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Collapse of branched polymers
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Résumé. 2014 En utilisant la méthode de la matrice de transfert, nous effectuons des calculs exacts sur des rubans
de largeur finie pour étudier le problème d’un animal avec une interaction attractive entre sites voisins. Nous
calculons des quantités thermodynamiques comme la chaleur spécifique, la compressibilité, le facteur de dilatation.
Le scaling sur la taille donne une estimation très précise de la ligne critique en utilisant deux largeurs. Avec trois
largeurs ou bien les deux valeurs propres les plus grandes de la matrice de transfert, nous présentons deux façons
d’obtenir le point tricritique et ses exposants. Nos estimations sont très stables quand la largeur augmente et nous
pouvons donner des prédictions assez précises. Enfin, notre modèle peut aussi être interprété comme un gel, dont
les paramètres sont la température et la pression, qui présente le phénomène de collapse bien connu expérimen-
talement.

Abstract. 2014 Exact calculations using transfer matrices on finite strips are performed to study the two-dimensional
problem of one lattice animal with an attractive nearest neighbour interaction. Thermodynamic quantities such as
specific heat, compressibility, thermal expansion are calculated. Finite size scaling with two strips of different
widths yields very accurate approximations of the critical line. Using three different strip widths or the two largest
eigenvalues of the transfer matrix, we present two ways of obtaining the tricritical point and its exponents. Our
estimations are quite stable when we increase the strip width and we can give rather accurate predictions. Lastly
our model can also be interpreted as a gel whose parameters are temperature and pressure showing the experimen-
tally known phenomenon of the collapse.
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1. Introduction.

The problem of a polymer chain collapsing at low
temperatures due to the competition between excluded
volume and attractive interactions of the monomers
of the chains and the corresponding tricritical point 0
have been studied for a long time theoretically [1-10,
16, 17, 38] and also experimentally [11-4]. The attrac-
tive forces are induced by interactions with the solvent.
In a poor solvent, the monomers of the chain avoid
contacts with the solvent and the attractive forces are

strong enough to make the chain collapse. On the
contrary, in a good solvent, the effective interactions
are mostly excluded volume ones. The tricritical

exponents at the collapse temperature 0 have been
determined by the Flory approximation which is

generally acknowledged to be rather good [15]. The
relationship [16, 17] between the collapse temperature
0 and the usual theta region (defined by the vanishing
of the second virial coefficient) is well establish-
ed [2, 18, 7].

Much less interest has been paid in the literature to
the collapse of branched polymers which is the subject
of this paper. By branched polymers, we mean poly-
mers that can have any geometrical configuration
including branches or loops, i.e. lattice animals [19].
Experimentally, branched polymers are best realized
in gels where indeed some time ago a collapse has been
found experimentally [20-21]. Theoretically, mean-
field type calculations have been performed [22-23]
recently. Flory arguments have been applied to

obtain the critical and the tricritical exponents of
branched polymers [24, 15]. But since the upper
critical dimension de = 8 and the upper tricritical

dimension dt = 6 for branched polymers [25] whereas
dc = 4 and dt = 3 for linear polymers, it is quite
possible that the Flory exponents are not as good in
the branched case as in the linear case in physical
dimensions. It is likely that, also in the branched case,
the collapse point coincides with the point where
the second virial coefficient vanishes (0 point) [26].
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We investigate two-dimensional branched poly-
mers, a case for which to our knowledge no experi-
ments exist so far but might be possible [27] (for linear
polymers two-dimensional experiments have been

performed [13-14]). We look at one single cluster of N
connected sites, i.e. one lattice site animal, on a square
lattice. Each pair of nearest neighbour sites has an
additional attractive energy and so the energy of the
whole lattice animal is just the number of all pairs
of nearest neighbours. As for the collapse of linear
chains, we are interested in studying the geometrical
and the thermal properties of an animal of N sites as a
function of temperature in the thermodynamic limit
N -+ oo.

All the thermal properties (free energy, energy,
specific heat) of an animal of N sites can be obtained
from the knowledge of the number Q(N, B ) of diffe-
rent configurations of an animal of N sites with B
pairs of nearest neighbours. In the thermodynamic
limit, it suffices to know the asymptotic behaviour
for large N and B of Q(N, B). If we introduce the gene-
rating function G(x, T) :

where y is related to the temperature T by

the thermal properties in the thermodynamic limit
are given by the critical point x(T) where the function
G(x, T) becomes singular with respect to x.

Indeed, if we define the partition function ZN of an
animal of N sites by

equation 1 can be rewritten as

Then the free energy f(T) per site in the animal is

given by

Equation 4 defines the quantity x(T). It is easy to see
that it is the radius of convergence of the series (3).
We shall see that at the tricritical point 0 the free

energy f (T) per site of the animal is singular.
The most important geometrical property is the

average size  R 2 &#x3E; of the animal. There are several
ways of defining R 2 &#x3E; (for example one can take
the radius of gyration) and all of them should give
the same exponents. For large N, at a given tempera-
ture, one expects the following critical behaviour of

the average size

At the collapse transition 0, one expects v to change :
above 0, the exponent v should take the value of usual
lattice animals [28] (v ~ 0.64 in d = 2); below 0, the
animal is collapsed (v = Ild = 1/2 here). Exactly at 0,
the exponent v takes a value vi that we shall calculate
in the present work. A simple quantity which contains
the geometrical information is goR(x, T) defined by

where rooR(N, B ) is the number of different configura-
tions of an animal of N sites and energy B which con-
nects the points 0 and R of the lattice. This additional
condition of connectivity is the only difference between
definitions (1) and (6). Like in the case of usual self-
avoiding walks or usual lattice animals [28], one can
show that, if x  x(T), goR decreases with R exponen-
tially. This defines a correlation length ç(x, T)

One can show that ç(x, T) diverges when x - i(T)
and the manner in which ç(x, T) diverges gives the
exponent v of equation 5

Thus we see that the thermal and the geometrical
properties of one lattice animal in the limit N --+ oo
are completely described by the neighbourhood of
the curve x(T). This does not mean that only this
region in the x - T plane is of physical interest. A gel
is a macromolecule characterized by the property
that it spans from one side of the recipient to the other.
In the present paper, we shall use strip geometries to
do our calculations. For such geometries, the lattice
is infinite in only one direction. One can then consider
that

is the grand canonical potential of a « weak » gel pro-
blem where the gel is constrained to be connected
from column 0 to column R of the strip. Parameters
at our disposal are the pressurep and the temperature T
and therefore it is not surprising if the whole plane x, T
has a physical meaning. « Weak » gel [23] means that
under the influence of temperature or pressure, the gel
can go over to any new configuration. Moreover, we
consider here a situation where the gel is constituted
by a single big molecule. In experiments on the con-
trary, gels are often « strong )) i.e. go only over to
topologically equivalent configurations because the
chemical binding energy is usually larger than ther-
mal energies. However, one can expect that our

model can be applied to explain experimental features.
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We note that there are other models for gels particu-
larly ones which include the simultaneous presence
of finite polymers (see Ref. 39 for several examples).

In section 2, we explain the ,transfer matrix tech-
nique for this problem. In section 3, we present ther-
modynamic quantities calculated with this technique
on strips of finite width. Section 4 is devoted to the n
to n - 1 renormalization which gives approximately
the line i(T) in d = 2 and estimations of the expo-
nent v. In section 5, we determine the tricritical point 0
and its exponents by two different methods, each of
them being applied to two different directions of the
strips. In section 6, we evaluate the thermodynamic
quantities at the collapse transition 0. Section 7 sum-
marizes our results. An appendix gives technical details
and an example of the calculation.

2. Transfer matrix for branched polymers.
We calculate exactly the correlation length çn(x, T)
defined in (7) on a n x oo strip by means of the transfer
matrix. The method to do so is very similar to the ones
which were used for studying other geometrical pro-
blems [28, 29, 30]. As usual, the transfer matrix method
consists in writing recursion relations between a strip
of length R and a strip of length R + 1. If we consider
a lattice animal on a strip which goes from left to right
and if we cut the strip at column R, the part of the
animal at the left of column R realizes a connectivity
configuration C of the sites of column R (see the
appendix for an example). Giving C is the same as
knowing the occupied sites of column R and how
these occupied sites are connected with each other by
the part of the strip at the left of R. Let us define goR(C)
by

where wOR(N, B, C) is the number of configurations
of the left part of the strip with N occupied sites and
energy B which connect column 0 to column R and
realize C in column R. By definition, the transfer
matrix M is the recursion relation between the 90R(C) :

Obviously, the first thing one must know is the size s
of the matrix, i.e. the number of different configura-
tions C. This is not a trivial task for connectivity
problems and except for narrow strips, one needs a
computer. We shall discuss a method to do that in the
appendix. Once s is known, one calculates M by

where t(C) is the number of occupied sites of C,
u(C, C’) is the number of nearest neighbour pairs
of occupied sites in C and between C and C’. The size
of the matrix can be strongly reduced by the use of

symmetry operations. An example is given in the

appendix.
As M does not depend on R, one can, once cons-

tructed M, calculate goR for very large R by iterat-
ing (11 ). If A is the largest eigenvalue of M (A is obvious-
ly positive since all the elements of M are &#x3E; 0), each
90R has the following behaviour

This means that for the strip of width n, the correlation
length çn(x, T) is given by

One should not be surprised that by (14) one relates
the correlation length to the largest eigenvalue of the
transfer matrix. This was also the case in other geo-
metrical problems [28]. There is always an additional
configuration Co which is empty and which can be
left out but would give an extra eigenvalue 1.
We can always calculate A with the accuracy we

want by sufficiently iterating the matrix M.
In this paper we will only consider the square lattice

but we will define two different types of strips on it :
one in the (1, 0) direction and one in the (l,1) direction.
We call the first one normal and the second one

diagonal (Fig. 1). The reason of studying at the same
time these two directions is that the results are much
more reliable when they are obtained in two different
ways. Let us mention that the diagonal strips were
already used in the study of directed percolation [31]
and directed animals [32].

3. Calculation of the thermodynamic properties on
strips.
In this section, we want to describe the properties of
one animal of N sites, in the limit N -+ oc, when this
animal is confined on a strip of finite width n. All those
properties can be obtained from the knowledge of the
largest eigenvalue A(x, T) of the transfer matrix.

Moreover, as explained in the introduction since
we are interested only in the limit N -+ oo, it is suffi-
cient to know A(x, T) in the neighbourhood of the
line xn(T) where the correlation length çn(x, T) defined
by (14) diverges.

Fig. 1. - (a) A normal strip of width n = 4; (b) a diagonal
strip of width n = 4. Periodic boundary conditions are
fulfilled if one identifies the two dashed lines.
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The eigenvalue A(x, T) or the correlation length
çn(x, T) are expressed as a function of temperature
T and of the parameter x which is conjugate to the
number of sites in the animal. It is not very hard to
come back to the variable N. First, as we saw in (4)
of the introduction the free energy fn(T) per site of
the animal in the limit N -+ oo is given by

where xn(T) is the smallest positive value of x for which

Therefore the energy en and the specific heat Cn are
given by

and

The figure 2 represents Cn as a function of temperature
for several strip widths.
One can also obtain the geometrical properties of an

animal very easily. This was done by Klein [33] in the
case of self avoiding walks. We have here exactly the
same expression. The average size R of an animal of N

Fig. 2. - Specific heat Cn against temperature for different
strip widths n ; (a) normal strip direction; (b) diagonal strip
direction.

sites on a strip of width n is given by

Since the strip is a one-dimensional lattice, it is not

surprising that R is proportional to N. On a strip the
exponent v is equal to one at any temperature. From
(19), one can calculate the density pn(T) of an animal
in the limit N --+ oo. Since there is an animal of N sites

(with the relation 19 between R and N) in a rectangle
of area Rn, the density is given by

Figure 3 gives p,, as a function of temperature for diffe-
rent n.

Fig. 3. - Density pn against temperature for different strip
widths n : (a) normal strip direction; (b) diagonal strip
direction.
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Another interesting quantity is the thermal expan-
sion an that we define by

(see Fig. 4). 
Let us now find the thermodynamic quantities in a

case of a weak gel.
As explained in the introduction, equation 9,

90R(x, T) also gives the grand canonical potential of a
weak gel. Since on a strip we have

the grand canonical potential # for a volume n x R
is given by

This means that, for a weak gel, for a given choice of x
and the temperature T the pressure is given by :

Fig. 4. - Thermal expansion an against trmperature for
different strip widths n : (a) normal strip direction; (b)
diagonal strip direction.

Then the free energy fgel per atom in the gel is given by

and the density Pgel is given by

One should note that in the case of a gel the whole
x-T plane is accessible, even the region where the
pressure p is negative which corresponds to a force
that swells the gel. One can also note that the condi-
tion (16) which gave us the properties of an animal
in the limit N ~ oo can be seen here as the condition
that the pressure vanishes. This is not surprising
because when we consider an animal, we do not
restrict it to a given volume and therefore p = 0.
In the case of weak gels, one can of course calculate
everything from equations 25 and 26 and distinguish
specific heats at constant pressure or constant volume.
From (26) one can calculate the compressibility xn

defined by

a

In figure 5 we represent the compressibility as a func-
tion of temperature for several strip widths at p = 0.
From figures 2 to 5 one can see strong evidence for a

phase transition between a good solvent phase (at
high temperatures) and a poor solvent phase (at low
temperatures).

In figures 2, 4 and 5, clearly a singularity is built up
with’increasing strip width n and the two dimensional
situation is apparently approached in a systematic
way. The approach seems to be more rapid for the
diagonal case but in means of numerical effort both
cases are about the same because one point of the
normal strip for n = 5 took about the same computer
time as one point of the diagonal strip for n = 4.
(See the table in the appendix.)

4. Two-strip renormalization, critical line.

In this section we will use usual phenomenological
renormalization [34, 35] to obtain the critical line

x(T). If we consider our model at a fixed temperature
T and vary the fugacity x we will have a transition at
x(T) where the correlation length ç(x, T) diverges.
For T = oo the transition is identical to that of

usual lattice animals [28] and is thus of second order
with an exponent v x 0.64 for the correlation length.
At low temperatures one expects v to be equal 1/J =
1/2.
We first make the usual assumption of the pheno-

menological renormalization that
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Fig. 5. - Compressibility kn against temperature for diffe-
rent strip widths n : (a) normal strip direction; (b) diagonal
strip direction.

holds for the correlation length Çn of the strip of width
n [28] defined by (14). Applying (28) to two strips of
width n and n - 1 and fixed T we obtain for each n an
estimate for the critical line shown in figure 6 for the
normal and the diagonal case. One sees for increasing
n a good convergence at all temperatures. This conver-
gence is extremely rapid at low temperatures.
With the two-strip renormalization one can also

calculate the exponent v by looking at the derivative ç’
of the correlation length with respect to x [28] :

This vn is presented in figure 7 as a function of tempera-
ture for the normal and the diagonal case. At low

Fig. 6. - Value x(T) at which the correlation length
diverges against temperature obtained from a n to n - 1
renormalization for different pairs of values n, n - 1. (a)
Normal strip direction; (b) diagonal strip direction. In the
terminology of gels this is the x-T phase diagram. Note
that for n &#x3E; 5 in the normal case and for n &#x3E; 4 in the dia-
gonal case the lines are so close that they can not be distin-
guished in the plot.

temperatures one clearly obtains the exponent 1/d
and at high temperatures the lattice animal exponent
is asymptotically approached for increasing n. One
should note that for increasing n, v is more and more
constant in the high temperature phase and in the low
temperature phase.

At about T = 0.535 there seems to be a point where
all curves cross with a value of the exponent of about
v ~ 0.512. On the high temperature side of 0 the
exponent increases sharply to a value which in the
large n limit might saturate to about v ~ 0.75 before
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Fig. 7. - Exponent v of the correlation length against
temperature obtained from a n to n - 1 renormalization for

different pairs of values n, n - 1: (a) normal strip direction;
(b) diagonal strip direction. Note that all the lines cross
in one point at a temperature of about 0 = 0.535.

it goes down to the high temperature exponent
v ~ 0.64. The strong change of v around 0 indicates
that this is the theta region. We note that the value v
at which all the curves cross and the maximum value
of v are close to the two tricritical exponents that we
will calculate in the next section.

In the language of the gel figure 6 represents the
phase diagram between a dense phase at the left
side and a swollen phase at the right side. The transi-
tion line (which is at the same time the isobar with
p = 0) has a first-order transition for low temperatures
which changes to a second-order transition if one goes
to high temperatures. This can be seen in figure 8
where the density is shown as a function of the fugacity

x at three different temperatures. For T = 0.25 one
already sees clearly a jump in the density for small n.
At T = 1.0 the change in density appears smooth
also for larger n. It should be noted that at low tempe-
ratures the correlation length diverges on the line x(T)
although the transition is first order. This is not a

priori evident but one can indeed test that the transi-
tion points extrapolated from figure 8 to large n also
agree for low temperatures with the transition line
obtained in figure 6.

5. Determination of the theta point and its exponents.
In this section we will present two different ways of
calculating a tricritical point with phenomenological
renormalization and apply them to find the collapse
temperature 0 of our model.

At a tricritical point we shall consider that the cor-
relation length scales [36] as

with two tricritical exponents v, and v2, a scaling
function F and the scaling fields :

In order to determine the fixed point (u, v) = (0, 0)
we need one more equation than in the critical case
(Eq. 28).

In the first method that we present we use three
different strip widths n, m and 1 and with the two

equations of the type (28) :

we obtain the tricritical values xt and 0. A three-width
method of this kind was also used in directed pro-
blems [31, 32]. To calculate the two tricritical exponents
one takes the derivatives of Çn

for the three strip widths and by eliminating the direc-
tional constants one obtains that both exponents are
solutions of an equation

I I I

The second method that we propose to localize
the tricritical point is to use also the second largest
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Fig. 8. - Density pn against the fugacity x for different strip widths n and different temperatures T : (a) T = 0.25, (b) T =
0.4, (c) T = 1.0. The strips are taken in normal direction.

eigenvalue of the symmetrized transfer matrix (see
the appendix).

With 5 we define a second correlation length

and use additionally to (28) the equation

to determine the two values xt and 0. The exponents
are in this case obtained by making for ( a scaling
assumption of the type of (30) with the same scaling
fields (31). Then taking the derivatives of ç and with
respect to x and T for two strip widths and eliminating
the directional constants one obtains that the expo-
nents are the two solutions of

with

In figure 9 we plot the values we obtain for 6n using
strip widths n, n - 1 and n - 2 in (32) or n and n - 1
in (28) and (36). The data of 0. are given in tables I
and II. Arbitrarily we plot the data versus I/n. We go
up to n = 10 for the normal case and up to n = 8
for the diagonal case. In the normal case the data do
not converge monotonically but all four curves seem
to converge to the same value. We extract a value of 0 :

Similar curves for the tricritical fugacity yield Xt =

Fig. 9. - Tricritical temperature 0 plotted against n-1 1
where n is the largest strip width used to obtain 0. We show
the values from a renormalization using three lengths n,
n - 1 and n - 2 for the normal strip direction (0) and
the diagonal strip direction (A) and the values from a n
to n - 1 renormalization using the two largest eigenvalues
of the transfer matrix for the normal strip direction ( x )
and the diagonal strip direction (0). Our prediction (39) is
indicated on the vertical axis.

0.023 0 + 0.000 4. In tables I and II we show our
results for the two tricritical exponents. In figure 10 we
plot them versus I/n. The plot for VI shows again some
non-monotonic curves.
We extrapolate :

and

Thus the crossover exponent is
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Table I. - Values for 0, v1 and v2 obtained from a renormalization using three different strip widths.

Table II. - Values for 0, Vt and V2 obtained from a n to n - 1 renormalization and using two eigenvalues of the
transfer matrix.

- Fig. 10. - Tricritical exponents vi (in a) and v2 (in b)
plotted against n-1, where n is the largest strip width used
in a calculation. We show the values obtained by renor-
malizing with three lengths n, n - 1 and n - 2 for the
normal (2022) and the diagonal (A) strip direction. We also
show the values obtained from a n to n - 1 renormalization’
using the two largest eigenvalues of the transfer matrix for
the normal ( x ) and the diagonal (0) strip direction.
Our predictions (40) and (41) are indicated on the vertical
axis.

The exponent v 1 gives the size ( R 2 ) of an animal
of N sites in the limit N --+ oo at the temperature 0

whereas the exponent v2 is the exponent of a thermal
length which diverges like (0 - T)- V2 and represents
the correlations of the thermal fluctuations.

6. Thermodynamic quantities at the theta point.
After having located the tricritical point we can go
back to the data presented in section 3 and analyse
them in the vicinity of the tricritical point. We will
only discuss here the finite size effects in the case of the
density p.
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Finite size scaling tells us that, for large widths n,
there exists a scaling function H such that [10]

1

Pn n2 vll = H[(T - 8) (Pn n2)-PJ . (43)

If we use the values of 8, v 1 and 0 that we have calculat-
ed in section 5 and plot the left-hand side of equa-
tion 43 against the argument of the function H we get
figure 11. We see that the points indeed lie more or less
on one curve, the function H. One sees in figure 11
some systematic deviations from this curve due to the
fact that n is small in our case but we believe that (43)
is valid in the asymptotic limit n -+ oo. Figure 11
confirms rather well the values of 0, v, and 0 obtained
in the previous section. This was not possible in the
Monte-Carlo calculations of reference 10 where the
authors had to choose a very different 0 to fit a curve
to (43) in the case of linear chains.

In principle, the knowledge [37] of the exponents v,
and V2 obtained in equations 40 and 41 allows us to
find the singular behaviour of quantities in the neigh-
bourhood of the tricritical point. For example, the
density p of the two-dimensional system vanishes in
the following way at T = 0

Thus the exponent of the density (2 - 1/vi ) v2 is of
order of 0.03 or 0.04. To obtain the exponent a of the
specific heat C per site in the animal, we can come
back to the scaling (Eq. 30) of the correlation length.

This scaling relation implies that, near the tricritical
point, the critical line x(T) of the two-dimensional
problem has the following singular part

Fig. 11. - Finite size scaling plot for the density p. We
plot p. n2 - l/Vl against  T - 0 I (pn2)t/I for different T and n
using 0 = 0.535, vl = 0.509 5 and 0 = 0.657. The points
lie on two curves the upper one is for T  0, the lower one
for T &#x3E; 0.

As z(T) gives the free energy per site (see Eq. 4), one
sees that the exponent a is given by

since one has

Relation 46 can be understood easily by writing

where d = 1/vl is the fractal dimension of the lattice
animal at the 0 point.

7. Summary and conclusions.

We have presented a model with two parameters,
temperature and fugacity, and applied to it the transfer
matrix technique on finite strips. This technique has
proven to be very powerful in two dimensions. We
have located the tricritical point and obtained its

exponents in two different ways. Physical quantities
like specific heat, thermal expansion and compressi-
bility were calculated. Different possibilities to phy-
sically interprete the generating function were propos-
ed.
For the collapse of a two-dimensional gel we have

found a region of first-order transitions and a region
of second-order transitions. The two regions are

separated by a tricritical point, which we may call a
theta point, with exponents v, = 0.509 5 ± 0.003 0
and -0 = 0.657 ± 0.025. These exponents are not in
agreement with recently found Flory-exponents v1 =
7/12 and 0 = 5/6 [15]. This is not surprising since the
upper tricritical dimension for this problem is dt = 6.
A three-dimensional calculation with the transfer

matrix method is much more difficult because of the
size of the transfer matrix. Therefore we encourage
experiments on the two-dimensional collapse of a
branched polymer to verify the qualitative features
of the model and the critical and tricritical exponents.
We hope to make the same calculations for the

collapse transition of a linear polymer in d = 2. Our
preliminary results show that there is an odd-even

imparity in the strip width n. However, we hope that
the methods used in section 5 will give accurate esti-
mates of the exponents, also for linear polymers.
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Appendix

CALCULATION OF THE TRANSFER MATRIX.

a) Set of configurations of a column. - As we want
to study the lattice animal of the n x oo strip by
looking only at one column to which the transfer
matrix is applied, the first step in the calculation of the
transfer matrix is to determine the set of possible
configurations of a column for each n.

First we note that each site of the column can be

occupied or empty and only the configuration with
all sites empty is not allowed because it would destroy
the end-to-end connectedness of the animal. In this

way we would have 2" - 1 configurations. But the
column that one considers must contain all the infor-
mation on the columns at its left, namely if two sites
in the column are separated they can nevertheless be
connected through these other columns or not. As an
example we show the configurations for n = 4 in
figure 12 and denote already connected sites (i.e.
occupied sites which are connected to the left part of
the strip) by the same symbol and not connected
sites (i.e. occupied sites which are not connected to the
left part of the strip) by different symbols.

Finally, as can also be seen in figure 12, the number
of configurations can be heavily reduced if one uses
the spatial symmetries of the system namely the
reflexion symmetry around the axis along the strip
and in the case of periodic boundaries which we consi-
der the rotational symmetry. To get all the s different
possible configurations (s = 6 for n = 4) is, after
all these considerations, not a trivial task.
We obtain all the configurations by the following

algorithm with the computer :
1. begin with a configuration which is for sure

present, e.g. all sites occupied;
2. put on this configuration C1 all possible 2" - 1

occupied-empty configurations Fi and determine their
connectivity properties due to the fact that Fi follows
C1, i.e. determine in figure 12 how to put the symbols
(8, x, etc.). Configurations that would leave an isolated
cluster behind or destroy the connection to infinity
are thrown away;

3. symmetrize the Fi (taking into account the

connectivity properties). For this symmetrization one
must define in a unique way which of two configura-

Fig. 12. - The six different configurations that can occur
in a strip of width n = 4. Occupied and connected site :
e, occupied and not connected site : x, empty site : 0.

tions identical by a symmetry one prefers for a final
description of the set of configurations as that of
figure 12. Many equally effective definitions are

possible;
4. look if the final result of the symmetrization

procedure is already one of the configurations Cj ; if
not, define it as a new element in the set { Cj } ;

5. repeat 2.-4. by putting the 2" - 1 configurations
Fi on Cj for j &#x3E; 1 until one has done it for all the Cj
that one has created.

One sees that the above algorithm automatically
is exhausted if one has found all the s configurations
Cj.
b) Construction of the transfer matrix. - The algo-
rithm presented for the construction of all the confi-
gurations of a column has the advantage that one can
with it simultaneously construct the transfer matrix.
One considers in step 2 of the algorithm the Fi that
one puts on the Cj to be the configurations of the
(R + 1 )th column put on the Rth column and one
calculates the contribution this has for the transfer
matrix. These contributions to each matrix element are
summed up.

Figure 12 gives the only six configurations A, B, C,
D, E and F which can occur on a strip of width 4. For
configuration A of figure 12 let us denote by AR the
9oR(A) defined in (10) of section 2. AR is therefore the
generating function of all the animals which realize
configuration A at column R. BRI CR, ..., FR are
defined analogously for configurations B, C, ..., F
of figure 12. The recurrence relations between AR,
BR, ..., FR and AR + 1, BR + 1 . ", FR + 1 are :
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Table A.I. - The sizes of the transfer matrices for
normal strips and diagonal strips as a function of the
strip width n.

Note that for instance configuration F on E gives no
contribution because otherwise the unconnected site
of E would remain unconnected. Details like this must
be taken into account in step 2 of the algorithm.
We see that, after we have gone through the algo-

rithm, the transfer matrix is constructed.

c) Sizes of transfer matrices. - The main numerical
limitation with the transfer matrix method is that the
size of the matrix increases rapidly with the width
n of the strip. In table A. I, we give the sizes s of the
transfer matrices once we have used all the symmetries.
Note added in proof : A. Coniglio has obtained in the

context of the Potts Model results on a model similar
to ours. By a Migdal Kadanoff renormalization which
usually does flout give very accurate exponents, he finds
a value of vi very close to ours but a much higher value
of V2- 
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