
PHYSICS REPORTS (Review Section of Physics Letters) 103, Nos. 1-4 (1984) 29-39. North-Holland, Amsterdam 

Can Disorder Induce Several Phase Transitions? 
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Abstract: 
A few examples of disordered systems are described and the problem of averaging over the disorder is discussed. In particular, it is explained 

why one should be careful in averaging correlation functions. It is shown that the different possible averages of the correlation functions are related 
to different physical quantities and therefore all these averages have a physical meaning. This implies that different physical quantities may be 
singular at different critical points. A few remarks are done on numerical studies of disordered systems. Lastly three examples are discussed for 
which different physical quantities have different critical points: the Ising chain in a random field, the random walk on a disordered chain, the 
self-avoiding walk on a dilute lattice. 

I. Introduction 

Most of the classical problems in Statistical Mechanics have their disordered analogues. There are 
usually several ways to introduce randomness. For example, the Ising model on a regular lattice 

= - ~ Jo-,o-j (1) 

can be transformed into a disordered system by considering that the interactions J between nearest 
neighbor sites are random quenched variables. This means that the Hamiltonian ~ of the system is 

= - E Ji, , j (2) 

and the Jv are random independent variables distributed according to a given distribution p(J~j). If one 
wants to study the physics of a diluted ferromagnet, then a possible choice for P(J~i) can be just 

P(Jv)  = P 8(J~j - J )  + (1 - p) 8(J~). (3) 

If one wants to study spin glasses where one knows that there exist competing interactions, the 
distribution p(Jij) must allow interactions Jv of opposite signs. For example 

O(Jij) = (l/2rr~r) 1/2 exp(-~j'/2cr2) • (4) 

Of course, these disordered Ising models can be easily generalized to become disordered Heisenberg 
models by replacing the Ising spins by n component vector spins. 

Besides disordered magnetic systems, there are several classical problems of statistical mechanics for 
which the effect of quenched impurities is interesting. For example, one can study how a random walk is 
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affected by the presence of fixed impurities which can be either attractive or repulsive for the random 
walk. One can study the properties of a random walk on a dilute lattice: in that case, one expects that 
the diffusion constant vanishes when the concentration approaches the percolation threshold Pc and that 
at pc the diffusion is anomalous. Another problem which is closely related is the problem of random 
resistor networks. One considers a bond percolation problem for which each occupied bond represents 
a resistor. For this problem, one would like to calculate the conductivity as a function of the 
concentration of bonds, in particular the critical behavior of this conductivity near the percolation 
threshold. Lastly a problem which will be discussed at the end of this talk is the self-avoiding walk 
(SAW) on a dilute lattice. This example is of particular interest because it is one of the most evident 
cases where the problem of averaging over disorder is posed. One can find recent reviews on disordered 
systems in references [1] and [2]. 

The two following features are common to all the examples described here and to most of the 
problems studied in the theory of disordered systems: 

(1) The disorder is quenched: this means that the impurities (for example the interactions Jq) have 
their positions fixed. 

(2) The second important feature is that although the systems are inhomogeneous at a microscopic 
scale, they are homogeneous at a macroscopic scale. 

2. The average over disorder 

2.1. Free energy 

For a pure Ising model, one knows that once the partition function Z(fl) has been calculated as a 
function of temperature fl -- T -1 and also of the magnetic field, one can obtain all the physical quantities 
(the magnetization in (fl), the susceptibility X(fl), the specific heat C03), etc . . . .  ) by taking derivatives of 
Zt~). 

To study a disordered system like an Ising model with random interactions Jq (eq. (2)), one must take 
into account the fact that all physical quantities depend on the configuration ~ of the disorder, namely 
here of the realization of the bonds Jq. Therefore the partition function Z(fl, ~)  and all its derivatives 
rn(fl,~ ), X(fl, ~), C(fl, ~) etc . . . .  are functions of temperature but also of ~. Since each configuration 
has a probability distribution p(C¢), each physical quantity Q(fl, c~) has a probability distribution P(Q) 
given by: 

P(Q)  = ~'~ p (~ )  6[Q - Q(fl, c¢)]. (5) 
q¢ 

When the size of the system increases, one can prove in some cases or one hopes that the distribution 
P(Q) of a physical quantity Q becomes narrower and narrower. Therefore the only quantity which can 
be observed in the thermodynamic limit is the most probable value Om.p., the value around which most 
of the distribution is concentrated. 

For some quantities Q, Om.p. is very close to the average Q of Q and in the thermodynamic limit 
they become equal (fig. la) 

Om.p. = t~. (6) 
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Fig. 1. (a) The average 0 of a physical quantity is very close to its most probable value Om.p.. (b) () and Qm.p. are very different. 

For other quantities t) and Qm.p. are very different and they do not coincide at all in the thermodynamic 
limit (fig. lb) 

(~m.p. ~ 0 .  ( 7 )  

To illustrate the fact that Om.p. and () may be equal or very different in the thermodynamic limit, let 
us take the simple example of an Ising chain with random nearest neighbor interactions. The 
Hamiltonian is 

N 

= - E (8) 
i=1 

and the interactions J~ are assumed to be distributed according to a given distribution P(Ji). The 
partition function for a system of N + 1 spins can be easily calculated 

N 

Z = F[ c, (9) 
i=1 

and the ci are given by 

c, = 2 coshO3J~). (10) 

It is clear that the partition function is a product of independent random variables. Therefore, for large 
N, the distribution of Z is a log-normal distribution peaked around Zm.p. which is very different from Z: 

Zm.p. = exp[Nlog cl] (11) 

2 = exp N[log(c,)] (12) 

Zr..o. ¢ 2 .  (13) 

On the contrary the free energy F appears as a sum of independent random numbers and has a normal 
distribution for large N 

Fm.p.- P = - N T l o g  ci. (14) 
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So we see in this example that the partition function has the property of fig. lb, therefore 2 cannot be 
observed in the thermodynamic limit whereas the free energy is an example of the situation described in 
fig. la. 

It is not very difficult to show that, these two facts remain valid for magnetic models with random 
short ranged interactions. The idea of the proof is explained in fig. 2. A very large system of N sites can 
be decomposed into p subsystems of Nip sites, each of them being in a new random configuration. 
Therefore the free energy f per site in the large system can be written as: 

1 p f=pT'~=I[-T(PN) I°gZI]+B (15) 

where Z~ is the partition function of the ith subsystem and B is a surface term which vanishes in the 
thermodynamic limit. Therefore in general for random short-ranged interactions, the average of the free 
energy has a physical meaning because the free energy has a normal distribution whereas the partition 
function has a log-normal distribution. It follows that one can average all the derivatives of the free 
energy: energy, entropy, magnetization, susceptibility etc . . . .  

ZI Z2 

0 
x R 

x Zp 

Fig. 2. A very large system of N sites can be decomposed into p subsystems, log Z -  X~=l log Zi. In the thermodynamic limit one has to average 
log Z. To calculate the correlation function (O'0O'R) one can add two local fields h0 and hR. If one adds these two fields, the subsystem which contains 
0 and R plays a special role and is no longer identical to the other subsystems. Therefore one cannot average the free energy anymore in presence 
of these two local fields. 

2.2. Correlation functions 

Let us now discuss the case of correlation functions [3]. For the Ising chain defined in (8), it is also 
easy to obtain the correlation function for any choice of the J~: 

R - 1  

(~roO'R) = [-I tl (16) 
i=O 

with 

ti = tanh(Z/T).  (17) 

It is clear in this case that the correlation functions are products of random numbers. Therefore, for large R, 
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they have log-normal distributions like the partition function and then 

(troO'R)m.p. -~ (troO'R). (18) 

At first sight, this fact may look surprising since the correlation functions are derivatives of the free 
energy and we have seen that one can average the free energy as well as its derivatives. However to 
calculate ((toO'R), one can add to the Hamiltonian Y( magnetic fields on sites 0 and R. For this new 
Hamiltonian Y(' 

~'  = ~ + hoo'o + hRO'R (19) 

one cannot average the free energy anymore as explained in fig. 2. 
Both (O'otrR)m.p. and ((r00"R) have a physical interest: (trotrR)m.p. is the value of the correlation function 

which can be observed with the highest probability whereas (CrotrR) appears in the expression of the 
susceptibility 

,/' = ~ (O'oO'R) • (20) 
R 

For the random Ising chain defined by (8), one can define several correlation lengths. First the two 
lengths s%(T) and s¢l(T) defined by: 

(O-oO'R)m.p.- exp[R log tl] = exp - [R/Go(T)] for large R (21) 

((toO'R) = exp[R 1og(73] = e x p -  [R/~I(T)]. (22) 

More generally, one could introduce a correlation length sOp(T) for each moment of (O'oO'R): 

(O'00",~' = exp[R log(t¢)] = e x p -  [R/~p(T)]. (23) 

The fact that in general 

1/s¢2(T) > 2/sq(T) (24) 

means that for large R 

[(0toO'R) 2 -- ((OrOOrR))2]l/2/(OroO'R) >~ 1. (25) 

So it is very hard to measure numerically (O'oO'R) because of the large fluctuations of (o-oo-R). This 
difficulty is also present in Monte Carlo calculations of lattice gauge models (see the talk of G. Parisi 

[41). 

2.3. Several phase transitions 

For the random Ising chain, the ti defined by (17) are always less than 1. Therefore all the correlation 
lengths s%(T), sq (T) , . . . ,  sOp(T) never diverge at finite temperature. However, it is possible to exhibit 
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models for which these correlation lengths diverge at different temperatures. An example is the random 
cubic chain which was studied in collaboration with H.J. Hilhorst [3]. For this model, the correlation 
function (O'o" OR) is given exactly by 

R - 1  

(O'o" OR)= n I-I ~-i (26) 
i = 0  

where n is the number of components of the spins and ri is given by: 

sinh(nJJT) (27) 
ri cosh(nJJr)+ n -  1" 

For n < 1, one finds that s%(T) and sOl(T) diverge at two different temperatures To and 7"1. It turns out 
that To is the temperature where the zero field average free energy is singular whereas 7"1 is the 
temperature where the average susceptibility diverges. In the limit where the distribution of J~ becomes 
a delta function, i.e. one suppresses the disorder, the two temperatures To and 7'1 coincide. Therefore 
the difference between To and T1 is a pure effect of disorder. The cubic model, for n < 1, is not very 
satisfactory because it is not realistic. However it has the advantage of showing by simple calculations 
that different quantities may be singular at different temperatures. 

In the random Ising chain as well as in the random cubic chain, the correlation functions were always 
products of random numbers. For random magnets in higher dimension (d > 1), one can easily show that 
the first term in the high temperature expansion of (tro" OR) remains a product of random numbers when 
the sites 0 and R are along the same axis of the cubic lattice. It would be very interesting to know the effect of 
the next terms of the high temperature expansion and to see whether sCo(T) and ~a(T) could diverge at 
different temperatures or, even if they diverge at the same To, they could have different critical behaviors. 

For pure systems like the Ising model, one can use several ways to find the critical point: one can 
look for the point where the free energy is singular, or where the magnetization vanishes or where the 
susceptibility diverges etc . . . .  All these definitions give the same critical point. On the contrary, for 
disordered systems, there is no reason that all these definitions give the same critical point. Griffiths [5] 
has shown that for dilute systems, the free energy starts to be singular at the critical temperature of the 
corresponding pure system. Therefore, for dilute systems, it is clear that the magnetization does not 
appear at the point where the free energy is singular. 

At the end of this talk, I shall describe briefly a few examples of disordered systems where one can 
see several phase transitions. Before I do so, I would like to make a few remarks on the numerical 
calculations on disordered systems. 

3. Numerical approaches 

It has been shown in the talks on Monte Carlo calculations [6] for the 3d Ising model how one can 
use finite size scaling and Monte Carlo renormalization to obtain very accurate values of the critical 
point and of the exponents. In the case of disordered systems, any physical quantity Q has a statistical 
distribution PL(Q) for a finite system of linear size L. In principle, one should obtain these distributions 
for each L and then use a finite size scaling for these distributions PL(Q). In practice, it is hard to obtain 
the PL(Q) and usually one calculates numerically an average (~ of Q over the disorder (see [7] and 
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references therein). Then one uses the finite size scaling for 0.  This procedure is very reasonable when 
O -  Om.p.. However it is much less satisfactory in cases where (~ ¢ Om.p.. Moreover, if in some 
problems, there are several critical points, one where the correlation length diverges, another where the 
susceptibility diverges etc . . . .  , it is clear that the usual finite size scaling cannot work. 

There exists a way to avoid the difficulty due to the fact that the physical quantities O have a 
probability distribution PL(Q). One chooses as "the finite system of linear size L", a strip or a bar of 
width L but infinite in one direction. Because the strip is infinite in one direction, the distribution PL(O) 
is a delta function. Therefore, there is no average to take over disorder. This method has now been used 
to study several disordered systems (see the talk of J. Vannimenus [8] and references therein). 

4. Examples of disordered systems with several phase transitions 

We discuss now briefly a few examples where the effect of disorder is to induce several critical points. 

4.1. The Ising chain in a random field [9] 

The Hamiltonian ~ of an Ising chain in a random field is 

= - E E (28) 
i i 

where the fields hi are randomly distributed according to a given distribution iS(hi). One can show easily 
that 

lim 1. log Z = J + ~+ F(e) (29) 
N--,o~ N 

where 

1 N e 
F(e)= lim -=log[tr  I-[ (zile zi)l (30) 

N - ~ N  k i=1 

with zi = exp(-2hi) and e = e x p ( - 2 J ) .  

We are now going to study the behavior of F(e) in the limit e ~ 0. First, it is easy to see that 

F(O) = max(0, log zi). (31) 

Let us now look at the expansion of F(e) around e = 0. If we define F~(O) and F2(0) by 

F~(O)= dd-~2 ) ,2=o (32) 

F2(O) = dEF (33) 
d(e:): ~:=o 
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one finds that FI(0) is finite only if 

2 < 1 or z -1 < 1 (34) 

and/:1(0) diverges if 2 ~ 1- or Z -I "")  1-. Similarly F2(0) is finite only if 

z 2 < 1 or z -z < 1 (35) 
m 

and F2(0) diverges if z2-~ 1- or z - Z ~  1-. 
In other words, let us consider that the distribution p~(zl) of zl depends on a parameter )t: for 

example 

{px (z) = 2 if it < z < )t + ½ 
(36) 

pA (z) = 0 otherwise. 

Let us define )to the value of )t for which 

log z -- 0 (37) 

and )tp the values of )t for which 

z V = l .  (38) 

Then we have the following critical points: 
• F(0) is singular at ;to 
• /:1(0) is singular at )tl and A-1 and exists only if A E [)tl, )t-i] 
• F2(0) is singular at A2 and )t-2 and exists only if )t E [)tz, ) t - 2 ]  • 

So we see that depending on the quantity we look at: F(0), /:1(0) or F2(0), we observe different 
critical points. Of course, if the distribution px(z) becomes a delta function, i.e. we suppress the 
disorder, then all these points )t-2, )t-i, )to, )tl and )t2 become identical. 

4.2. Random walk on a disordered chain 

This example exhibits behaviors which are very similar to those of example 4.1. The problem has 
been studied in probability theory [10] and more recently by physicists [11], in particular in the context 
of 1/f noise [12]. The problem is defined by the following Master equation 

dPddt = Wn, n+lPn+ 1 + Wn,  n _ l P n _  1 - W n + i , n P  n - W n _ l , n P  n (39) 

where P,  is the probability for a particle to be on site n at time t and W,,,+I dt is the probability of 
jumping from site n + 1 to site n during the time dt. The W.,,+I are randomly distributed according to a 
given distribution. Moreover, one does not assume any symmetry and in general, one has 

W.,.+l W.+l... (40) 
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At time t, the different moments ix(t)), (xZ(t)) etc . . . .  of the position are defined by 

ix(t)) = ~ nP. ; (x2(/)) = ~'~ n2p.. (41) 
n n 

One can ask several questions: 
a. Where is the particle when t ~ oo? 
b. If the particle goes to infinity, what is its velocity V? 

V = lira ix(t)) (42) 
, - . •  t 

c. What is the diffusion constant D? 

D = lira (x2(t)) - ix(0) 2 (43) 
,_.~ 2t 

Each of these questions lead to define new critical points (or critical surfaces in the space of the 
distributions of the hopping rates W.,.+I). 

a. There is a critical point defined by: 

log(W.,.+l/W.+~,.) = O. (44) 

If log(W.,.+JW.+~,.) is negative (resp. positive) the particle will go to +oo (rep. -oo) when t--> oo. 
b. For the velocity, there are two critical points: 

(W.,.+I/W.+a,.) = 1 or  (Wn+l.JWn, n+l) = 1. (45) 

If W.,.+dW.+~,. < 1, the particle goes to +~  with a finite velocity: ix(t)) ~ Vt. If W.+I,./W.,.÷~ < 1, the 
particle goes to -oo with a finite velocity: ix(t))~ -Vt .  If W.,.+I/W.+~,. > 1 and W.+I,,JW.,.+~ > 1, the 
velocity vanishes. Then one has 

I(x(t))l ~ t I'l for large t (46) 

where the exponent a is less than 1 and is given by 

(W.,.+~/W.+I,.)" = 1. (47) 

c. There are also two critical points for the diffusion constant D:  

(Wn,n+l/Wn+l,n) 2= 1 or (Wn+l,n/Wn, n+l) 2= 1. (48) 

The diffusion constant D exists if (W.,.+d W.+~,.)2 < 1 or (W.+~,,J W.,.+a)2 < 1 and it diverges when one 
approaches the critical points. All these critical points are very similar to those of the previous example. 
Again, if we consider a distribution p^(W.,.+~) which depends on a parameter A, when A changes, one 
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crosses successive singularities: A2 and A-2 given by equations (48) for D, A1 and A_~ given by (45) for V, 
Ao given by (44) for the sign of (x(t)) in the limit t -*~.  

In higher dimension [13], several studies indicate that there does not remain several critical points. 

4.3. The self-avoiding walk on a dilute lattice 

The problem of self-avoiding walk (SAW) on a random lattice has been studied a lot recently [14]. 
The conclusions of the different authors disagree and some [15] of them claim that the problem is trivial 
because some averages are easy to perform. My opinion is that these simple averages do not solve 
completely the problem which remains open. 

For the SAW on a pure lattice, one of the first quantities which can be studied is the number ON of 
different SAW of N steps starting at a given point. For large N, the behavior of ON on a pure lattice is 

,ON ~ / - i N N  ~'-1 • (49) 

If one defines X(x) by 

x(x) = xNaN (50) 
N=I  

then X(X) has a power law singularity at the point xc = #-1: 

x(x) (xc- x) . (51) 

For the problem of a SAW on a dilute lattice, whose bonds are present with probability p, one should 
consider toN(0, c¢) the number of SAW of N steps starting from point 0 for a configuration ~ of the 
lattice. The number toN(0, ~) depends on 0 and ~ because the lattice is disordered. Since by definition 
of a SAW, the walk visits a given bond of the lattice at most once, it is easy to average toN(0, c¢) over 
disorder 

ton (0, ~g) = pNON. (52) 

One finds by looking at the numerical values of Pc and # on different lattices that there is a range of 
concentrations:/z-~< p < Pc where the lattice does not percolate but where ~ increases exponentially 
with N. This is due to the fact that toN(0, c¢) has very large fluctuations and has typical values very 
different from its average: 

toN(0, ¢ toN(0, (53) 

To have an idea of the typical values of toN(0, c¢) one could try to calculate log(1 + toN). One sees that 
X(x, O, c¢) defined by 

X(x, 0, ~ ) =  ~'~ xN toN(0, C~) (54) 
N 
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is very easy to average and has a very simple relation with X(x) of the pure lattice 

o,  = x x) . (55) 

There is a singularity at xc = # - 1 p - 1  and one sees no trace of the percolation threshold Pc in this 
quantity. I think that although ,~ has a simple expression where pc does not play any role, other 
quantities like the average size of the SAW or log(1 + oJN) should be singular at Pc. Unfortunately these 
averages are much more difficult to calculate. 
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