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Résumé. 2014 Après avoir rappelé la relation entre les lois d’échelles pour les systèmes finis et la renormalisation
phénoménologique nous calculons l’exposant 03BD pour la percolation en dimension 2 et trouvons un bon accord
avec la valeur de 4/3 proposée par den Nijs. Nous avons construit les matrices de transfert pour le problème des
animaux afin de calculer les longueurs de corrélation. Nous trouvons 03BD = 0,640 8 ± 0,000 3 en dimension 2.

Abstract 2014 We recall the relation between finite-size scaling and the phenomenological renormalization. We
calculate the exponent 03BD in dimension 2 for percolation and find a good agreement with the conjecture 4/3 of
den Nijs. For lattice animals, we construct transfer matrices to calculate the correlation lengths and we find

03BD = 0.640 8 ± 0.000 3

in dimension 2.
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 1. Introduction. - Since Nightingale [1] introduced
the phenomenological renormalization (PR) method
in the study of the Ising model, many authors used
this approach to calculate the critical behaviour of
other models like generalized Ising models [2], Ising
antiferromagnets in a magnetic field [3, 4], lattice gas
models [4], quantum spin systems [5], Lee and Yang
singularities [6]. For all these models, the transfer
matrix or the hamiltonian can be written obviously.
In order to apply the PR method to percolation, it was
necessary to show how the idea of transfer matrix
could be generalized [7]. Subsequently, other geome-
trical problems like the self avoiding walk [8] or
directed percolation [9] were studied by the PR
method. The first motivation of the present work was
to continue the work of Derrida and Vannimenus [7]
and to find the best prediction of the PR method for
the exponent v of percolation. Once our programs of
constructing the transfer matrices for percolation were
reliable, it became very easy to study also the problem
of lattice animals.
The literature on percolation is considerable : for

recent reviews on the field, we refer to the course of
Kirkpatrick [10] and to the articles of Stauffer [ I I ]

and Essam [12]. However, for a long time, the expo-
nent v of the two dimensional percolation was not
known with enough accuracy to eliminate at least one
of the two conjectured values (v = 4/3 by den Nijs [13]
and v = 1.354 8 by Klein et al. [14]). The situation
has been clarified recently by Eschbach et al. [15] who
found a good agreement with the den Nijs conjecture
by increasing the accuracy of Monte Carlo renorma-
lizations which previously seemed to support the pre-
dictions of Klein et al. [14]. Blbte et al. [16] found also
a good agreement with v = 4/3 by interpolating the
values of v for the q state Potts model with q close
to 1. It was then interesting to see if the direct appli-
cation of the PR method to percolation which is much
cheaper in computer time than Monte Carlo renor-
malization [15] could also support the den Nijs
conjecture. In the results presented here, we find again
an excellent agreement with v = 4/3. The PR method
works also very well in the case of lattice animals and
we find accurate estimations for the exponent v.

The PR method is a consequence of the finite-size

scaling idea due to Fisher and Barber [17]. The finite-
size scaling allows to extract the critical behaviour of
infinite systems from the numerical studies done on
finite systems [18, 19]. Hamer and Barber [20] have
reviewed recently what is known on finite-size scaling.
Let us just mention here that it has been used recently
to study the X Y model [20], the Potts model [1 6, 211,
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the localization problem [22] and the roughening
transition [23]. Finite-size scaling is expected to hold
only for very large systems. Unfortunately, the sys-
tems one can study by computer are rather small. So
the corrections to finite-size scaling are not always
negligible. When one uses the PR method, due to
these corrections, one finds estimations of the critical
point of the exponents which depend on the size consi-
dered. The size dependence of these predictions is in
most cases regular and the extrapolation of the results
seems reliable. However, one finds sometimes non
monotonic convergences and then the extrapolation
becomes much more problematic. We discuss how
assumptions on the corrections to finite-size scaling
make possible the extrapolation of the results of the
phenomenological renormalization.
The paper is organized as follows : in section 2, we

examine the different ways of calculating critical points
and critical exponents using the finite-size scaling and
we recall how the phenomenological renormalization
method can be derived from the finite-size scaling.

In section 3 we present the results we have obtained
for bond and site percolation using the PR method

In section 4, we extrapolate the results presented in
section 3 and we explain how we can estimate the
confidence interval on the extrapolated values of the
threshold and of the critical exponent of the 2d per-
colation.

In section 5, we explain how the transfer matrix
method can be used to study the statistics of lattice
animals. We compare (in the appendix B) the structure
of the transfer matrix for lattice animals with its
structure in the case of percolation. Lastly, we present
the estimations of the PR method for lattice animals.

2. Finite-size scaling and phenomenological renor-
malization. - To simplify the discussion, we consider
an infinite system which is two dimensional and
«finite systems which are infinite strips of finite
width n. One can easily generalize what follows to
cases where the infinite system has any dimension and
where the « finite » systems are finite at least in one
direction. Again, for simplicity, we consider that there
is only one parameter T (the temperature) in the pro-
blem and that the infinite system has a second order
phase transition at a critical temperature Tc. For a
given physical quantity Q, the typical situation is that
Q is singular at T c in the infinite system

whereas it is regular in the finite systems [Qn(T) has
no singularity]. When n increases, the singularity of
Qoo(T) starts to develop [for example, if Qoo(T) diver-
ges at Tc, Qn(T ) has a maximum which becomes
sharper and sharper]. The content of the finite-size
scaling hypothesis [17, 20] is to assume the existence
of scaling functions FQ such that :

where ,,,,(T) is the correlation length in the infinite
system. This relation is expected to be valid when the
size n of the finite system is large and when T approa-
ches T c. However Brezin [24] has shown recently that
relation (1) fails above the upper critical dimensiona-
lity. As far as n is finite, &#x26;,(T) is a regular function
of T. This means that FQ compensates the singularities
of Q,(T) and of (T) : if

then FQ must behave like :

It follows that at T c’ Qn depends on n as a power law :

If Q (P) (T) is the p th derivative of Q (T), Q (P) (T) is
also singular at Tc

and therefore

Because Qn(T) is a regular function of T, it has a
Taylor expansion around T c

And using (7) we find that Qn(T) can be expressed as

where GQ is a scaling function which is regular around
Tc. It is interesting to notice that, usually, the func-
tions FQ and GQ depend not only on the physical
quantity Q but also on the boundary conditions of
the finite system [19]. Recently dos Santos and Stinch-
combe [25] have also extended the ideas of finite-size
scaling to cases where there are more than one para-
meter.

At this stage, we see that finite-size scaling gives us
many possibilities to calculate the critical properties
of a given model. According to what is known on the
problem, to the accuracy one can reach in the calcu-
lation of Qn(T ), to the available computer time, etc.,
one chooses one of these possibilities. We recall now
what are the usual methods using the finite-size

scaling.
A first method [1] (that we shall use in this paper)

is the phenomenological renormalization. Let us recall
briefly its principle. One starts by calculating the cor-
relation length çn(T) for strips of width n using a
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transfer matrix. Then one writes the fundamental

equation of the PR method .

The main hypothesis of the PR method is to assume
that the relation (10) between T and T’ depends only
on the ratio n/m. Therefore one has

To justify this relation, one could argue that the strip
of width n at temperature T is related by a scaling
transformation to a strip of width m at temperature T’.
This transformation is a contraction of ratio n/m of
the width of the strip and of the correlation length Çn
which is the characteristic length along the strip.
However it is easy to show that (11) is a direct

consequence of the finite-size scaling hypothesis (1).
Consider two temperatures T and T’ such that

For any choice of the scaling factor A, equation (12)
gives us a relation between T and T’. Using expression
(1) we can write the ratio Q,,(T)IQ,,,(T’) as

By choosing A = n/m, the function FQ is eliminated
in (13) because its two arguments are identical.
Therefore one has in this case

By applying this result to the correlation length itself
one, recovers (11)

The simplest way to calculate T,,(n, m) using the
PR method is to solve the following equation :

Once Tc(n, m) is known, one can easily calculate
the critical exponents from equation (14). For example
v is given by

In some cases [16, 21], the simplest quantity Q to
calculate is not the correlation length ç. Using rela-
tion (5), one can find Tc and the ratio (olv by searching
the temperature where 6n behaves as a power law
of n. One chooses three widths n, rn and p and one
calculates Tc(n, m, p) as the solution of

Once Tc(n, m, p) is known, the ratio o)/v is easily
obtained by

Of course, one can use again equation (19) by replacing
Q by Q(P) and a) by a) + p. Thus one can calculate
wand v.

Another method consists in using equation (9).
One calculates Qn(T) for several sizes n. Then one
tries to determine what is the best choice of to, v

and Tc which allows to superpose the curves

N-WIV Qn(1) as a function of n’lv(T - TJ. This

approach is more suitable to study disordered sys-
tems (random magnets, localization [22]...). In these
problems, the calculated quantities Qn(T) are obtained
by products of random matrices and therefore affected
by statistical errors which do not allow to use for-
mulae (17) or (19).
Of course the main difficulty is that the finite-size

scaling is valid only for large n and that the numerical
calculations can be done only for small n. Therefore
the corrections to finite-size scaling cannot be

neglected In section 4 we shall show that reasonable
assumptions on the corrections to finite-size scaling
allow to give rather accurate predictions for the
critical points and the critical exponents.

3. Application to percolation. - In this section we
present the results we have obtained for the two
dimensional percolation. We calculated the correlation
lengths of strips as function of the probability p of
present bonds or sites in the same way as in refe-
rence [7]. We chose two kinds of boundary conditions
in the direction perpendicular to the strip : the periodic
boundary conditions and the helical boundary condi-
tions [9]. In the case of periodic boundary conditions
a strip of width n means that a site can be labelled by
two integers (i, j) with - oo  i  + oo and
1  i  n and that the four neighbours of this site
are (i ± 1,j) and (I, j + 1 + kn) [where k is the

integer such that 1  j + 1 + kn  n]. In the case
of helical boundary conditions, a site can be labelled
by a single integer i ( - oo  i  + oo) and its
four nearest neighbours are the sites i + 1 and

I + n.
The most difficult part of the calculation was the

construction of the transfer matrix for large widths.
We used a construction similar to the one described
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Table I. - Results of the phenomenological renormalization for site percolation. We have calculated the cor-
relation lengths Çn with two kinds of boundary conditions on the strips : periodic boundary conditions and helical
boundary conditions. For each choice of n and m, the estimations of Pc and v were obtained from equations (16)
and (17). The extrapolations were done by assuming a power law convergence (n-X). The results are in good agree-
ment with previous works : [a] = Ref. [26], [b] = Ref. [13], [c] = Ref. [16]. 

Table II. - The same as table I for bond percolation.
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in reference [16] for the Potts model. The only diffe-
rence is that the configurations of connected sites
are not exactly the same because we calculate here
the correlation length instead of the free energy.
Once the transfer matrix is constructed, the largest
eifenvalie [7, 27] which gives the correlation length
can be easily obtained by multiplying the transfer
matrix. The estimations of Pc and v given in tables I
and II were then found by solving equation (16)
and from equation (17) for several choices of n and m.
As we shall discuss it in section 4, the best choice for
n and m is m = n - 1 and n as large as possible.
For site percolation (Table I) as well as for bond

percolation (Table II) the values found for Pc or v
are close to their expected values. The convergence
is often regular and this will allow us to give extra-
polated values with small confidence intervals. How-
ever in some cases the convergence is not monotonic

(Pc for site percolation with periodic boundary
conditions or v for bond percolation with helical

boundary conditions). In the next section, we explain
the extrapolation method we have used.

4. Extrapolation. - The convergence law of the
results of the PR method is related to the corrections
to the finite-size scaling. As we saw it in section 2,
at the critical temperature, the correlation length is
linear in n( çn(T c) ’" n) and its derivatives are power
laws. By analogy with the Ising model (see the appen-
dix A), it seems reasonable to assume that the cor-
rections to the finite-size scaling are power laws

(we even assume that it is the same power law for
the correlation length and its first derivatives)

For large n and m, the estimation Tc(n, m) which
can be found by solving equation (16) is :

Using this estimation Tc(n, m), one can calculate
the estimation v(n, m) from equation (17)

The formulae (21 ) and (22) give the relation between
the corrections to finite-size scaling and the results
of the PR method. For a given width n, it is easy to

show that the convergence is improved by choosing
m = n - 1. For this choice one finds that

The extrapolated values given in tables I and II
were obtained by assuming a power law convergence
like in reference [4]. We have plotted

as a function of log n for several choices of T. The
extrapolated value and the confidence intervals were
obtained by looking for the values of T for which the
curvature was small. In several cases the convergence
was monotonic and using this procedure, we could
find the extrapolated values, the confidence intervals
and the exponent x of the power law convergence.
In other cases (pc for site percolation with periodic
boundary conditions or v for bond percolation
with helical boundary conditions) the convergence
was not monotonic and we could not find a simple
method of extrapolating our results. This non mono-
tonic convergence is probably due to higher order
corrections to the finite-size scaling.
The coefficients Ao, Bo, Co... have probably a

physical interpretation. For the X Y model in 2 dimen-
sion, it has been shown [22, 28] that A o was related
to the critical exponent at least at low temperature

This relation- remains probably true for several

isotropic systems in dimension 2. For the Ising
model q = 1/4 and Ao == 4/n (appendix A). From
references [13] and [29], the conjectured prediction
of q for the q state Potts model (q  4) is

For bond percolation on strips with periodic boun-
dary conditions we have calculated the correlation
lengths at p = 1/2. We found the linear behaviour
of çn(1/2) and an estimation of A o :

This estimation is in good agreement with relation (24)
(1/n i = 1.527 9). It is possible that (24) remains
true for a large class of 2d isotropic models [30].

5. Application to lattice animals. - The problem of
lattice animals [31, 32] lies between percolation
and self avoiding walks. One considers s connected
sites on a given lattice. One expects that the number
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Table III. - Results of the phenomenological renormalization for lattice animals. They agree well with previous
calculations : [a] = Ref. [35], [b] = Ref. [36], [c] = Ref. [31], [d] = Ref. [33], [e] = Ref. [37], [f] = Ref. [38].

JY’S of different configurations of these s connected
sites behaves for large s like :

where p is a constant which depends on the details
of the lattice and 0 is a universal exponent which
depends only on the dimension d of space. The average
size R of these configurations is related to the number
of sites s by another universal exponent v

Recently Parisi and Sourlas [33] have shown that 0

and v in dimension d are not independent v = 0-ip d-2
and are related to the exponent of the Lee and Yang
singularity in dimension d - 2. However their relation
is useless to calculate the exponent v in dimension 2.
We have calculated this exponent v by the PR

method To do so it is necessary to define a correlation

length for the lattice animals problem. The simplest
way is to consider generating functions. If JY’S(o, R)
is the number of animals of s sites which occupy
both sites 0 and R, one can define the generating
function GOR(X) of these numbers :

The parameter x plays the same role as the probability
p in percolation problems or the temperature T in
spin problems. Its critical value Xc is equal to 1l-1.
By analogy with critical phenomena, the function
GopM behaves as a correlation function for x  Xc

It can be shown that

and

where 0 and v are defined by equations (27) and (28).
By applying to lattice animals the ideas yet develop-

ed for percolation [7], self avoiding walks [8, 34] and
the Potts model [16], we have calculated the corre-
lation length çn(x) for lattice animals on strips of
width n (appendix B).

Using these correlation lengths çn(x), we have
calculated the estimations

for several choices of n and for periodic and helical
boundary conditions (Table III). The extrapolation
was done in the same way as explained in section 4.
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Here again we could not extrapolate our results
when the convergence was not monotonic (xc for

periodic boundary conditions, v for helical boundary
conditions). Our results are in good agreement
with previous works [31, 33, 35, 36, 37]. Even when the
convergence is not monotonic, the estimations are
very close to the extrapolated values that we give.

6. Conclusion. - We have reported here the results
of our calculations on 2d percolation and 2d lattice
animals using the phenomenological renormalization.
The method works very well for both problems and
leads to accurate predictions on the critical point
and the exponent v.

We think that the PR is a simple method to study
a large class of models in statistical mechanics.
Its main advantages are that :

. Only one parameter is renormalized;

. It gives satisfactory results with reasonable

calculations;
o The results are usually improved by increasing

the width of strips and the convergence seems to be
rather rapid (a power law);
* For each width the estimations are obtained

without error bars and for this reason it is easier to
estimate the confidence intervals on the extrapolated
values;

9 In principle, the method can be applied to models
(like for example frustrated models) where the order
parameter is not known a priori. The reason is that
the correlation length can be calculated from the
two largest eigenvalues of the transfer matrix without
knowing what correlation function decreases with
this correlation length
However the method presents some difficulties.

In particular it is hard to study models in dimension 3
because the size of the transfer matrices becomes too

large. Moreover, the sequence of calculated values
has sometimes a non-monotonic convergence and
does not allow to extract accurate estimations.
We must emphasize that these problems of conver-
gence can be completely masked in Monte Carlo
simulations by statistical errors.
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Appendix A. - In this appendix we give the analytic
expression of the large n expansion of the correlation
length and of its first derivatives at T,, for strips of
Ising spins with periodic boundary conditions. The
corrections to finite-size scaling are power laws
and it is possible to calculate analytically the conver-
gence law of K(n, m) and v(n, m).
The correlation lengths for strips of width n with

periodic boundary conditions are known exactly

(they are recalled in reference [1]). If the nearest

neighbour interaction is K :

then the correlation length çn(K) is given by

where the yr are given by

The critical value K, is known :

From (A. 2) and (A. 3), one can find for the Ising
model the values of A o, A,, Bo, BI, Co and a of equa-
tion (20) :

Then from equations (21) and (22), one finds that :

where A = n/m. One can notice that one can mini-
mize these corrections by choosing A as close as

possible to 1, i.e. n = m - 1.

Appendix B. - In this appendix, we give as an
example the transfer matrix for site percolation
and lattice animals on a strip of width 4 with periodic
boundary conditions.

TRANSFER MATRIX FOR SITE PERCOLATION. - One
consider a strip of 4 lines with periodic boundary
conditions. We call p the , probability that a site is

occupied and q = 1 - p the probability that a site
is empty. The probability PN(p) that the first and
the Nth column are connected decreases expo-

nentially
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Fig. 1. - The 6 configurations of a strip of width n = 4
with periodic boundary conditions, for site percolation.
We call a site connected if it has been connected to column 1

by the portion of the strip included between column 1 and
column N.

To calculate the correlation length ç(p) we follow the
same method as in reference [7]. First we have to list all
the possible configurations at column N (see Fig. 1).
Due to the periodic boundary conditions, it remains

only 6 configurations. Then we have to relate the
probabilities AN, BN, CN, DN, EN, FN of these configu-
rations at column N to their probabilities at column
N + 1

If Å,1 (p) is the largest eigenvalue of this matrix, it is
clear that each of these probabilities behaves like

[Al(p)]’ for large N. Therefore one has

TRANSFER MATRIX FOR SITE LATTICE ANIMALS. - For

percolation, the important quantity was the probabi-
lity PN(p) that the column N is connected to column 1.
For lattice animals, the important quantity is GN(x)

where J1f S(l, N) is the number of animals of s sites
connecting column 1 to column N. As in percolation,
we have to list all the possible configurations at

column N. We find exactly the same configurations
as in percolation (Fig. 1). Each configuration cor-
responds to a part of sum (B. 4). Configuration A
corresponds to the sum AN over all the animals
which connect columns 1 and N and occupy the 4 sites
of column N; configuration E corresponds to the
sum EN over all the animals which connect columns 1
and N and occupy 2 sites of column N (one of these 2
sites has not been connected to column 1 by the
portion of strip included between columns 1 and N).
As in percolation, it is easy to write the linear relations
between 

,

and

Here again, for large N, GN(x) behaves like [A,(x) N
where Al(x) is the largest eigenvalue of this matrix.
Therefore the correlation length ç(x) can be calculated
by

We see the resemblance between the transfer matrix

(B. 2) for percolation and the transfer matrix (B. 5) for
lattice animals. The only difference, at first sight, is
that p is replaced by x and q by 1. However the fact
that the s sites of an animal are connected imposed
constraints. This can be seen by comparing the coeffi-
cients of EN in the two matrices. The site of configu-
ration E which is occupied but not connected plays
no role in percolation. On the contrary, for lattice
animals, this site must be connected by the portion of
the strip which follows the column N. This is why
configuration E at column N cannot be followed by
configuration F at column N + 1 because this site
would never be connected
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