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Résumé. 2014 Nous présentons l’expression explicite de l’énergie libre pour le modèle gaussien et le modèle sphérique
sur un réseau cubique simple complètement frustré, en toutes dimensions, et comparons ces résultats avec le cas
ferromagnétique. Pour le modèle sphérique, la température critique est deux fois plus basse que celle prédite par
la théorie du champ moyen usuelle, tandis que l’approximation de Bethe ne prédit aucune transition. Nous étudions
aussi le développement à haute dimension de l’énergie libre, et concluons que ce développement peut masquer
les transitions. Ces résultats montrent que des difficultés rencontrées pour des modèles de verres de spin appa-
raissent aussi dans des modèles avec interactions périodiques.

Abstract. 2014 We give the explicit expression of the free energy for the Gaussian model and the spherical model on
a fully frustrated simple cubic lattice in all dimensions, and compare the results with the ferromagnetic case. For
the spherical model, the critical temperature is lower by a factor 2 than the temperature predicted by the usual
mean field theory, whereas the Bethe approximation does not predict any transition. We also study the high dimen-
sion expansion of the free energy, and conclude that this expansion may hide the transitions. These results show
that some difficulties encountered in models of spin glasses also appear in models with non-random interactions.
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Spin models on fully frustrated lattices generalize
the antiferromagnetic triangular lattice [1] and the
Villain odd model [2]. In a previous work [3], we have
studied the zero temperature properties of Ising
spins on fully frustrated simple cubic lattices of any
dimension. By comparing our results with those
of Alexander and Pincus [4], who studied the case
of f.c.c. lattices, it becomes tempting to believe that
some properties do not depend on the lattice : the
ground state energy per spin always behaves like
- z j2 when the number of neighbours z becomes
large.
The study of fully frustrated models is a step in the

study of spin glass models. Most of the latter models
describe an assembly of spins interacting through
bonds of random strength and random sign. One
main difficulty however is that the interactions are

quenched variables, and that it is necessary to average
the free energy and not the partition function. To
overcome this problem, many authors [5] have used
the replica method, but difficulties arise in the limit
where the number of replicas is made to vanish [6, 7, 8].

Fully frustrated models keep one of the main pro-
perties of spin glass models : the frustration [9] which
represents the competition between the different
interactions of the system. But the interactions are
no longer random variables and they can be arranged
regularly on the lattice. This makes the problem of
computing the free energy closer to standard treat-
ments in the models of ferromagnetism. Thus, as

explained below, it is possible to compute the exact
free energy for the Gaussian model and for the spheri-
cal model, by reproducing the calculations of Berlin
and Kac [10] in the case of fully frustrated simple
cubic lattices. In spite of the regular arrangement of
the interactions on the lattice, we find for this model
some characteristic properties of the usual spin glass
models : the ground state may have a large dege-
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neracy [3, 4], the-usual mean field theory is no longer
valid in the limit of infinite dimensionality, where it
should be, the existence of a transition can be hidden
in the high temperature and high dimension expan-
sions.

In this paper, we start by defining the model, and
by extending the results which we gave in our previous
work for Ising spins to the case of spins with n compo-
nents. Afterwards, we give the expressions of the free
energy for the Gaussian and the spherical models,
and we compare these expressions with those obtain-
ed [10] for a ferromagnetic lattice. The critical tempe-
rature of the spherical model is lower by a factor 2
than the temperature given by the simplest mean
field equations. We also look at the high temperature
and high dimension expansions which do not reveal
any transition. These two results are very similar
to what happens in the Sherrington-Kirkpatrick
model of a spin glass [5]. A big difference is that the
Bethe method, which was found to give some satis-
factory results (the TAP equations) for the Sher-

rington-Kirkpatrick model [11, 12], does not give
any transition and thus is found to be seriously in
error for the present problem.

1. The construction of the lattice. - We consider
a Hamiltonian of spins located on a lattice

The Jij may have two values + J (ferromagnetic
bond) or - J (antiferromagnetic bond).
The lattice is fully frustrated if each plaquette

(elementary loop) is frustrated, that is to say, if the
product of the bonds surrounding any plaquette is

negative. Alexander and Pincus [4] have studied the
case of the f.c.c. lattices for which plaquettes are tri-
angles. When all the bonds are negative, these lattices
are fully frustrated. For a simple lattice, the elementary
plaquettes are squares, and the realization of a fully
frustrated lattice is more complicated but still pos-
sible.
We explained in our previous paper [3] how one

can construct a fully frustrated simple cubic lattice
in any dimension. For completeness, we recall

briefly that this can be done in two steps :
- First, we notice that a fully frustrated lattice

can be obtained from a fully frustrated unit hyper-
cube by successive reflexions with respect to the

planes limiting the hypercube. So the problem is

reduced to building a fully frustrated configuration
for the unit hypercube Hd.
- Then, we construct the unit hypercube Hd by

recurrence : a frustrated square is easily obtained by
taking three positive bonds and one negative bond.
Now a hypercube Hd in dimension d is built from
two Hd_ 1 by drawing bonds between their correspond-
ing sites. By choosing for one Hd- 1 a configuration

of bonds which fully frustrates it, for the other Hd_ 1
the same configuration of bonds, but with all the bond
signs interchanged and all the bonds linking the two
Hd- 1 as positive, one obtains a fully frustrated configu-
ration for the hypercube Hd-

This is of course not the only way to construct
a fully frustrated lattice, but they are all equivalent
through gauge transformations [9].

2. Ground state energy. - We consider a model
of spins with n components located on the sites of a
fully frustrated simple cubic lattice. The problem of
finding the ground state energy can be treated by
looking at the ground state of the unit hypercube.
Here also, a ground state of the whole lattice can be
obtained from the ground state of the unit hypercube
by reflexions with respect to the planes limiting the
hypercube.
The hypercube Hd consists of 2d sites. For any

configuration of spins, the field hi created on the site i
by its neighbours in the hypercube is given by :

One has :

By summing this relation over all the spins of the
hypercube, one obtains :

There is a cancellation of all the crossed terms : in the
sum the scalar product Sj.Sk appears twice, the spins j
and k are always located on the diagonal of a plaquette
and the fact that the plaquette is frustrated implies that
the two contributions cancel out.

This relation can be written :

This equality is true for any configuration of the spins.
It can be used to find a lower bound for the energy Eo
(per spin) of the ground state of the whole lattice

; This bound is independent of the number n of compo-
. nents of the spins. It comes from the fact that we want
; to make I h I maximum with the constraint that
" ï)2 = dJ2. This lower bound is reached when all the
i spins of the hypercube feel a field whose amplitude is

@ J.
’ 

o In the case of Ising spins [3], one can improve the
r lower bound when the dimension is not a square
, integer : using the fact that all the fields hi are integers,
I this bound is obtained by searching for the field
. distribution with integer values, which makes ¿ I hi [
I maximum with the constraint Y A? = 2d dj2 .
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o For planar spins, we could verify that the bound
- Jd, J is in fact the true ground state energy when
d  5. It is possible that this bound always gives the
ground state energy, but we did not succeed in prov-
ingitford&#x3E; 5.

o One can show that when the number of compo-
nents of the spins is large enough (n &#x3E; 2d-1), the
ground state energy is - q2J. Let us divide the 2d
sites of the hypercube into two sets : I and II, such
that all the sites of one set have all their neighbours
in the other set. A ground state is obtained by taking
all the spins of set I orthogonal among themselves,
and all the spins of set II pointing in the field created
by the spins of set I. This insures that the spins of set II
are also orthogonal among themselves and one can
easily verify that for such a configuration, all the
fields hi have the amplitude w2 J. This proves that
the ground state energy is - q2 J. The condition
(n &#x3E; 2d-1) is actually too restrictive. However, this
argument shows that by increasing the number of
components of the spins, it is always possible to reach
the lower bound for the ground state energy given
in (3).

3. The Gaussian model. - Since we can construct
a fully frustrated lattice with a periodic configuration
of positive and negative bonds, we can derive rigo-
rously the partition function and the free energy of the
Gaussian model.
The calculations are given in the appendix. They

reproduce, in the case of fully frustrated lattices,
those of Berlin and Kac [10].
One finds for the free energy f per spin

where K IJ..I - J and T is the temperature.where K = T 
= 

T and T 
is the p °

The critical temperature is the temperature where
the free energy (4) becomes singular :

The free energy (4) is a function of the two variables K
and d. It is interesting to note that a high dimension
expansion does not lead to the true critical tempera-
ture. By expanding (4), one finds ,

where x = 2 K2 d. 
All the terms of this series are singular when x = 1,
but the true critical point corresponds to the value
x = 2 which does not appear in any term of the expan-
sion. This is not very surprising because formula (4)
gives a singular part for the free energy which is

This singular part is exponential and so cannot

appear in a 1 /d expansion.
REMARKS : :

1) In the simple cubic lattice, the number of neigh-
bours z of a given site is 2 d. We conclude here that a
1 /z expansion does not give the true critical tempera-
ture. This is rather similar to what happens in the
Sherrington-Kirkpatrick model [5] for which the

leading term in the 1 /z expansion is not singular at Te.
2) Using the calculations given in the appendix,

one can easily check that the largest eigenvalue of the
matrix Jij, which is 2 ld J, gives the critical tempe-
rature as it should.

3) For comparison, we reproduce the expression
of the free energy of the ferromagnetic Gaussian model
obtained by Berlin and Kac [1 oj :

(for this model all the bonds are positive :

The critical temperature TJ equals 2 dJ and the
singular part in the free energy has the same form as
for the frustrated system.

4. The spherical model. - The Gaussian model is
not defined below the critical temperature. Using a
Legendre transform, one obtains the spherical
model [10] for which the only constraint is

N

’) lç;,2 = N.

This model is defined for all temperatures.

The expression for the free energy of the spherical model on a fully frustrated cubic lattice is derived in the
appendix ; the result is :

- , .,7-
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where the parameter z is given by :

or

and the critical value Kc is given by :

To compare this model with the ferromagnetic spherical model, we give the expression of the free energy in the
latter case. (By convention, we shall write the quantities in the ferromagnetic case with a prime index.)

where

and

or z’ given by

Using the expressions of the free energy in the two
models, we can make three remarks :

1) Both models have no transition at finite T

in dimensions 1 or 2 (the integrals (9) and (11) give
Kc = Kc’ = oo). For higher dimensions (d &#x3E; 3), the
two models have a second order phase transition.
This can be seen by showing that the energy is a conti-
nuous function of the temperature. So the two models
have the same kind of behaviour in all dimensions.

2) The second remark concerns the difference of
entropy between the two models in the low tempera-
ture phase. Using (6) and (10), it is easy to show that
for both models, the entropy goes to - oo when
T -+ 0. This is not surprising because the spins are
continuous classical variables. The interesting point
is that the difference of entropy per spin between
the two models is finite and is constant in the low

temperature phase :

which behaves for large d like :

3) There exists a simple relation between the critical
temperatures of the two models : using (9) and (11),
it is easy to show that :

This can be written as :

A high dimension expansion of the critical tempera-
ture of the spherical model on the fully frustrated
lattice gives :

The critical temperature is lower by a factor 2 than
the largest eigenvalue of the matrix Jij in the limit
d --+ oo. This was also the case in the spherical model
studied by Kosterlitz et al. [12] and in the Sherrington-
Kirkpatrick model [5, 11]. In order to explain this
factor 2 for those models, it was found necessary
to use an improved mean field theory, namely the
Bethe approximation. We shall see in the last section
that this method does not seem well-fitted here.
Before though, we are going to analyse the high
dimension expansions for the free energy.
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5. High dimension expansions. - 5.1 SPHERICAL
MODEL. - As we did for the Gaussian model, it is

possible to obtain a high dimension expansion for
the free energy of the spherical model using the

expression given in (6, 7). This expansion is done in the
limit d - oo with the constraint that the variable
x = K2 d is held fixed. The result is :

In (15), we give only the leading term. We notice that
there is no singularity for positive values of x. The
only singularities are a branch point for x = - 1/8
(which corresponds to imaginary values of the tem-
perature), and a logarithmic singularity for x = 0 in
the second Riemann sheet. It can also be proved that
these are the only singularities which appear in the
other terms of the expansion. We conclude that in
this problem, the critical temperature which occurs for
x = 1 is hidden by the 1 /d expansion. We can only

propose a heuristic argument to recover this value :
equation (15) contains a logarithm and the series
whose sum is this logarithm is convergent only when
its argument is less than 2. This value 2 for

5.2 SPINS WITH n COMPONENTS. - We consider
now the case of spins with n components. From the
Hamiltonian (1), it is possible to expand the free

energy in powers of 1/7B
If K = I Jij liT, the free energy f per spin is given by

a series :

The coefficients ap are functions of the dimension d
of the lattice and of the number n of components of
the spins. Using the fact that the lattice is a simple
cubic lattice, one can show that the coefficient an
is a polynomial of degree p in the variable d. We give
here these coefficients up to order p = 3 for fully
frustrated cubic lattices in dimension d :

As the highest degree terms in ap are proportional to
dP, the free energy given in (16) can be written as :

where Ai is the series obtained by keeping only terms
of degree dp- in ap.
One can prove that the highest degree term of ap

is always of the form :

where f3p is a number which does not depend on d or n.
As it can be seen in (17), the other terms are more
complicated functions of n. In the limit n - oo, one
recovers the spherical model :

Because of the simple n dependence of the leading
terms in ap, it is possible to find explicitly the function
Ao(K2 d) of the expansion (18)

REMARKS : I

1) We have used the fact that in the limit n -+ oo,
one recovers the spherical model. This was proved by
Stanley [13] in the ferromagnetic case but we think
this remains true for fully frustrated lattices. We
verified it for the first terms of the high temperature
expansion.

2) This method of expanding the free energy or
other quantities in powers of lld has often been
used [14]. For the ferromagnetic Ising model, one can
obtain the 1 jd expansion of the critical temperature
using the 1/T expansion of the susceptibility. It has
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been shown recently [15] however that for the ferro-
magnetic Ising model, the series obtained by keeping
only the highest powers of d in the free energy has a
zero radius of convergence. Our result given in equa-
tion (20) exhibits an important difference between
the ferromagnetic case and the fully frustrated case
for which the radius of convergence is finite.

3) As said earlier, in Section 5, the expression (20)
does not give any information about the existence of a
transition.

6. Mean field theories. - The high dimension limit
is interesting because one expects that some sort of
mean field theory becomes exact in this limit. In

this last section, we are going to use the usual mean
field theory and the Bethe approximation. We shall
see that none of them yields the critical temperature
of the spherical model.
To simplify our notations, let us introduce two

functions Zn(h) and An(h).

In (21), the integral is performed over the unit sphere
in dimension n, and In is the modified Bessel func-
tion [14]. These two functions can be expanded around
h = 0 :

For a given Hamiltonian like

’ the usual mean field theory consists of assuming that
each spin has an average magnetization mi and of
computing this magnetization mi with the approximate
Hamiltonian :

When the spins have n components, this theory gives
the mean field equations :

In the high temperature region, the equation (23)
have only one solution mi = 0. If we look for a second

order transition, it is enough to linearize the equa-
tion (23) and to find the temperature for which the
linearized equations have a non-vanishing solution.
If we keep in mind that the largest eigenvalue of the
matrix Jij is 2 q2 J, we find the critical temperature
predicted by this mean field theory :

The spherical model can be obtained in the limit

n -&#x3E; oo with - Jo as we noted in (19). So this theory
n

gives T,, = 2 q2 Jo for the spherical model though
the true transition temperature is lower by a factor 2
(Eq. (14)). This mean field theory is not adequate
here, no more than in the case of the Sherrington-
Kirkpatrick model, where Thouless et al. [11] argued
that a proper remedy is to use the Bethe approxima-
tion. This approximation consists of assuming that
each spin has an average magnetization mi and of
computing this magnetization with the approximate
Hamiltonian

This Hamiltonian describes a central spin So and all
its neighbours Sj. The fields hi represent the effect on
the spins Sj of their other neighbours.
With this approximate Hamiltonian, we obtain mo

and mj :

We have z spins Sj and (z + 1) equations. So it is in
principle possible to eliminate the fields h J and to find
a relation between mo and the m j. Since we expect a
critical temperature T,, of order d, we have

and it is possible to put equations (25) in a simpler
form which should be valid in the critical region :
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These equations are obtained from (25) using the fact
that :

Here also a second order phase transition is obtained
when the linearized equations (26) admit a non-zero
solution. If we eliminate the fields hi in the linearized
equations, we find :

As the largest eigenvalue of matrix Jij is 2 q2 J, the
critical temperature T, has to verify :

This equation has no real solution; this proves that the
Bethe approximation does not give a second order
transition.

REMARKS : I

1) In the case of f.c.c. lattices which has been
studied by Alexander and Pincus [4], the coordination
number z is given by : z = 2 d(d - 1).

It is also possible to write the predictions of the
usual mean field theory and of the Bethe approxima-
tion for the f.c.c. lattice. Equation (24) becomes :

I

and equation (28) :

where 1 = 2(d - 1) for odd d and A = 2 d for even d.
The results may then be summarized in a table

giving the critical temperature Tc for large z for both
lattices :

Ferromagnetic system
Fully frustrated system

where the mean field and Bethe results correspond
to the spherical model. The striking fact is that models
and approximations which give equivalent results in
leading order for ferromagnetic systems may yield
very different answers for frustrated systems.

2) The difference between the usual mean field

theory and the Bethe approximation is the presence
of a second term in the right hand side of equation (27)
which takes into account the polarization of the

spin Sj by the effect of the spin So, as pointed out by
Thouless et al. for spin glass models [11]. As we expect
here that the critical temperature is proportional to
Jd, this term has to be considered and it leads to
different predictions between these two approxima-
tions. In the ferromagnetic case, the usual mean field
theory predicts the right critical temperature in the
limit d --&#x3E; 00, and the Bethe approximation gives only
corrections which become negligible in this limit.

3) It is much easier to study second order than first
order phase transitions using equations (26) : first
order phase transitions depend on the non-linear
form of functions An, whereas second order phase
transitions depend only on the linear part of these
functions. We think that the equations (26) do not

give a first order phase transition for large d, but we
did not find a rigorous proof of it. Anyway, in the
limit n -+ oo, the essential point is that these equa-
tions do not give a second order phase transition.

7. Conclusion. - In this work, we have obtained
the expression of the free energy for the Gaussian
model and for the spherical model when the lattice is
fully frustrated. Our main result is that the critical
temperature of the spherical model is lower by a

factor 2 than the temperature predicted by the usual
mean field theory, and that the Bethe approximatior
is not valid in this problem. Our main conclusion is
that the problem of finding a good mean field theory
(which becomes exact when the coordination numbel
is large) is still open.
We have also studied the high dimension expansions

of the free energy : for the Gaussian model as well as
for the spherical model, the transitions are hidden
by these expansions.
We have focused this work on the high dimension

limit in order to be able to examine critically the mean
field theories. For direct comparisons with experi-
ments however, the most important dimensions are 2
and 3. A recent Monte Carlo calculation [16] shows a
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first order phase transition for the f.c.c. antiferroma-
gnetic lattice with Ising spins in dimension 3. It would
be interesting to know if a corresponding transition
exists for the fully frustrated simple cubic lattice in

dimension 3, and what happens when the number of
components of the spins is larger than 1.
We wish to thank J. M. Drouffe, J. M. Maillard and

P. Moussa for many helpful discussions.

APPENDIX

1. The free energy of the Gaussian model. - The partition function of the Gaussian model is :

The interactions Jij take the values + J or - J so as to
realize a fully frustrated lattice.

If we define an N x N matrix A by :

The partition function is given by :

If we take a cubic lattice in dimension dwith periodical
boundary conditions of size

we are going to show by recurrence that the eigen-
values of matrix A are :

where

and pi is an integer 0  pi  ni - 1.
It is easy to verify it in dimension 1, by taking a

ferromagnetic chain. Now we assume this is true in

dimension d, and we are going to prove that it remains
true in dimension d + 1.

Consider again the construction of a fully frustrated
lattice in dimension d + 1 using a lattice of dimension
d : a lattice in dimension d + 1 is an alternate super-
position of lattices in dimension d connected by ferro-
magnetic interactions in the (d + l)th direction.

Here, by alternate superposition, we mean that if we
take a configuration of interactions which fully frus-
trate one lattice in dimension d, the next lattice (when
one moves in the (d + 1)th direction) has the configu-
ration obtained by changing the signs of all the inter-

actions (this construction also works to go from
d = 1 to d = 2).

Call V(r) an eigenvector of the matrix A for a lattice
in dimension d which corresponds to the eigenvalue
2 + K COS2 kl + ... + COS2 kd. This vector consists
of a given number for each site r of the lattice

(1 1  rt  2 ni). In the next lattice of dimension d, this
vector is an eigenvector with the eigenvalue
2 - K COS2 k1 + ... + COS2 kd.

Consider now the vector W(r, x) consisting of a
given number for each site of the d + 1 lattice : x is the

(d + 1)th coordinate of a lattice site, whereas r repre-
sents its d first coordinates. We take for W a vector
defined by :

with

If W’ = A W, the vector W’ is defined like vector W
in (A. 3) by two numbers a’ and /3’ :

The diagonalization shows that we obtain the two
eigenvalues :
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This proves the result (A. 2). Using’ (A .1 ), we find for
the partition function :

I - -- -

This gives in the thermodynamic limit :

2. The free energy of the spherical model. - The
partition function is given by :

where the matrix B is an llT x N matrix defined by :

One can diagonalize matrix B as we did for matrix A
in the case of the Gaussian model.

In the thermodynamic limit (N -+ oo), one can

calculate the integral in the formula (A. 4) by a saddle
point method. We find

where z is the value of iA at the saddle point and is
given by (A. 6) in the high temperature phase, and
by (A. 7) in the low temperature phase :

The critical temperature corresponds to the value of K
for which (A. 6) and (A. 7) have the same solution :

REMARK. - It is always possible to add a constant
to the free energy. In (A. 5), we have chosen this
constant such that the free energy is zero when the

temperature goes to infinity.
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