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Résumé. 2014 Pour des barreaux de taille n x n x L, avec L ~ n et n ~ 18, nous calculons la conduc-
tivité d’un réseau aléatoire de conducteurs et d’isolants. Au seuil de percolation sur un réseau cubique
simple, nos résultats Monte Carlo donnent une conductivité qui décroît comme n-2,1 quand la
largeur n du barreau augmente pour la percolation de sites et celle de liens. Quand on tient compte
des corrections au scaling avec un exposant de correction 03C9 d’ordre 1, notre meilleure estimation
pour l’exposant t de la conductivité est t/v = 2,2 ± 0,1 à la fois pour le cas des liens et celui des sites.
Ces résultats sont en accord avec la conjecture de Alexander-Orbach t/v ~ 2,26 pour l’exposant de
la conductivité en dimension 3. 

Abstract. 2014 For very long bars of size n x n x L, with L ~ n, and n up to 18, we calculate the
conductivity of a random network of resistors and insulators. At the percolation threshold in a simple
cubic lattice our Monte Carlo data give a conductivity decreasing with bar diameter n as n-2.1 for
site and bond percolation. Taking into account corrections to scaling with a correction exponent 03C9
near unity, our best estimate for the conductivity exponent t is t/v = 2.2 ± 0.1 in both the bond
and the site cases. These results strongly support the Alexander-Orbach [8] conjecture t/v ~ 2.26
for the conductivity exponent in three dimensions.
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The transfer matrix approach introduced by Nightingale [1] is one of the most accurate methods
for the numerical determination of critical exponents near second order phase transitions of
pure systems. It consists in exactly calculating the physical quantities on strips of finite width
and in using finite size scaling to extract critical exponents from these data. For almost all disorder-
ed systems, it is not possible to calculate exactly physical quantities on strips. However, by
constructing a very large strip with a Monte Carlo procedure, one can obtain the physical quan-
tities with sufficient accuracy to use finite size scaling. For the evaluation of the conductivity
in random resistor networks [2] at the percolation threshold this has been done recently in two
dimensions [3].
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Up to now, transfer matrix techniques, exact or by Monte Carlo simulation, were mostly
restricted to two dimensions; see [4-6] for three-dimensional work using this method. The present
paper generalizes the method of reference 3 to three dimensions, where contradictory values by
different Monte Carlo simulations were obtained in the past [2, 7]. A clarification is desirable in
order to check the conjecture of Alexander and Orbach [8] for the conductivity exponent; this
scaling law relates the conductivity exponent to other, better known, critical exponents of per-
colation.
Our method is a straightforward generalization to the three-dimensional case of the technique

of Derrida and Vannimenus [3]. We calculate the electrical current in a bond percolation problem,
with minor modifications for site percolation, on a simple cubic lattice of height m, depth n,
and length L &#x3E; n, m. Periodic boundary conditions are used in y-direction, see figure 1. Each
bond between nearest neighbours is randomly conducting with probability p ; otherwise it is
insulating. A unit voltage is applied between the top and the bottom planes, and the total current
is calculated. A very large L automatically averages over many configurations and leaves no
ambiguity over whether one should average the conductivity, the resistivity, or functions of
them. This effect is an advantage over the method to average over many disjointed cubes [7].

Fig. 1. - A bar of length L, height m and depth n. We calculate the conductivity between the two black
planes.

As in reference 3 we use a step-wise procedure to calculate the electrical current at every moment
of the simulation. If the bar has been constructed up to length L, the conductive properties of
this bar are represented by a matrix AL, see equation 1 of [3]. Then we add new bonds, conducting
or insulating, to construct the bar up to length L + 1. The matrix AL + 1 can be calculated from
the matrix AL and from the knowledge of the new bonds; see equation 12 of reference 3.

In comparison to other techniques [2, 7, 9] we think that our method has two advantages in
addition to the averaging problem mentioned above : first, in contrast to the usual Monte Carlo
evaluation of conductivities, no relaxation iteration is needed to find the solution of Kirchhoff s
equations ; instead these are solved exactly. Second, in contrast to Fogelholm’s and similar
methods [9], our method can be applied rather easily to dimensions d higher than two. The only
limitation besides computer time is that the number of elements in the matrix AL increases
like the square of nd-1, where n measures the linear extent in the transverse direction of the bar.
Our method can also be applied to cases where the probability distribution of resistors is more
complicated than the present two delta functions distribution. We performed our calculations
on a Cray 1 Computer for bond percolation and on a CDC Cyber 76 for site percolation.
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For bond percolation, one can choose between two possible geometries : geometry I with
m = n - 1 or geometry II with m = n (see Fig. 1). In geometry I, there are n - 1 sites and n
bonds in the z-direction whereas in geometry II, there are n sites and n + 1 bonds in the z-direc-
tion. Both geometries can be physically justified. Our first calculations on short bars gave a
smaller curvature of the results for geometry I and therefore we decided to restrict ourselves
to that case. On a Cray 1 Computer we needed all together about 2 1/2 hours of execution time
for the bond case.
For site percolation we chose the geometry n x n only. On a CDC Cyber 76 we needed less

than 0.04 seconds to add one plane for n = 15. (For both bond and site case the computer time
increased roughly as n4). For larger n, an auxiliary large core memory had to be used, increasing
appreciably the time to about 0.15 seconds per slice for n = 18.
A comparison of vector computers (Cray 1 for bond, CDC Cyber 205 for site) with a normal

« scalar» computer (Cyber 76) showed the vector computer to need about 30 % less execution
time if no major changes are made in the program. However we hope (J. G. Zabolitzky, private
communication) that the speed could be increased on vector computers by utilizing their special
features more efficiently.

All our calculations were made at or near the percolation threshold Pc which was taken as
0.249 2 from Wilke [13] for bond and as 0.3117 from Heermann and Stauffer [11] for site perco-
’lation, with error bars of the order of 0.000 2.

Our results for the conductivity Z~ (normalized to unity at p = 1) as a function of the linear
transverse dimension n (at p = 0.249 2 for bond percolation and at p = 0.3117 for site per-
colation) are summarized in table I and figure 2. A direct determination on figure 2 gives a slope

I

Table I. - Conductivity ~n (in units ofl0- 5) as a function of transverse size n for bond (at p = 0.249 2)
and site (atp = 0.3117) percolation. The length L of’the bar is indicated in parenthesis. We estimate
the errors to be of ’order of’several units of ’the last decimal.
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Fig. 2. - The log-log plot of the conductivity In versus transverse size n of a bar, at the percolation threshold.
The dots refer to site, the crosses to bond percolation. The data of bond percolation are fitted by a curve
with x = 2.23 and taking the amplitudes and cu of order unity (see Eq. 3).

x ~ 2.1 for both site and bond problems. The slope x is the asymptotic critical exponent, for
the conductivity at the percolation threshold

According to finite size scaling, x is related to the exponent t of the conductivity
(I~o(~) ~ (p - Pc}’) and to the exponent v of the correlation length (~) ~ I p - Pc y-v) by

We used a more sophisticated analysis to fit our data taking into account corrections to scaling.
We assumed a correction factor (1 + const n-W) with (J) between 0.5 and 2.0, a range of values
which seems possible for co. So we have for the conductivity

Theoretical arguments can be given that this corresponds to an irrelevant operator in the renor-
malization sense. (J) = 1.5 is the value predicted by Reeve [12]; see Adler [10] for a review of
corrections to scaling in percolation. As an example, we show in figure 2 our bond percolation
data with a fit for (J) = 1. It is satisfactory that the amplitudes a and b of equation 3 are both of
order unity. For this choice of co, we find good fits for x = 2.23 ± 0.1.
For our more accurate site conductivities, we made in addition a graphical analysis in figure 3,

giving results consistent with a numerical analysis as in the bond case. From consecutive values
of n we determine the effective exponent x = - d(log En)/d log n and plot this slope of the
log-log plot versus the reciprocal average value of n. The data follow well a straight line within
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Fig. 3. - Effective exponent tjv versus reciprocal dimension 1/n for site percolation at p = 0.3117. This
exponent is the negative slope of the curve shown by dots in figure 2. Three representative error bars are
shown. The intercept gives the asymptotic exponent if the correction exponent omega equals unity. The
solid line gives the best fit, the dashed lines plausible upper and lower limits. The letters K, AO and MG
refer to the previous estimates of Kirkpatrick [17), Alexander and Orbach (6], and Mitescu and Greene (7).
The inset shows the variation of the asymptotic exponent with an assumed omega value.

the statistical error, which means that one cannot see reliably from the data whether (J) is smaller
or larger than unity. We conclude from figure 3 :

is a realistic estimate. This estimate is entirely consistent with our bond analysis, as it should be
according to the universality hypothesis.

But errors larger than the one estimated in equation 4 may arise from the unknown value of ~.
If we increase cv from 0.5 to 1.5, the exponent x found as an intercept of a plot of effective exponents
versus n*~ is found to decrease from 2.5 to 2.05, as shown in the inset of figure 3. We obtain
the best fit at c~ ~ 0.9 but the correlation is not significantly worse in the whole interval considered
for o. Our table allows the reader to make his own analysis. Should later research fix ~ sufficiently
precisely (see for example reference 12~ one can read off from our graph the revised estimate
of tlv.
Another source for systematic errors is the inaccuracy in p~. From less complete simulations

at p = 0.310 7 and p = 0.312 7, we estimate tjv to decrease by about 0.04 if Pc is increased by
0.001 in the site case, a shift appreciably larger than the estimated errors in PC. A shift in the
same direction and of the same order of magnitude was obtained in the bond case. This error is
negligible compared with our statistical error.

Equation 4 means

(again assuming co near unity) for the conductivity itself when we take v = 0.88 ± 0.01 from
Heermann and Stauffer [11]. Again the error for v is negligible compared with our own statistical
errors and the inaccuracies in c~.
Our results should be compared with presumably less accurate estimate t ~ 1.65 from refe-

rences 2,17 and with tlv = 2.5 from reference 7. The scaling law [8,16] t/ v = 3 d/2 - 2 - P/2 v =
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2.5 - ~/2 v together with j8/v = 0.47 from reference 14 and j8/~ = 0.515 from reference 15
predicts t/v = 2.265 and t = 2.24 respectively, or t = 1.99 with an error of about 0.02 much
smaller than ours. Thus our result is in good agreement with the prediction of Alexander-Orbach.
It is also in good agreement with the series prediction t = 1.95 [18]. It agrees also with the recent
work of Sahimi et al. [ 19] who used finite size scaling and obtained t = 1.87 :t 0.04.

In this letter we presented results for periodic boundary conditions in three dimensions.
It would be interesting to apply the same method to free boundaries. Also one could use it in
four dimensions in order to test further the validity of the Alexander-Orbach scaling relationship.
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