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Abstract. Phenomenological renormalisation is used to calculate the exponent v and the 
connective constant of the self-avoiding walk problem on a square lattice. A transfer matrix 
technique is developed for the polymer problem. The results indicate that Flory’s value 
v = 0.75 is true in two dimensions to extremely high accuracy. 

Trying to calculate the critical properties of the two-dimensional self avoiding walk 
(SAW) by a real space renormalisation is no longer a very new idea (Hilhorst 1976,1977, 
Shapiro 1978, Coniglio and Daoud 1979). However since the phenomenological 
renormalisation (PR) is becoming more and more useful to study two-dimensional 
systems (Nightingale 1976, 1979, Sneddon 1978, 1979, Nightingale and Blote 1980, 
Rhcz 1980, Derrida and Vannimenus 1980a), I found it interesting to use it in this case. 
The motivations for the present work were provided by the two following facts. First, 
the PR requires the calculation of the correlation lengths of strips of finite width. The 
standard technique to do so for spin systems is the transfer matrix method. It was 
therefore necessary to define a transfer matrix for the SAW. The procedure is similar to 
one proposed for percolation (Derrida and Vannimenus 1980a). The interest of the 
definition given here is that it can be generalised to other polymer problems (solution of 
polymers, branched polymers, vulcanisation). Secondly, the SAW is simple enough to 
allow calculations for strips of rather large width. The other purpose of this work was to 
study the convergence of the PR when the width n of the strip increases. Up to now, the 
convergence law is not well understood except in the Ising case where the critical 
temperature and the critical exponent v calculated by the PR with strips of width n and 
n - 1 and periodic boundary conditions converge respectively like n - 3  and n-’ to their 
exact values. (Nightingale 1976, Derrida and Vannimenus 1980b). 

The PR method introduced by Nightingale (1976, 1979) is based on finite-size 
scaling arguments. I merely recall here the principle of the method without repeating its 
justifications. Suppose that one wants to study the critical properties of a two- 
dimensional model with coupling constant x. Using the transfer matrix one can 
calculate the correlation length &(x) of a strip of width n. The PR consists in writing a 
renormalisation equation 

which expresses the changes of the interaction x associated with the change of scale of 
ratio n/m. The critical point and the exponent v of the two-dimensional problem can be 
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calculated from equations (2) and (3): 

Other exponents can be calculated by similar formulae. 
As far as n and m are finite, the method is an approximation which can be improved 

by choosing n as large as possible and m = n - 1 (Nightingale 1976, Derrida and 
Vannimenus 1980b, dos Santos and Sneddon 1980). 

In order to use the PR method for the SAW, one has to define the correlation length as 
a function of a parameter x in the same way as for spin models. This can be done using 
the famous q + 0 limit of the classical q-component Heisenberg model (de Gennes 
1972, des Cloizeaux 1975, Daoud et a1 1975) 

Equation (4) relates the correlation function (So S R )  of Heisenberg spins located on 
sites 0 and R to the number of self-avoiding walks NoR(p)  of length p going from site 0 
to site R,  x is the nearest-neighbour interaction in the Heisenberg model. When the 
distance R between the two sites becomes large, the correlation function decreases 
exponentially in the high-temperature phase. In the q+O limit this defines the 
correlation length [ ( x )  for the polymer problem as a function of x which is a chemical 
potential of monomers 

It is now possible to explain how f ( x )  can be calculated for a strip of any width. 
Suppose that sites 0 and R belong to two columns No and N R  on the strip. If one cuts 
the strip at column N between No and NR, the part of the polymer at the left of column 
N is made of several branches: one site of column N is connected to site 0 of column No 
whereas some of the other sites of column N are connected by pairs (figure 1). The 
writing of the transfer matrix needs two steps. 

First, one needs the list of all the possible configurations %‘ at column N. One 
configuration is defined by the site of column N connected to site 0 and by the pairs of 
sites connected by the part of the strip at the left of column N. Configurations A and B 
of figure 1 are examples of such configurations. One can notice that the different 
branches which reach column N will be connected together by the right part of the strip 
to form a single polymer. So, some configurations are eliminated (like configuration C 
of figure 1) where there are crossings between the different branches of the configura- 
tion. 

For each allowed configuration %’, one can define the function H N ( % )  by 

where ” ( p ,  %) is the number of ways one can put p monomers at the left of column N 
in order to realise configuration %’ at column N. The transfer matrix T is defined by the 
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- No N N+1 NR- A B C 

Figure 1. The configurations A and B represent the part of the polymer on the strip at the 
left of columns N and N +  1 respectively. The dashed links are the monomers one has to add 
to configuration A at column N to give rise to configuration B at column N + 1. The number 
of these monomers is here five. So the matrix element between these configurations A and 
B is x 5 .  Configuration C is an example of a forbidden configuration. 

set of linear relations which allow the calculation of the HN+l((e) as functions of the 
H N ( % ) :  

H ~ + i ( v )  =c T ( V ,  %')HN(%'). (7) 
0' 

Obviously T (  V, V') = x""") where t (  (e, (e') is the number of monomers one has to add 
to configuration %' at column N to give rise to configuration (e at column N + 1. If there 
is no way to connect two configurations (e and %', the matrix element T(%, (e') is zero. 

So the size of the transfer matrix is the number of configurations (e and its elements 
are either zeros or integral powers of x. Clearly, when the two columns No and NR are 
very far from one another, one has 

(8) GOR (x) - [A (XI]" 
where A (x) is the largest eigenvalue of the matrix T. So the correlation length [(x) can 
be calculated by 

From a practical point of view, the size of the matrix can be reduced using the 
symmetries of the strip. These reduced sizes S,  for strips of width n with periodic 
boundary conditions and free boundary conditions are given in tables 1 and 2 respec- 
tively. The general expression of these sizes is too complicated to be given here. Let me 
just mention that for large n, S,  increases like 3". 

The self avoiding walk was studied here on a square lattice. The results shown in 
table 1 were obtained by calculating [,, (x) for strips with periodic boundary conditions 
and by using formulae (2) and (3) with m = n - 1. The values of v are in much better 
agreement with Flory's value v = 0.75 (Domb 1969) than previous real-space renor- 
malisations (v = 0.740 by Hilhorst 1977 and v = 0.70 by Shapiro 1978). The dis- 
crepancy between those previous works and Flory's value is however, recovered here 
for narrow strips and is probably due to small size effects. 
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Table 1. Results of the phenomenological renormalisation for the SAW problem using strips 
of width n and n - 1 with periodic boundary conditions. S, is the size of the transfer matrix 
for a strip of width n once the symmetries have been used. The uncertainty on x, and Y 
calculated for all the choices of n and m is less than lo-’ for x ,  and for v. The error 
bars indicated for the extrapolated values come only from the extrapolation procedure. 

n m X C  v 

2 1 
3 2 
4 3 
5 4 
6 5 
7 6 
8 7 
9 8 

10 9 
11 10 
12 11 
Extrapolation 
Flory’s value 

0.347 8104 
0.365 3048 
0.373 3995 
0.376 6329 
0.377 9095 
0.378 4477 
0.378 6984 
0.378 8280 
0.378 9013 
0.378 9459 

0.668 473 
0.724 477 
0.739 124 
0.745 005 
0.747 680 
0.748 928 
0.749 527 
0.749 826 
0.749 983 
0.750 067 

0.379 05 *O.OOO 03 0.7503 f 0.0002 
0.75 

1 
n 
1 

3 
7 

13 
32 
70 

179 
435 

1142 
2947 

Table 2 contains the results of the PR for strips with free boundary conditions. The 
results are worse than in the periodic case and the convergence of v is not even 
monotonic. However, for large width the agreement with the periodic case seems to 
take shape. 

The extrapolation of the results of table 1 leads to 

v = 0.7503 f 0.0002 

xc = 0.37905 * 0.00003 

and the convergence law is well described by apower law ( n - 3 . 5 )  for v and xc. The Flory 
value v = 2 and the connective constant x c  = 0.37900 given by McKenzie (1976) are out 
of the error bars of equations (10). However, one cannot be sure that the asymptotic 
regime in n has been reached. Non-monotonic convergence might occur for larger sizes 

Table 2. As table 1 but with free boundary conditions. Note that the results for v do not 
converge monotonically. 

n m xc v 

2 1 
3 2 
4 3 
5 4 
6 5 
7 6 
8 7 
9 8 

10 9 
11 10 

0.465 5712 
0.414 6801 
0.398 2330 
0.390 8852 
0.387 0023 
0.384 7187 
0.383 2708 
0.382 3000 
0.381 6200 

0.715 312 
0.745 306 
0.753 958 
0.756 904 
0.757 908 
0.758 139 
0.758 037 
0.757 790 
0.757 483 

1 
3 
6 

16 
38 

100 
256 
681 

1805 
4867 
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as was the case in table 2 .  In any case, even if Flory's values were not exact, it would be 
an extremely good approximation to the true exponent. 

This work has shown once more that phenomenological renormalisation is a very 
powerful tool. Small calculations ( n  s 5) lead to satisfactory results whereas longer 
ones give very accurate numbers. It would be of great interest to be able to predict the 
convergence law of the results for making very accurate extrapolations. 

This work was done partly during my visit to the T J Watson Research Center of IBM. I 
should like to thank J des Cloizeaux, S Kirkpatrick and P Moussa for numerous 
discussions as well as H J Hilhorst who suggested this calculation to me. 
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