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Résumé. 2014 Après l’étude des réseaux cubiques à faces centrées complètement frustrés par S. Alexander et
P. Pincus, on étudie les réseaux cubiques simples, afin de déterminer quelles sont les propriétés universelles de
tels modèles d’Ising. On montre que l’effet de surblocage, apparition obligatoire de plaquettes surfrustrées due
à des contraintes géométriques, prend place, pour les réseaux cubiques simples aussi, au-delà de la dimension
quatre. Il est montré que la moyenne du champ interne dans l’état de base se comporte similairement dans les
deux familles de réseaux. D’autres aspects sont trouvés différents : pas de périodicité en dimension (au lieu d’une
périodicité deux), dégénérescence de l’état de base. Une procédure d’échelle permet de construire explicitement
des états de base jusqu’en dimension 7 pour les réseaux cubiques simples et en toute dimension pour les réseaux
cfc. Des bornes sont obtenues en dimension ~ 8 pour l’énergie de l’état de base des réseaux cubiques simples.
Le réseau diamant est aussi discuté.

Abstract. 2014 Fully frustrated simple cubic (sc) lattices are investigated, following the study of face centred cubic
lattices by S. Alexander and P. Pincus, in order to determine what are the universal properties of such Ising models.
The overblocking effect, compulsory appearance of overfrustrated plaquettes due to geometric hindrances, is
shown to take place for sc lattices also, above dimension four. The ground state average internal field is shown
to behave similarly in both lattice families. Other features are found to differ : no periodicity in dimension (instead
of periodicity two), ground state degeneracy. A scaling procedure allows explicit constructions to be made of
ground states up to d = 7 for sc lattices, and in any dimension for fcc lattices. Upper and lower bounds for the
ground state energies of sc lattices are given for d ~ 8. The diamond lattice is also discussed.
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Introduction. - In the theoretical models of spin
glasses, two main ingredients are introduced : disorder
and frustration [1]. Since the mutual presence of these
two ingredients creates appreciable complexity, it is
natural to analyse the effects of one without the other.
Disorder without frustration allows an exact treatment
of spin glass models to be made but the solution is
too simple to be of real interest. Frustration without
disorder is a more promising line of attack, which has
been explored by J. Villain [2] (after earlier works
concerned with antiferromagnetic structures), and
where further progress has been made recently by
S. Alexander and P. Pincus [3].

In these works, periodic lattices with nearest neigh-
bour interactions are considered such that all ele-

mentary plaquettes are frustrated (that is, fully frus-
trated models). J. Villain has considered some two
and three dimensional lattices, for which he has pre-
sented a number of results and conjectures. By consi-
dering the family of face centred cubic fully frustrated
lattices in arbitrary dimension, S. Alexander and
P. Pincus have been able to unravel a striking pheno-
menon : whereas, for d  4, the ground state of an
Ising fully frustrated fcc model is such that each

elementary plaquette (in these lattices, those plaquettes
are triangles) contains at most one frustrated bond
(minimum humber allowed by the frustration), on
the other hand, for d &#x3E; 4, any Ising ground state
contains a finite density of triangles with three
frustrated bonds. This means that there is a collec-
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tive effect which prevents at least a fraction of pla-
quettes from reaching their minimal energy states.

To this effect we shall give the name of overblocking
effect because, besides the frustration which blocks
a plaquette out of configurations without frustrated
bond, this overblocking effect further blocks pla-
quettes out of their minimally frustrated states.

This remarkable fact, discovered by S. Alexander
and P. Pincus, raises naturally two questions, which
receive a partial answer below. The first question is
whether the overblocking effect is lattice-dependent,
or of sufficient universality to be of interest for a
discussion of disordered systems. The second question
is whether it is possiblé to obtain a simple geometric
understanding of the overblocking effect.

By studying the family of simple cubic fully frustrat-
ed lattices in arbitrary dimension, with an approach
best suited for these lattices and quite different from
the Alexander-Pincus approach which was best suited
for fcc lattices (see however Appendix II), we are
able to show the generality of the overblocking effect
and to provide a simple geometrical picture for it.
The results are probably best described in terms of

the internal field defined on each lattice site (this field
is the différence between the numbers of unfrustrated
and frustrated bonds adjacent to one site). Whereas
for low dimensions (d  4), the average internal
field in the ground states is proportional to the coor-
dination number (number of nearest neighbours),
above dimension four, the overblocking effect takes
place, a saturation of the intemal field appears and
its behaviour for large d is proportional to the square
root of the coordination number.

In order not to confuse the issue, the Ising case
alone, which is important enough, will be discussed
here.

1. Preliminary remarks on lattice structures. - In
the square and diamond fully frustrated lattices
studied by J. Villain, the symmetry of the underlying
Bravais lattice is necessarily broken by the introduc-
tion of frustration. This led rather naturally S. Alexan-
der and P. Pincus to consider fcc lattices, because in this
case the antiferromagnet is fully frustrated and there-
fore the diagonalization of the interaction matrix
and the generalization to arbitrary dimension are

easy.
We wànt to show here that the case of simple cubic

fully frustrated lattices turns out to have some simpli-
city of its own, despite the increase of the unit cell
due to frustration, because one can actually reason
entirely within the unit cell of the underlying Bravais
lattice, which is the simplest possible d-dimensional
cell that is a hypercube.
As we shall see, the case of the diamond lattice

(in dimension 3) is a bit more difficult to solve, and
this explains why the conjecture of Villain on the
Ising ground state energy is indeed unverified.
When we consider lattices with plaquettes contain-

ing an even number of bonds, our first task is to show
that a fully frustrated lattice is actually realizable

(if the number is odd, as in fcc lattices, the antifer-
romagnet provides an answer). Our second task
is to obtain the Ising ground state energy for such a
fully frustrated lattice.
These two tasks can be performed in one step if

we look for the configuration of bonds with the mini-
mal number of negative bonds which does fully
frustrate the lattice. The Ising ground state energy
will then be obtained for the state with all spins ferro-
magnetically aligned, and will be simply related to
this minimal number of negative bonds (this is a
direct consequence of the gauge transformation

properties).
Now in the case of simple cubic lattices, it turns

out that this search needs to be done only for the
unit hypercube, a lattice configuration of bonds

being simply obtained from the hypercube configura-
tion of bonds by successive reflexions with respect
to the various hyperplanes limiting the unit hyper-
cube.

2. Detailed treatment. - We consider the Hamil-
tonian

where Si is an Ising spin, on site i, taking + 1 values,
and where only nearest neighbour interactions are
considered. The energy associated with a bond can
take two values : + J (if the bond is frustrated) or - J
(if it is unfrustrated).
The lattice structure is, for our present purpose,

supposed to be of the simple cubic type in arbitrary
dimension d. The unit cell is therefore the unit hyper-
cube in d dimensions, which we shall call Hd. For
d = 2, H2 is just a square ; for d = 3, H, is just an
ordinary cube. Hd is a regular d-dimensional polytope
(polygon for dimension 2, polyhedron for dimen-
sion 3), and this fact is the reason for the simplicity
of the treatment. As a matter of fact, the regularity
of Hd means that all sites of the unit cell are equiva-
lent and the various countings are hence simplified
(note that fcc lattices do not have this sorv of simpli-
city).
As announced in the previous section, we shall

try and build a fully frustrated Hd, with the minimal
number of negative bonds. Let us first consider what
a Hd is made of. A Hd contains no = 2d sites (or 0-
cells), n, = 2d-l.d bonds (or 1-cells),

plaquettes (or 2-cells), and more generally
np = 2d-p Cd (p-cells). Note that these p-cells are

just p-dimensional hypercubes H.. We can check that
the numbers np verify the Euler-Poincaré relation :



619

Remark also that there is a notion of opposite :
a site, a bond, a plaquette, ..., a Hd_ 1 have an opposite
within the hypercube Hd.
Now it is readily observed that a fully frustrated H2

(square) can be made with one negative bond (Fig. 1),
and that a fully frustrated H 3 (cube) can be made
with three negative bonds (Fig. 2). But, since the
number of plaquettes rises faster with dimensiona-

lity d than the number of bonds, it is not a priori
obvious that it is possible to build a fully frustrated
Hd for arbitrarily high d. However, this result can
be proved by the following simple recurrence cons-
truction.

Fig. l. - Fully frustrated H2 (square) with one negative bond,
By convention, positive bonds are unbarred and negative bond5
are barred.

Fig. 2. - Fully frustrated H3 (cube) with three negative bonds.

Consider a Hd as built from two Hd_ 1 by drawing
bonds between their corresponding sites. Take for
one of the two Hi a configuration of bonds which
fully frustrate it (we suppose that this is possible),
and for the other Hd-1 the corresponding configura-
tion but with all bond signs interchanged. Finally,
take all bonds linking the two Hd- 1 as positive :
with this configuration of bonds, obviously all pla-
quettes contain an odd number of negative bonds,
and the full frustability of a Hd is thus proved for
arbitrary dimension by recurrence.

This construction however does not yield low

energy states, if we assume all spins to be ferromagne-
tically aligned. Therefore we must now look, among

all bond configurations which fully frustrate Hd,
for those with a minimal number of negative bonds.

If we are able to find a fully frustrating bond confi-
guration where each plaquette contains one and one
only negative bond, then the Ising ground state

energy (per spin in the lattice and per J unit) will
be

(More generally, for a lattice with coordination
number z and 1 bonds per plaquette, the formula
will be

here z = 2 d and 1 = 4.)
Now since the number of plaquettes is

2d-3 d(d - 1), and since one bond belongs to (d - 1)
plaquettes, we need at leasi 2’- ’ d negative bonds in
order to fully frustrate Hd- We wish that no site has
more than one negative bond adjacent to it, because
otherwise at least one plaquette will be overfrustrat-
ed. But there are two sites adjacent to one bond, so
we need at least 2d-2 d sites. The ratio of needed sites
(in order to fully frustrate Hd without overfrustrated
plaquettes) to the number of available sites is

This proves that the overblocking effect takes place
necessarily for simple cubic lattices above dimen-
sion 4. For d  4, it is easily checked by explicit
construction that the overblocking does not take

place so that the Ising ground state energy is given by
formula (1). For d = 2, we need only one negative
bond to fully frustrate the square (Fig. 1) ; there are
only two sites adjacent to one negative bond, so

that the ratio R = 2.
For d = 3, we need at least three negative bonds

(Fig. 2) ; there are six sites adjacent to one negative
bond, so that the ratio R = 1. For d = 4, we need
at least eight negative bonds (Fig. 3) ; there are

sixteen sites adjacent to one negative bond, so that
the ratio R = 1. For d &#x3E; 4, the problem is more
difficult as we have no simple way of knowing the
minimal number of negative bonds, or the number
of overfrustrated plaquettes (plaquettes with three
negative bonds). The situation is more complicated
because now a site may be adjacent to 0, 1 or more

negative bonds. We will construct later the minimal
configuration of Hs, H6 and H7, but before doing
so we are going to find a lower bound for the ground
state energy of Hd.

Let us introduce for each configuration of a fully
frustrated hypercube Hd the function N(h). If h is the
difference between the number of positive and nega-
tive bonds adjacent to a given site in Hd, h is the inter-
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Fig. 3. - Fully frustrated H4 with eight negative bonds.

nal field created on this site by its neighbours. By
definition, N(h) is the number of sites in Hd in the field h.

It is obvious that for any site of Ha, the only possible
values of h are d, d - 2, d - 4,..., - d and, as we
are looking for the ground state, we cannot have

negative values for h. This means that each spin is
aligned with its own internal field.
Knowing this function N(h), one can express the

Ising ground state energy per unit J and per spin
in the lattice :

(Note that this energy is twice the energy per spin
of an isolated Hd.)
Using the fact that all the plaquettes are frustrat-

ed, one can show that P = d. If hi is the field created
on the site i by its neighbours, one has :

so

When one sums over all the sites, the second term
on the right side of this equation disappears as a

consequence of the frustration of all the plaquettes,
and one finds :

This relation is true for any configuration of the spins
and, in particular, gives a first lower bound for the
ground state energy :

(Note that this bound remains true for spins with
any number of components.)

In the case of Ising spins, as the field h, takes only
integer values (even values when d is even, odd values
when d is odd), it is possible to find a better bound
by looking for the distribution N(h) verifying (4)
which gives the lowest energy (2).
The problem we have to solve now is to find among

all the distributions N(h) verifying :

the distribution which minimizes

with the constraint that N(h) takes integer values.
Moreover, h is positive or zero and takes only even
(or odd) values when d is even (or odd). As a matter
of fact, the relation h = d is still true if the average
is taken over only one half of the spins (We can divide
the sites of Hd into two sets : set 1 and set II ; if a site
belongs to set I, all its neighbours belong to set II) :
spins of set 1 or spins of set II.

If n(h) is the number of sites of one of these two
subsets in the field h, our lower bound for the ground
state energy is the lowest value of :

where the distribution n(h) has to satisfy :

h is fixed, and we want to maximize h. This means that
the best distribution n(h) will be as concentrated as
possible. The best would be to have all the spins in the
field Jd but when çù is not integer, this is not possi-
ble and the distribution n(h) is then concentrated

om the 2, 3 or 4 integers nearest to Id-.
The best values of Ed and the corresponding distri-

butions n(h) are given in table 1 for d  10.
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We can see that, in general, when the distribution
n(h) is concentrated on the two integers nearest to
J7i, the solution is unique. When it is concentrated on
3 or 4 integers we find many solutions. This happens
for d = 6 and d = 8.

Obviously, when ld- is an integer, the best distri-
bution is n(-Jd) = 2d-l.
Now the question is to determine whether this lower

bound is reached by the true ground state energy.
We have only been able to answer this question for
d  7, by giving an explicit construction of a fully
frustrated Hd.

For d  4, one can verify that the minimal confi-
gurations (Figs. 1, 2 and 3) reach the energies given
in table I. The distributions n(h) are also the same.

Table 1. -- A lower bound for the ground state energy
and the corresponding internal field distributions.

For d &#x3E; 4, we have attacked the problem by making
drawings for Hs. HS contains 32 sites, 80 bonds,
80 plaquettes, 40 cubes and 10 H4. We found experi-
mentally a variety of fully frustrating configurations
with 24 negative bonds and 8 triply frustrated pla-
quettes (the remaining 72 being simply frustrated).
Among the sites, 16 were in a field h = 3 and 16 in a
field h = 1. As the energy of this configuration reaches
our lower bound (table I), we are sure that it is the

ground state energy.
The four extra negative bonds, and the eight over-

frustrated plaquettes, can be distributed more or
less homogeneously in a minimal solution for H5.
For commodity reasons, we shall consider a solution
where the overfrustrated plaquettes are as close-

packed as possible (Fig. 4). This solution can be seen
as a square of supersites (cubes) linked by superbonds
(bundles of eight bonds joining two supersite cubes).
The four supersites are in minimal states (as far as
their intérnal structure is concemed) with three

negative bonds and nine positive bonds. Among the
four superbonds, three are in minimal states, let
us call them white, with two negative bonds, and six
positive bonds ; and one is in an excited state, let us
call it black, with six negative bonds and two posi-

Fig. 4. - Fully frustrated Hs with twenty-four negative bonds.
Eight plaquettes are overfrustrated (with three negative bonds).

tive bonds (Fig. 5). It is easily checked that such a
square, with three white superbonds and one black
superbonds : white go to black, and black to white).
a minimal solution.

This solution is interesting because it has a scaling
feature, which allows a renormalization procedure
to be used to get to higher dimensions. Indeed H5,
with its square of superbonds, is the analogue of H2,
with its square of bonds, where white and black

superbonds play the role of positive and negative
bonds, respectively (Figs. 1, 5). Excluding for the
moment solutions with gray superbonds, it is easily
seen that there is a frustration rule for a plaquette
of superbonds (odd number of black superbonds)
and a gauge invariance on supersites (a set of simul-
taneous gauge transformations on the eight sites of a
supersite cube does not modify the frustration of the
plaquettes and changes the character of the adjacent
superbonds : white go to black, and black to white).

In the same way a fully frustrated configuration
for H6 can be built from a minimal solution for the
cube H 3, where the eight sites become eight minimal

Fig. 5. - Same fully frustrated Hs as on figure 4, represented as a
square of supersites (cubes) linked by superbonds. Three super-
bonds are white and one superbond is black. Compare with figure 1
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Fig. 6. - Fully frustrated H6, represented as a cube of supersites,
with three black superbonds. Compare with figure 2.

supersites and the three negative bonds become three
black superbonds (Fig. 6). This configuration for

H6 contains 60 negative bonds (out of a total of 192)
and 30 overfrustrated plaquettes (out of a total of
240). Clearly, this construction can be pursued in

higher dimensions : for d &#x3E; 5, a configuration for Hd
can thus be built from a configuration for Hd- 3.
From this iterative construction, a recurrence rela-

tion for the energy of these configurations can be
derived. From the formula

where nd is the number of negative bonds in a mini-
mal Hd, and from the recurrence relation for bond
numbers

one gets the recurrence relation for the energies of
these configurations

One can verify, using (7), that when d  7, the

energies of the so-constructed configurations are

equal to our lower bound (table I), and so there is
no doubt that our lower bound gives the true ground
state energy.
As it was possible to deduce a recurrence relation

for the energies of the configurations obtained by
our iterative construction (7), one can likewise find
for these configurations a recurrence law for the
distributions Nd(h) :

The distributions we find for d  7 from this rela-
tion are compatible with the distributions given in
table I. In the case of d = 6, the configuration obtain-
ed by this construction corresponds to the first solu-
tion in table 1 (n(4) = 6 ; n(2) = 24 ; n(O) = 2).
We do not know if the other solutions given in table 1
for d = 6 are realizable.

For d &#x3E; 8, the energies given by (7) become strictly
higher than our lower bound and when d = 9 and
d &#x3E; 11, it is possible to prove that the configurations
constructed by our iterative method are no longer the
ground states of the hypercube. Indeed, using (8), one
finds that for d = 9, N( - 1) = 24 ; this means that
24 spins are in a field - 1 and so this configuration
cannot be the ground state.

So for d &#x3E; 8, we do not know what the ground
state energy is, and for d = 9 we are sure that this
energy is lower than the energy given by (7). We
present the conjecture that our lower bound always
gives the ground state energy, but we have no rigo-
rous proof of this because we do not know how to
construct a fully frustrated Hd having this energy.
For the moment, we can only prove a weaker result
concerning the behaviour of the ground state energy
when d is large : Ed is proportional to )d. Using the
results of appendix I, it is possible to find an upper
bound for the ground state energy. Thus, when d
is large, we have :

Let us remark that, as already mentioned, our itera-
tive construction certainly fails for d &#x3E; 9, but it was
still useful in that it gives such a simple picture for
the ground state, up to d = 7 (Fig. 7).
One can imagine that a more powerful method

would give the ground states in higher dimension.
In the case of fcc lattices, a similar iterative construc-
tion gives the ground state energy in any dimension
(see Appendix II).

In order to prepare the discussion and the compari-
son with other lattices, we shall reexpress some of
these results in terms of the coordination number.
As mentioned in the previous section, from one

minimal fully frustrating configuration for Hd, we
build a minimal fully frustrating configuration for
the d-dimensional simple cubic lattice by reflexions
with respect to the hyperplanes limiting Hd. We then
construct a periodic lattice where the unit cell con-
tains 2d hypercubes Rd. The Ising ground state energy
of the fully frustrated simple cubic lattice (per spin,
per J unit) can then be written as

where the internal field h of a lattice site is the diffe-
rence between the numbers of unfrustrated and frus-
trated bonds adjacent to the site and h is the average
tield taken over the fully frustrated lattice.
_ 

For d  4, the average ground state internal field is
h = d, and thus h is pruportional to the coordination
number z ( = 2 d for sc lattices). Note that, whereas
for d = 2 and d = 4, homogeneous field states are
, realizable (same value for the field on each lattice

site), in the case d = 3, the ground states are necessa-
rily mixed field states. 

_
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For d &#x3E; 4, one finds from the asymptotic form of
the ground state energy that it behaves (when d is
large) like the square root of the coordination number
z.

At this stage, it is interesting to make a comparison
with the results obtained for other lattices.

3. Comparison with other fully frustrated lattices. -
Most prominent are the results for fcc lattices [3].
The diamond lattice in dimension three will be brief-

ly discussed too.
In a d-dimensional fcc lattice, the coordination

number is z = 2 d(d - 1) and the number of bonds in
a plaquette is 1 = 3, so that the formula for the Ising
ground state energy, in the absence of the overblock-
ing effect, is

Fig. 7. - Plot of the Ising ground state energy Ed for a fully frustrat-
ed simple cubic lattice as a function of the dimensionality for
d  7. The dotted line represents our lower bound for d &#x3E; 8
which we conjecture to be the true ground state energy.

This formula has been shown by Alexander-Pincus
to hold true for d  4. In terms of the average inter-
nal field h one obtains

Here also for d  4, h is proportional to z.
For d &#x3E; 4, Alexander-Pincus have found

The common features are the onset of the over-

blocking effect above dimension four and the beha-
viour of the average internal field.

Because the relation between the coordination
number z and the dimension d is qualitatively diffe-
rent in the two lattices, the common asymptotic
behaviour for the average internal field as a function
of dimension yields necessarily qualitatively diffe-
rent behaviour for other quantities. Thus, the Ising
ground state energy (per spin), which decreases

linearly with dimension (above dimension 4) for fcc
lattices, decreases like - jù for sc lattices.
With this in mind, we go back to the study of the

fully frustrated diamond lattice (in dimension three)
made by J. Villain [2]. In this study, he conjectured
a ground state Ising energy

in the units defined above (which are half of Vil-
lain’s units). However, the energy formula, in the
absence of the overblocking effect, predicts

and indeed, a careful inspection of Villain’s figure 3
shows that his solution contains overfrustrated pla-
quettes. Therefore, his conjecture appeared to con-
tradict our statement about the universality of the
onset of overblocking above dimension 4. But actually,
the conjecture is unverified and the contradiction
vanishes. In order to show this, we give an explicit
construction of a minimal fully frustrating configura-
tion of bonds for the diamond lattice. Consider the
family of parallel dense (001) planes (horizontal
planes on Villain’s figure 3); each bond links two
sites on neighbour planes (n, n + 1). Now consider
all bonds between planes 0 and 1, say, and make
half of them negative and half of them positive in an
alternating way ; then, take all bonds between planes
+ 1 and + 2 and between planes + 2 and + 3
as positive ; now again, between planes + 3 and + 4,
make half of the bonds negative and half positive in
an alternating way, and iterate the construction. It
is easily checked that this configuration fully frustra-
tes the lattice without overfrustration, and the corres-
ponding Ising ground state energy is E = - 4/3,
as expected.
From our constructions of three-dimensional fully

frustrated lattices, consequences can be drawn for
the ground state degeneracies, which are now examin-
ed.

4. Ground state degeneracies of the fully frustrated
diamond, fcc and sc lattices. - For the diamond
lattice, in the construction given above for the ground
state, there is a binary choice every third plane. This
implies a ground state entropy, which is of one-
dimensional character,

where N is the number of sites.
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That is the behaviour found also for the three-
dimensional fcc lattice. In both cases, an Ising ground
state can be constructed by a random one-dimen-
sional stacking of two-dimensional sheets.

However, for the three-dimensional sc lattice, it

appears that the behaviour is différent. Starting from
one ground state configuration, it appears that there

is a two-dimensional array of parallel columns (one
column out of four belongs to this array) which can
be flipped independently, all sites belonging to one
linear column being flipped simultaneously. This

implies a ground state entropy, which is at least of

two-dimensional character,

In summary, there is a high ground state degene-
racy for these three lattices, albeit no residual entropy
in the thermodynamic limit (So/N - 0, as N ---+ oo).
But the degeneracy is qualitatively higher for the sc
lattice than for the fcc and diamond lattices in dimen-
sion 3.

It is important and physically instructive to know
whether these three-dimensional fully frustrated mo-
dels have a finite transition temperature. In the
absence of any precise result, we can give the following
plausibility discussion.
As discussed by various authors, it appears plausible

that the fcc lattice has a finite Tc, because a ground
state is made by stacking two-dimensional unfrustrat-
ed square lattices which have by themselves a finite T .
The same plausibility argument applies for the
diamond lattice, but note that the stacked sheets are
now made of rather loosely bound square lattices.
For the sc lattice, the existence of a Tc becomes a
very moot question, due to the higher degeneracy.
Further work is needed.

In higher dimension, Alexander and Pincus found
for fcc lattices a ground state entropy proportional
to N1/d.

In the case of sc lattices, the situation is certainly
less regular : we could only draw definite conclusions
for d = 4 and d = 6.
For d = 4, one can prove that there are oniy

16 ground states : if one chooses the frustrated bonds
for only one H3 in this 4d lattice, all the bonds of the
lattice are fixed.
For d = 6, we constructed a ground state for the

lattice with a finite proportion of spins in a zero
field (see table I). This means that for d = 6, the ground
state entropy is macroscopic.

5. Perspectives. - It is of general interest to inves-
tigate the behaviour of phase transitions in arbitrary
dimension, because one wishes to determine the upper
and lower characteristic dimensionalities around
which a renormalization group expansion is possible.
Moreover, here, it is of interest to know whether there
is, at least in some dimensionality range, a continuity

between the fully frustrated phase and the spin glass
phase [3]. In order to answer this question, it is natural
to determine first what are the universal features of
the fully frustrated phase. Our study of sc lattices,
coming after the study of fcc lattices by S. Alexander
and P. Pincus, has shown the generality of the over-
blocking effect and of the behaviour of the average
internal field above dimension four. This behaviour
is remarkably similar to that of spin glasses : the
square root dependence in z evokes irresistibly the
square root law for random fluctuations in the central
limit theorem, and many phenomenological argu-
ments, which have been devised for spin glasses [5]
should be tried and worked out on the overblocked

fully frustrated phases. Further work on the transi-
tion temperatures, and on the nature of the low tem-
perature phases, appears desirable. Finally, the bond
percolation problem on such fully frustrated lattices
appears as a natural way to introduce the disorder
and to get to spin glass models [4].

Appendix I. - In this appendix, we construct a
family of configurations for Hd, whose energies per

s in behave like - 2 d. when d is lar e.spin behave like - 2 d. when d is large.2rp g

Let us come back to the first construction of Hd
given in the body of the paper ; we take two opposite
fully frustrated Hd-1 linked by 2d-1 positive bonds
(if a bond is positive in one of the two Hd- 1, the
corresponding bond is negative in the other Hd-1).
As we start from H2, this construction preserves the

symmetry between the two subsets of sites : set 1

and set II. This means that the distribution n(h)
is the same for these two sets in any dimension. One
can deduce from this construction the recurrence

relation :

If we start from d = 2 with n(O) = 1 and n(2) = 1,
one can verify that in dimension d, n(h) is non vanish-
ing only for h = d, d - 2, d - 4,..., 2 - d and is

given by :

The corresponding energy of these configurations is :

When d &#x3E; 3, the configurations constructed by this
method have some sites in a negative field.

If we make a gauge transformation for all the

spins of set 1 which are in a negative field, the corres-
ponding energies of these new configurations are :
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From (A. 1) we can find the recurrence relation for
this energy :

Using the asymptotic form of C:/2 :

we find

Note that this is only an upper bound for the ground
state energy : for instance when d = 4, the true

energy is - 1 and this construction gives only - 3/4.

Appendix II. - In this appendix, we recover part
of the results of Alexander and Pincus [3] by the scal-
ing method used in the body of this paper for the
simple cubic lattices. The structure under study is an
Ising system on an antiferromagnetic face centred
cubic (fcc) lattice.
As in the simple cubic case, it is only necessary to

find the ground state of the unit cell of the lattice,
which is then extended by successive reflexions with
respect to the hyperplanes limiting the unit cell. The
unit cell of the fcc lattice in dimension d is found as
follows : one selects half of the vertices (say the thick
ones) on Hd, in such a way that two thick vertices are
never connected by a bond of Hd. Each plaquette of Hd

Fig. 8. - Fully frustrated unit cell of the face centred cubic lattice
in dimension 4.

Fig. 9. - Unit cell of the face centred cubic lattice in dimension 5.

The thick vertices belong to a H5 and are labelled ai, bl, ci, dl ;
a2, b2, C2, d2, ...

has two thick vertices diametrically opposed, and the
sought-for unit cell is obtained by drawing a link
between any pair of thick vertices on the same pla-
quette of Hd.
One gets in this way a tetrahedron from H 3 ; in

figure 8, we have drawn the result of this construction
for d = 4, with the indication of a possible configura-
tion of minimum energy ; in figure 9, we have draw
the thick vertices on H5, they form four groups of
four vertices numbered ai bl cl dl ; a2 b2 C2 d2, ...
The next task is to divide this set of 16 thick ver-

tices (on HS) into four sets of four vertices. Each of
them will constitute a supervertex and the bundle
of bonds between two such supervertices will be a
superbond. In this way, we shall recover a tetrahedral
structure in the fcc cell in d = 5, and thus find by
renormalization procedure the ground state in any
dimension.
An elementary inspection shows that it is not

possible to select as supervertices the groups al bl cl dl,
a2 b2 C2 d2,... because the bundles connecting
(ai bl cl dl) to (a2 b2 C2 d2) and (ai b, cl dl) to

(a3 b3 C3 d3) are different. A possible choice for the
supervertices is (al b2 d3 C4), (b, a2 C3 d4), (cl d2 b3 a4)
and (dl C2 a3 b4).

In each supervertex, there are two internal bonds
la, d3 and b2 c4 in (ai b2 d3 c4)] and each vertex is
connected by a bond to 3 vertices of any other super-
vertex (for instance al is connected to a2, d4, bl ;
cl, d2, a4 ; and to dl, c2, d4. Remember that in the fcc
lattice al is connected with any thick vertex with
which it shares a common plaquette in HS). Each
supervertex of four vertices is connected with any
other supervertex through a bundle (or superbond)
of 12 bonds; and from each vertex start 1 (internal
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bond in the supervertex) + 3 x 3 (external bonds) =
10 bonds, which is indeed the number of plaquettes
through a given vertex in H5.
Now a symmetric fully frustrated state of the fcc

cell is constructed as follows : each. internal bond is
frustrated, a superbond is (non) frustrated or black
(white), when each of its 12 bonds are (non) frustrated.
As the superbonds and supervertices have the struc-
ture of a tetrahedron, one keeps two black super-
bonds and four white superbonds with the same arran-
gement as the frustrated and non frustrated bonds in
a fully frustrated tetrahedron.
With this choice, 6 non frustrated bonds (those of

the 2 white superbonds) and 4 frustrated bonds

( = 3 of a black superbond + 1 internal bond) start
from each vertex. Thus, n+/n- = 3/2 and the internal
field of any vertex is h = n+ - n- = z/5
[z = n+ + n- is the coordination number =
2 d(d - 1) = 40] and the energy per spin is E = - 4,
in agreement with the findings of Alexander and
Pincus.
A straightforward extension of this construction

allows one to recover the even-odd alternation in Ed,
since the ground state at d = 5 is found by identifica-
tion of a supertetrahedron, which is the unit cell
ind= 3.
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