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The random anisotropy axis model in the infinite-range limit 
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Abstract. We study the thermodynamic properties of the random-anisotropy-axis model of 
amorphous magnets when the interaction range becomes infinite. This model is exactly 
soluble and has a ferromagnetic second-order phase transition at the same temperature as 
the pure n component spin system. There is no spin glass phase and mean-field theory is 
rigorously justified in this case. Explicit expressions are given for the magnetisation, specific 
heat and susceptibility near the transition and at low temperature, in the limit of strong 
anisotropy. 

1. Introduction 

Amorphous intermetallic compounds often exhibit magnetic properties that differ 
markedly from those of their crystalline counterparts. Much work has been devoted to 
such materials recently, both experimentally and theoretically, and rapid progress has 
been made (Cochrane et al 1978). Harris et al (1973) in particular have proposed a 
randon anisotropy model (RAM) that is believed to describe adequately compounds of 
the Dy,Cu, - -x  type (i.e. a rare earth and a non-magnetic metal). 

Renormalisation-group studies (Aharony 1975, Pelcovits et al 1978) suggest that in 
this model a spin glass phase appears at low temperature, at least below six dimensions, 
and that ferromagnetism is unstable below four dimensions. Above six dimensions, it 
is possible that only the ferromagnetic phase remains at low IT; independently of the 
anisotropy strength. After some initial controversy on the result of Monte Carlo 
experiments (Chi and Alben 1977, Harris and Sung 1978) more extended numerical 
work by Jayaprakash and Kirkpatrick (1979) has provided strong evidence for the 
absence of ferromagnetism in three dimensions, even in the limit of very strong aniso- 
tropy. This raises many questions on the relationships of the RAM with the usual random- 
interaction models of spin glasses. 

In this paper we study the thermodynamic properties of the RAM when the interaction 
range becomes infinite. Jayaprakash and Kirkpatrick (1979) have pointed out the 
interest of this limit and shown that the system is ferromagnetic at zero temperature. 
We extend their work to all temperatures and all values of the anisotropy ratio. One 
usually expects mean-field theory to be valid for systems with infinite-range interactions, 
but experience with random-bond models of spin glasses (Sherrington and Kirkpatrick 
1975) has shown that ‘naive’ mean-field equations are incorrect. Local-field corrections 
must be taken into account (Thouless et al1977) but the situation is not yet clear (Blandin 
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1978). It is natural to ask whether similar difficulties arise in the random-anisotropy 
model, since a correct mean-field theory is a pre-requisite for more realistic calculations. 

We obtain the free energy of the model explicitly. It exhibits a second-order phase 
transition from a ferromagnetic phase to a paramagnetic phase, at a temperature 
independent of the anisotropy ratio. This transition is governed by standard mean-field 
equations. We discuss the role of fluctuations in the axis distribution. 

We investigate the limit of strong anisotropy in more detail, because it is expected 
to be the nearest to a spin glass and has interesting low-temperature properties. The 
specific heat, for instance, is linear in T as observed experimentally on some amorphous 
magnet- and predicted from simple effective-field arguments (Coey and Von Molnar 
1978), but the susceptibility vanishes as T 2  due to the orientational disorder. 

2. Model and derivation of the free energy 

2.1. General case 
The random-anisotropy-axis model is defined by the Hamiltonian 

.%? - JSi.Sj - D 1 (n,.S,)’ 
i ,  j i 

where the S i  are n component unit spins and the unit vectors ni vary randomly from site 
to site. The (positive) exchange interaction J and anisotropy energy D are assumed to 
be the same for all spins. Like random-bond spin glasses, this model has been shown 
to present frustration effects (Alexander and Lubensky 1979). 

For usual ferromagnets, mean-field theory becomes exact in the high-dimensionality 
limit and may be derived by letting the interaction range become infinite, with the 
interaction scaled as 1/N, where N is the number of spins (Kac 1966). Extension of this 
approach to disordered systems is attracting considerable attention (Kirkpatrick and 
Sherrington 1978) and it is natural to investigate its application to the RAM. Extending 
the summation in equation (1) to all pairs of spins and letting J = J,/N to insure a 
well behaved limit, we obtain, apart from an unimportant constant term, 

J 
X’  = - -2- (1 Si)2 - D 1 (n, .S,)2.  

2N i 

The case D = 0 is just the pure n component classical spin system, to which we shall 
often refer in the following. 

Let us specialise for the moment to the two-component case, with the n, distributed 
over a circle. The partition function Z is for one configuration of (n,) : 

I Z = CN j.. . [, (v dSi ) exp {& [(E S;)’ + (X Sf)’ + C(ni.Si)’ 
SZ=l 1 

where K = Jo/T, B = D/T and C is a normalisation constant. This can be written, 
using a classical trick, as 

Denoting by t+b and Oi the polar angles of Y and n, respectively, the integral between 
the braces is 
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For a given configuration (nil of random axes, one can compute the value of In 2 by a 
saddle-point method: 

( l /N) lnZ = lg C + mar: - r2 /2  + (l /N)Elnf(r ,  $ - Oi) . 
{ r ,  IL) ( i 1 

If we consider a uniform probability law for the axes, it is easy to show that 

and 

where the averages are taken over all the distributions of axes. This shows that for 
almost all distributions one has 

c1n  f ( r ,  $ - ei) = N f ( r ,  $ - 0) + O(N112) 
i 

which is independent of the variable I) in leading order. Therefore, for almost all distribu- 
tions of axes, the free energy F per spin is given in the thermodynamic limit by 

In particular, equation (6) gives the averaged free energy per spin, which is the usual 
quantity of interest in disordered systems. 

For high temperatures (small K )  the maximum of In Z is realised for r = 0. Expanding 
f ( r ,  0) for small r ,  one finds that this maximum turns into a minimum for a critical value 
K, = 2, and the system has a second-order transition at a temperature T, independent 
of D: 

T, = J0/2. (7) 

It is easily shown that a similar result holds for the n component case, where T, is equal 
to J,/n independently of D. 

The equation that gives the value of r at the maximum is in fact equivalent to the 
mean-field theory equation considered by various authors for classical spins (Harris 
et a1 1973, Callen et al 1977, Patterson et a1 1978). We prove this equivalence in detail 
for the Ising limit (infinite anisotropy) in the Appendix. As far as we know, the indepen- 
dence of T, with respect to D had not been pointed out, though Patterson et a1 (1978) 
proved that (dTJdD) = 0 for D = 0. Presumably, this is because it is customary to 
compare T,  (RAM) with T, (crystal), defined as the transition temperature of the model 
with all ni fixed in the same direction, which itself depends on D. This comparison has 
obvious experimental importance, but it obscures the simple and striking behaviour 
of T, (RAM). 

The reason why the present theory is simple is that the fluctuations in the distribution 
of axes become unimportant in the thermodynamic limit. It is then allowed to replace 
a random configuration of axes by the uniform distribution. 
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2.2. Ising limit 

We now consider the case of very strong anisotropy (D % J ) ,  where some simplification 
occurs and which is the least favourable for ferromagnetism, so that it represents a very 
useful limit. The spins are forced to align along the directions ni and may be written 
as npi ,  with ci = k 1 an Ising variable. Apart from a constant term, the Hamiltonian 
reduces to 

Yt'' = - (J0/2A7)(C n, 0 J 2  
1 

and the total energy is just proportional to the square of the magnetisation. 
The free energy takes the form derived in the Appendix (for TI = 2): 

where the magnetisation profile m(8) is the solution of 

m(8) = tanh [$ jOzn m(cp) COS (8 - cp) $1. 
This equation immediately shows that the profile is always of the simple form 

m(8) = tanh[A cos(8 - e,)]. (11) 

The amplitude A depends on the temperature, but 8, may take any value and there is a 
continuous degeneracy if A is non-zero. The symmetry of the order parameter is the 
same as for the pure system (D = 0) and one parameter is sufficient to describe the 
temperature variation. It is convenient to use the average magnetisation per spin B 
( = TA/J,) ,  which verifies 

B = jOzn COS 8 tanh 0 COS 8 -. 
[J: 1;: 

It was conceivable a priori that the order parameter would be a complicated function 
m(0). This is not the case and the simple mean-field expression (equation (12)) is exact, 
which reduces the complexity of the problem but also its richness. 

The calculations are readily generalised to the case where the anisotropy axes are 
uniformly distributed over the unit sphere. The magnetisation per spin B and the mag- 
netisation profile are given by the set of equations 

d"u B = j  um(u) - 
U2 = 1 'n 

m( U) = tan h [ ( J  T)u . B ]  

where U is an n-dimensional unit vector and Xn is the surface of the unit sphere 
E, = n ~ " ' ~ / r ( n / 2  + 1). 
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3. Thermodynamic properties in the Ising limit 

The Hamiltonian for the strong anisotropy case (equation (8)) is invariant under all 
transformations that leave the magnitude of the total magnetisation unchanged, and 
it possesses in particular a global rotation symmetry. We have seen that this symmetry 
is broken at the same temperature and with the same order parameter as for the pure 
spin system. Below T, the equivalence is not complete, however, and the underlying 
disorder modifies the thermodynamic properties. In particular, the king character of 
the effective spins has important consequences near T = 0. We study this region in detail. 

3.1. Phase transition region 

The magnetisation per spin E is non-zero below a critical temperature T, given by 

T, = J,/n. (14) 

The transition is second order and the order parameter vanishes with the usual mean- 
field behaviour : 

E' - [(n + 2)/n2](T, - T)/T,  (T, - T 4 T,) 

The specific heat C is simply 

C = (d /dT)(2)  = (- J,/2)(d(E2)/dT). 

It vanishes above T, and has a jump AC at T,: 

AC = (n + 2)/2n. 

For comparison, the results for the pure system are 

so there is a reduction by a factor n in the specific heat for the random system. In the 
presence of an external magnetic field H the calculations are modified in a simple way 
and the magnetisation satisfies: 

(JOB + H )  d"u 

.U] c,' B = ji2=l U tanh [ 
Above T, the susceptibility is 

x = B/H = l/n(T - T,). (18) 
Below T, the transverse susceptibility becomes infinite but the longitudinal susceptibility 
in a field parallel to the spontaneous magnetisation remains finite : 

- 1/2n(T,- TI. (19) 
Both results are identical to the expressions for the pure case. 

L17  
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3.2. Low-temperature region 

In the ground states the magnetisation B is maximum and all spins point in the same 
hemisphere, with the direction of B as the polar axis. There is a large ground state 
degeneracy due to all the possible choices of the hemisphere. This large degeneracy is 
a general feature of models exhibiting frustration effects and it is useful to study its 
implications on a soluble case. 

The zero-temperature moment B(0) is given by: 

B(O) = [2/(n - l)]Zn-&, = 2/71 (planar case) 

(Heisenberg) (20) 1 
2 
- 

- ( 2 / n ~ ) ” ~  (n % 1). 

This moment is strongly reduced with respect to the saturated moment of the pure 
system, the reduction factor is comparable to the one observed near (equation (15)). 
The ground state energy per spin E ,  is just - iJ,B2(0). At low temperatures the moment 
has a quadratic variation 

(n  - 1)n2 T Z  
24B(O) J i  

B(T)  - B(0) - ____ - ( T <  J,) 

and the specific heat is linear: 

C(T)  - (n  - l)(nz/12)(T/J,,). (22) 

The entropy also vanishes linearly in T as may be checked directly from equation (9). 
The discrete nature of the spin variables reappears here, ensuring that the T = 0 limit 
remains physical while for the pure system the specific heat goes to a constant and the 
entropy diverges as expected for classical continuous spins. 

The behaviour of the specific heat is particularly interesting, since such a linear term 
has been observed experimentally in a Dy-Cu alloy and interpreted as being due to 
the existence of a finite density of spins in zero effective field (Coey and Von Molnar 
1978). The effective field hi on a spin i in a given state of the system is 

hi = (J , /N)  1 n, .  njoj = JOB. ni. 
j 

The probability distribution P(h, T )  is then related to the density of cos 0, where 0 
is the angle between the local axis and B. One has explicitly 

for Ihl < JoB(T) ,  and P(h, T )  = 0 otherwise. The internal energy may be written, 
using equation (13), as 

U ( T )  = - (J0/2)B2(T)  = - 1 tanh(h/T)P(h, T ) h  dh. (25) 
2 s  

This is just the expression used in the ‘mean-random-field’ approximation (Klein 
1976), which is thus exact in the present model. It is important to note that P(h, T )  
depends on T through B(T) (equation (21)), and that the linear term in the specific 
heat contains a contribution from dP/dT. This contribution accounts for half the total 
result, so the often-made assumption that dP/dT is negligible near T = 0 is invalid 
here. 
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Finally, the longitudinal susceptibility is obtained by developing equation (17) at 
low 7: It depends quadratically on T : 

whereas the result for the pure system is linear in temperature. Naively, one might 
expect a constant susceptibility near T = 0 due to the non-vanishing density of spins 
in zero effective field. The spins in low effective field lie near the equatorial plane. This 
reduces the susceptibility for two reasons: first, the external field is not efficient in 
orientating them along the global magnetisation B ;  second, even when orientated they 
contribute very little to B. Each effect accounts for a factor (TIJ,) in the reduced sus- 
ceptibility. 

4. Conclusion 

The interest of the random-axis model comes from its intermediate character between 
conventional ferromagnets and spin glasses. In the infinite-range limit studied here it 
clearly lies on the ferromagnetic side. Naive mean-field theory is exact, in contradistinc- 
tion with the situation for spin glasses. Above the transition temperature the random 
anisotropy plays no role and the system behaves exactly as a pure spin system. Below 
T, the disorder reduces the spontaneous magnetisation but it is not strong enough to 
modify the nature of the low-temperature phase. Only the low-temperature properties 
are affected enough to share some features with random-bond spin glasses. This suggests 
than an investigation at large dimensionalities may clarify the mechanism by which a 
spin glass state appears. 
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Appendix 

We present here the derivation of the mean-field equations (9) and (lo), for the case of 
very strong anisotropy and two-component spins. 

The spins are aligned on local axes ni distributed over a circle. When N is large, a 
number N(Oj)  = N j  of these axes points in directions between angles O j  and O j  + dB 
(angles 8 and 8 + are equivalent, but it is convenient to keep the distinction). For a fixed 
distribution of axes, let us consider one spin configuration, i.e. one set (oJ. If the number 
of up spins (ci = + 1) in direction B j  is N j x j ,  the energy U of the configuration is 

2N 
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The number of configurations with the same value of xi for all tIj is 

The partition function Z is given by the functional integral 

which may be evaluated using a saddle-point method. The result is 

I n 2  - - (l/T)U[((l + m,)/2 }] + In W[((1 + mi)/23] ( '43)  

where the magnetisation mi in direction Oi is the value of (2xi - 1) at the saddle point 
and is the solution of 

mi = tanh ( J O I N T )  m j N j  cos (ei - Oj) . ('44) 
[ j  1 

To justify this calculation, the Ni must be large enough while the Oi must be well 
defined. This implies 

NdO >> 1 >> de 

If the axes n, are distributed according to a given density n(O), the same arguments that 
lead to equation (6) give for almost all the distributions of axes: 

n(cp)m(cp) cos(8 - (b)% 

The last equation shows that for any given density n(0) the magnetisation profile is 
of the form 

m(0) = tanh [ A  cos (0 - O,)]. (A71 

In the case of uniformly distributed axes, n(0) has to be replaced by 1 to obtain 

An advantage of the present derivation is to give directly the magnetisation profile 
equations (9) and (10) from equations (A5) and (A6). 

and to be readily generalisable to other distributions of axes. 
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