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Corrections to scaling and phenomenological renormalization
for 2-dimensional percolation and lattice animal problems
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Résumé. 2014 Nous continuons et améliorons l’approche par matrice de transfert de Derrida et de Seze en tenant
compte de deux manières différentes de la correction dominante. Nous obtenons pour le seuil de percolation de
site sur le réseau carré pc = 0,59274 ± 0,00010, pour l’exposant qui caractérise la taille des animaux 0,64075 ±
0,00015 et pour la fugacité critique 0,246150 ± 0,000010 sur le réseau carré et 0,192925 ± 0,000010 sur le réseau
triangulaire. Ces résultats sont en accord, et parfois plus précis, que les meilleures estimations connues.

Abstract 2014 We continue and improve the transfer matrix approach of Derrida and de Seze by incorporating
in two different ways the leading corrections to the asymptotic behaviour for wide strips. We find for the site perco-
lation threshold in the square lattice pc = 0.59274 ± 0.00010, for the radius exponent of lattice animals
0.64075 ± 0.00015, and for the inverse growth factor or critical fugacity 0.246150 ± 0.000010 in the square lattice
and 0.192925 ± 0.000010 in the triangular lattice. These results are consistent with, and sometimes more accurate
than, the best estimates published before.
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1. Introduction.

In the numerical analysis of critical phenomena one
may ask two types of questions : what are the best
results for a quantity which is not known exactly;
and what is the best method to evaluate this quantity.
The phenomenological renormalization or transfer
matrix approach has proven to be an accurate way of
calculating phase diagrams and critical exponents for
many two-dimensional models of statistical mecha-
nics [1-3J. It consists in calculating the physical proper-
ties (for example the correlation length Çn or the sus-
ceptibility xn) of a strip of width n with an arbitrarily
high accuracy using a transfer matrix technique.
Then from the knowledge of Çn or Xn one can estimate
the critical point 7B of the infinite lattice, or its critical
exponents v or y by assuming that Çn and xn asympto-
tically satisfy a finite-size scaling law :
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The usual way of calculating the critical tempera-
ture T, is to find the solution T(") of the fixed-point
equation :

Once T c (n) is known, one can estimate the critical
exponent v of the correlation length ç oc (T - Tc)-’
from the sequence v,, calculated by :

where the derivatives in (4) are calculated at T =
T n&#x3E;

Since the finite size scaling formula (1) is assumed
to be valid only for large n and small T - T cone
cannot expect equations (3, 4) to give the exact values
of T c and v. On the other handy the successive estimates
T(3n) and Vn will approach Tc and v ifn -+ 00.
For the few models which can be solved exactly,

like the two-dimensional Ising model or the
d-dimensional spherical model, the analytic expres-
sion for ’n is known for all n and one can study ana-
lytically how Tn) and Vn approach their limits Tc
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and v. For the two-dimensional Ising model one can
show [3] that T converges as n - 3 and vn as n - 2 for
large n.
For the models which have not been solved exactly

for arbitrary large n, the width n of the strips for which
Çn can be calculated is limited by the size of the transfer
matrix, which for an exact evaluation increases

exponentially with n. Presently available computers
thus typically reach a width of order ten for two-
dimensional geometric problems like self-avoiding
walks, percolation and lattice animals. Therefore one
is able to use equations (3, 4) only for n between 2 and
about 10 and ends up with a sequence of a few num-
bers that one would like to extrapolate to the limit
n -+ oo. The convergence is expected to be a power
law [3] due to corrections to scaling [4-6]. In the

present paper we describe two approaches to incor-
porate these correction terms in the phenomenolo-
gical renormalization and try to take into account
carefully these corrections to scaling effects. Our goal
is to obtain estimates as accurate as possible for the
critical point, and the critical exponents of two-
dimensional models : percolation and lattice animals.

2. Methods of extrapolation.

Derrida and de Seze looked at the whole sequence
of data vn and T c (n) and found which common correc-
tion exponent m in [3] :

Table I. - Percolation thresholds Pc or critical fugacities x,, exponents v and r¡, and matrix size S., obtained
from equations (3, 4), for a posteriori analysis, equation (7), of percolation and lattice animals. Minor inaccuracies
in ref. [3] are corrected.
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TABLE I (continued).

fits the whole sequence best. The procedure [3] was
the following : for example to estimate T c’ choose a
value of T c and plot log(T - TJ versus log n.

The value of Tc and the error bars were estimated by
looking at the range of Tc for which the curve has no
strong curvature.
The problem with this method is that it gives equal

importance to all sizes n instead of giving more weight
to the larger widths for which equations (5, 6) are
expected to be valid. Thus, following Herrmann and
Stauffer [5], we use here a modification where an
effective correction exponent (On is determined from
each triplet va _ 1, vn, Vn+ 1 of consecutive estimates for
v obtained by solving (3, 4) (with analogous methods
applied to the estimates T c (n))

With a programmable hand calculator one can easily
determine Wn from this non-linear equation, provided
n is large enough such that vn _ 1 - vn has the same
sign as and is larger than vn - V n + 1. Once Wn is

determined, one can fit a straight line exactly through
the plot of vn versus n using only the three points
n - l, n and n + 1. The intercept then gives another
and usually much better estimate for v ; but again this
estimate depends slightly on n. We will give below
our results calculated in this way from our « raw
data » in the table I.

This first method has the disadvantage that the
correction analysis for vn is completely decoupled
from that of T(n) ; thus the resulting estimates for the
correction exponents differ for vn and for Tc . In
reality, only one leading correction term is expected
to describe the asymptotic convergence. To avoid that
theoretical drawback we therefore developed a second
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method which incorporates the corrections from the
beginning instead of the above a posteriori method
This a posteriori method is in the same spirit as other
extrapolation techniques [15, 16] which have been
used to analyse the results of the phenomenological
renormalization. Even more accurate might be, at

least for some of our data, the Romberg type extrapo-
lation of Beleznay [ 17].
For this purpose we assume that instead of the

leading behaviour in equation (1) with correlation
length Çn simply proportional to n at T = 7;;, we
have :

In the same spirit as for our first method we allow
the correction exponent m in equation (8) to depend on
n in order to take into account the higher order correc-
tions neglected in equation (8). Since now m and T c
need to be calculated simultaneously, we need two
coupled equations to solve, based on four consecutive
strip widths :

Again, these two non-linear equations for w and
T c have a solution only for large enough n when the
initial fluctuations for small n have died out; and
again the resulting values co and T, depend slightly
on n. In our later figures we associate the results from
this a priori method of equation (9) with the average
index n - 1/2; therefore we gave no index to m and
T c in equation (9) since otherwise the notation would
be too complicated.
The main idea in this a priori method consists in

using from the beginning several strip widths to

determine the correction to scaling exponent co. This
idea has been already proposed by Barber [18] in the
study of the Ising model.

Before we present our results for these two methods,
the a posteriori equation (7) and the a priori equa-
tion (9), we shortly list the problems to which we
applied them.

3. The models,.

This paper considers in three different geometries two
models already studied by Derrida and de Seze [3] :
site percolation and lattice animals [13]. For site per-
colation, every lattice site is randomly occupied with
probability p, and clusters are groups of occupied

neighbouring sites. The probability that two sites at
distance r apart belong to the same cluster varies
asymptotically as exp(- r/ç), with the connectivity
length ( diverging as (Pc - p) - y if the concentration
approaches the percolation threshold Pc from below.
This threshold plays the role of T, and v is 4/3 in two
dimensions. The number gs of lattice animals is the
number of different cluster configurations one can
build with s sites constrained to form one cluster. The

generating function Es gs r diverges at some critical
point x = x, since gs increases exponentially with s :

Thus x, here plays the role of T c. The average radius
of gyration for the lattice animals increases for large
cluster size s as sv, which defines our correlation length
exponent, in analogy to self-avoiding walks and simi-
lar objects. In contrast to percolation, we may also
call 1 jv the fractal dimension for the lattice animals;
and no exact solution is known for any animal xr or v
in two-dimensions.
We looked at three geometries denoted by the

letters A, B and C here :

A) square lattice with transfer direction in the
direction of the axis.

B) square lattice with transfer direction in the

diagonal;
C) triangular lattice with transfer direction

following a lattice axis. In all cases, periodic boundary
conditions were imposed across the strips.
Our tables give the raw data used for the a posteriori

analysis as well as the end results of our a priori
analysis, as a function of strip width n. The n = 00
result for the a posteriori tables is our extrapolation
based on these data alone, or is the exactly known
result The ratio n/nçn gives asymptotically [7] the
exponent I = 2 - y/v in percolation; its significance
for lattice animals still needs to be clarified.
For example, the a posteriori evaluation of lattice

animals with geometry A up n = 11, used about one
hour on a Cray vector computer. Computer memory,
not time, was the limiting problem. Our computer
time is appreciably smaller than that used for a typical
Monte Carlo experiment with which will compare our
results. (In contrast to Monte Carlo studies, our

results cannot be improved by repeating the runs
since they are, we hope, exact and not based on ran-
dom processes). As usual in this type of studies as
well as in series expansions, most of the computer
time in each problem was spent on the largest width,
not on all smaller widths together.

4. Analysis.

The reader may use himself the data in our tables to
find out the desired critical points (Pc or x,, ,) and
exponents (v) for n = oo. We present in our figures
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Table II. - Extrapolated critical points and exponent from a priori analysis, equation (9). a, b and (JJ refer to
equation (8).

only those examples where the convergence was best,
ignoring those sequences with oscillations or extrema
even for large n. We found that none of three geome-
tries A, B and C is clearly preferable to the others in
all cases; nor did the new a priori method, equations (9),
necessarily give better or worse results than the more
conventional a posteriori analysis, equation (7).
For all figures, the symbols D, x and refer to

geometries A, B and C with the a priori analysis of
equation (9) and merely repeat the numbers given in
the appropriate table; for the a posteriori analysis
of the data given in the other tables we show our
results in the figures by the symbols 0" +, and A for
geometries A, B and C.

Figure 1 gives p. = 0.49999 (7) and 0.59274 (10)
for the percolation thresholds in the triangular and
square lattice, respectively. The number in parenthesis
gives our subjectively estimated error bars for the
last digit(s) shown, e.g. p, = 0.59274 ± 0.00010. Our
results are compatible with the exact Pc = 1/2 for
the triangular lattice and with the Monte Carlo esti-
mates 0.59270 (10) of Rapaport and 0.59277 (5)
Gebele [8]. If we would assume that the extrapolated
data for larger unknown n vary monotonically we
could make our error bars about half as large. It is quite

satisfactory that here as well as in our later examples
one has some data approaching the estimated limit
from above and others approaching it from below;
for any single set of data therefore we would be less
confident of our final estimate than from our combi-
nation of all suitable results.

Our data here and later are plotted versus n - 4
since this method gave smooth curves and a suitable

separation of data and limits. We do not assert to
have shown that the second correction term indeed
varies as n-4 asymptotically.
For the critical fugacities xc of lattice animals in the

triangular and square lattice, figure 2 suggests 0.192925
(10) and 0.246150 (10), the latter result being fully
comparable with 0.246148 (12) from direct animal
counts using ten months of PDP 11/70 computer
time [9], and five times more accurate than the identical
estimate from our earlier transfer matrix approach [3].
(No recent accurate determinations for the triangular
lattice are known to us.)

Figure 3 gives our nicest result, v = 0.64075 (15)
for the animal radius exponent, one of the most
accurate exponents ever determined numerically. The
data of our a posteriori analysis for geometry A show
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Fig. 1. - Results for the two-dimensional percolation
threshold. The intercepts here and in figures 2-4 give the
asymptotic results, as indicated by our error bars. The
symbols have the same meaning and are explained in the
text, for all 4 figures.

a minimum near n = 10. Our estimate agrees with [3]
but has half as large error bars.
The upper part of figure 3 shows that our a priori

estimates for the correction exponent (J) are orders of
magnitude worse than those for the leading quantities.
Nevertheless co = 1.8 ± 0.3 seems justified, con-

firming the less accurate analysis in reference [5] and
compatible with (D = 2 for percolation [10].
We were less lucky with the exactly known percola-

tion exponents v = 4/3 and il = 15/72 = 0.2083333.
For ’1 our data, as shown in figure 4, still vary quite
strongly with n and allow only the estimate 0.2088 (8),
whereas for v only one curve (geometry C, a posteriori
analysis) gave fair results near 1.334 for n near 6 to 9.

Finally, the quantity n/nçn approaches about 0.68
for lattice animals. Although this ratio seems univer-
sal [14] (see our tables for the three geometries) it is not
clear to us how it is related to the exponent q or to
other known exponents of lattice animals. We just
noticed empirically that 0.68 is very close to (1 - v/2).
Not shown in our figures are the tabulated results

for v, ai and b 1 determined a priori form differentiating
the correlation length :

Fig. 2. - Result for the critical point (fugacity, inverse
growth factor) for lattice animals in the triangular and
square lattice.

Fig. 3. - Results for the animal radius exponent (bottom)
and the percolation correction exponent (top).
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Fig. 4. - Results for the percolation exponent q = nln..

with parameters fitted from three consecutive values
for n. (For lattice animals, d/dp is replaced by d/dx,
of course). The derivative was obtained directly from
the transfer matrix, and not by inaccurate numerical
differentiation of Ijçn. The reader may check himself
that these independent data confirm the results in the
figure 3 for the animal v; similar results are obtained
if one diflerentiates g instead of Ijç (not shown).

5. Conclusion 

’

The present paper was concerned with both methods
and results. We feel that for a given amount of compu-
ter time the transfert matrix approach for our two-
dimensional geometric problems is presently superior
to series expansion and Monte Carlo simulation, as
far as accuracy is concerned. Its disadvantage is the
exponentially growing memory required (two matrices
of size Sn x Sn, with Sn listed is table I).
We have also shown that the a priori method of

incorporating corrections to scaling is a useful alter-
native, though not necessarily better, than the a pos-
teriori analysis; the combination of these two

approaches, equations (7, 9), gives more information
about possible systematic trends than each method
alone.
Our numerical results show that the error bars of

Table III. - Same as table II, but using equation (11).

earlier precision analyses [3, 8, 9] were reliable, with
our actual deviations always being smaller than the
earlier published error bar. We hope that the same
will be said later about the present estimates.
Our value for the animal length exponent,

v - 0.64075, confirms that, in contrast to three-

dimensions, the simple result v = 0.625 from a Flory-
type theory [1lJ is not correct; on the other hand our
rough analysis for the leading independent correction
exponent m is compatible with the theoretical possi-
bility co = 2 for two-dimensional percolation [10].
The present approach of exact transfer matrices

cannot be expected to work well in the three dimen-
sions when n2 is restricted to be about as large as n in
our present two-dimensional study and therefore
even n = 4 would be hard to reach. Instead, a combi-
nation of transfer matrix and Monte Carlo methods
seems useful for this case [12].
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