 

t = T;T;T;T;. . . (2) 

then 

F A p  B E Y F  A d  (:::;)=(: E) ' (D  C )  ( E  B )  ( D  C )  

where 

A = (1 - ~ ) ~ ( 1  - 2~ + 2x2) 
B = 2 ~ ( 1  - x)( l  - 2~ + 2 ~ ' )  
c + 2x(1 - x)3 

F = 2x3(1 - 

D = x2(1 - 2~ + 2x2) 
E = 4x2(1 - x ) ~  

and 

A 2  + AE - F 2  - FB + F 
R(2) = 

1 - B + E  

D2 + DE + C - C2 - CB 
1 - B + E  QP) = 

For example the first terms in the x expansion of this entropy are: 

S = x l n 2  + x2($1n5 - ln2) + x3(-421n2 - 301n5 + 541n3) + O(x4). 
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Note added in proot After this work was accepted for publication, we received a related preprint by M Puma 
and J F Fernandez entitled ‘Entropy of a random bond Ising chain’ and to be published in Physical Review. 
The numerical results obtained by these authors (for the case Jij = kJ ,  x = 0.5 at T + 0) agree with our 
analytical results for the random chain (8 2.1). In particular, they observe the sharp maxima in the entropy 
shown in figure 4 of the present work. 
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