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Abstract. The generalised random energy model (GREM) is a spin-glass model which can 
be solved exactly. One can impose arbitrary pair correlations between the energies of 
configurations. For several examples (the Sherrington-Kirkpatrick model, the p spin-glass 
model, the Potts glass, spin-glass models on finite-dimensional lattices) we calculate the pair 
correlations between energies and solve the corresponding GREM. In all cases, the free energy 
of the GREM corresponding to a spin-glass model on a given lattice, has a simple expression 
in terms of the specific heat of the pure ferromagnetic model on  the same lattice. Lastly we 
compare the correlations between three energy levels in the GREM and in spin-glass models. 

1. Introduction 

In the last ten years, the mean-field theory of spin glasses has motivated a lot of work 
(Proc. Heidelberg Conference 1983, Chowdhury and Mookerjee 1984). The Sherring- 
ton-Kirkpatrick (SK) model (Sherrington and Kirkpatrick 1975, 1978) has been most 
studied and numerous approaches have been developed in order to solve it. Although a 
full analytic solution of the SK model does not exist at present, the most promising 
approach seems to be the one based on the idea of a broken symmetry in replica space 
(Parisi 1980a, b, c, Blandin et af 1980). There does not yet exist a mathematical theory 
which justifies these replica calculations. However, the Parisi approach led to important 
ideas in the mean-field theory of spin glasses: ultrametricity (Mezard er a1 1984) non- 
self-averaging effects (Mezard et af 1985), the probability distribution of overlaps (Parisi 
1983). Thus, it is important to know whether one can exhibit a model which would 
possess all of these features but which could be solved exactly without using replicas. 

The random energy model (REM), which is a spin-glass model simpler than the SK 
model, was introduced a few years ago (Derrida 1980). The REM is simple enough to be 
solved exactly without recourse to replicas. It nevertheless possesses some important 
effects which are observed in real spin glasses: a freezing temperature, a cusp in the 
magnetic susceptibility at the transition, a constant susceptibility in the spin-glass phase, 
the persistence of a transition in the presence of a magnetic field (Derrida 1981). 
Moreover, it was shown recently that features like ultrametricity (Gross and Mezard 
1984) or non-self-averaging effects were also present in the REM (Derrida and Toulouse 
1985) at least in embryo. 

The REM consists in considering that the energies of the spin configuration are 
independent random variables. This is a very drastic simplification since one knows that 
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in more realistic spin-glass models, these energies are strongly correlated (Derrida 1981). 
Thus it was interesting to see whether one could generalise the REM in order to study the 
effect of these correlations. It was shown recently that a generalised random energy 
model GREM (Derrida 1985) can be defined which possesses arbitrary pair correlations 
between the energies of the spin configurations. 

The purpose of this paper is first to give a general solution of the GREM. Then we 
shall consider several examples of spin-glass models (the SK model with Ising spins, with 
Potts spins, the p spin-glass models, spin-glass models on finite-dimensional lattices) and 
for each case we shall solve the GREM which possesses the same pair correlations between 
the energies of configurations. Lastly we shall compare the three energy correlations of 
some of these spin-glass models with those of the corresponding GREM. 

2. Definition of the generalised random energy model 

Let us recall in this section the definition of the GREM. The GREM can be defined in the 
following way: one considers a system which consists of 2Mconfigurations: configuration 
v has an energy E ,  (1 S v S 2”). These configurations are grouped according to a 
hierarchy of n levels. The 2,’ configurations are grouped into groups of ( a,)“ con- 
figurationseach: there are of course (2/a,)“such groups at the nth level of the hierarchy. 
At the next level (level n - l), one regroups these groups: each group at the (n - 1)st 
level contains (a,- 1)” groups at level n. Therefore at level IZ - 1 of the hierarchy, there 
are [ 2 / (  an- lan)]”groups of (a, - la,)’vconfigurations each. One can repeat this grouping 
procedure. At  the ith level, there are [2 / (a ,c~;+~.  . . an)]” groups of (aiai+l , , , aJN 
configurations each. Since altogether there are 2.’ levels, one must have, 

log a1 + log CY2 + . . . + log a, = log 2. (1) 
The numbers al, cy2 . . . a, are aprioriarbitrary numbers larger than one. In the thermo- 
dynamic limit (Nlarge) a.:, a? . . . a: are large and so can be taken as integers. 

One can see that the hierarchy constructed in this way has an obvious ultrametric 
structure (Mezard eta1 1984). One can choose apriori an arbitrary sequence qjof overlaps 
between configurations 

0 = q1 < q2 < q 3  < . . , < qj < . . . < qn+l = 1. ( 2 )  
The overlap q p ”  between two configurations p and v is by definition equal to q, if the 

two configurations p and v belong to the same group at the ith level of the hierarchy and 
belong to different groups at level i + 1. The minimal overlap between configurations is 
q1 and therefore we choose arbitrarily q1 = 0. The maximal overlap q n + l  is the overlap 
of a configuration with itself and therefore we choose q,+l = 1. The actual values of 
the q1 do not matter much (since one can always define different metrics which are 
equivalent). The only important aspect is that the sequence qi is an increasing function 
of i because this expresses the fact that the closer two configurations are, the larger their 
overlap is. 

Let us now say how the values of the 2.’ energies E ,  are chosen. By definition of the 
model, E ,  is the sum of n random numbers E \ ” )  

E ,  = E ! ” )  + E ! ” )  + . . . + E?)  (3) 
where E \ ” )  is a random number distributed according to a given probability distribution 
Pi* 
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p , ( E  I ) = ( J T N J ~  a , ) -1’2 exp ( - E! /NI’ a , ) . (4) 

E ! ~ )  is the contribution to E ,  coming from the ith level of the hierarchy. Note that the 
width a, of the distribution pl depends on i. By defintion of the model, two energies E, 
and E ,  which belong to the same group at the ith level of the hierarchy have the same E 

,for j s i - 1 but have different E] for j 3 i if they belong to different groups at the (i + 1) 
st level 

&!U) = & ( I o  f o r j s i - 1  

&,’,I # E(,’)  I  
(5) 

1 

for j 2 i. 

Another way of saying this is to say that equation (5) holds when 

q”” = 4 , .  (6) 
So two configurations which have all their E ,  different have an overlap q1 = 0. On the 
other hand two configurations which have all the E ,  equal are in fact the same con- 
figuration and have an overlap q , + l  = 1. When the E ) ” )  and are different, they are 
independent. Also E,’”) and E ~ V )  are always independent for i  # k .  

The model is defined once the two sequences a; and a, are given for 1 s i c n. To 
normalise the energies, we shall impose the condition 

n 

a,  = 1. 
, = I  

(7) 

We can now calculate the probability distribution of energy levels. Since E ,  is a sum of 
independent gaussian variables (see equations (3) ,  (4) and (7)) the probability dis- 
tribution P,(E,) is just 

P , ( E , )  = ( n N J 2 ) - 1 / 2  exp - ( E t / N J 2 ) .  (8) 
One can also calculate the probability distribution P I ,  ,(Ep, E,,) that two configurations 
U and v have energies E, and E,,. This probability distribution depends on the distance 
between configurations p and v in the hierarchy. One finds (Derrida 1985) 

- (- 2N(1 + v)J2 2N(1 - v)J2 
P , , , ( E U ,  E , )  = const. exp 

where U is given by 
1-1 

v = C a ,  
I =  1 

(9) 

and i is the highest level in the hierarchy for which configurations p and v belong to the 
same group (i.e. q,” = 4,). So v is a measure of the correlation between two con- 
figurations with overlap 4,. 

Given a configuration v ,  the number elvu of configurations p to which formulas (9) 
and (10) apply is just the number of configurations p which have an overlap = q, with 
configuration v 

e’” = [(a,).’ - ~ ] ( L Y , + ~  . . . mn) ‘ ’ .  (11) 
In the thermodynamic limit, (N-. x )  one has 

n 

u = log a,. 
/ = /  
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So we can see that by choosing the ai and ai properly one can produce any probability 
distribution Pp,  In the thermodynamic limit (AI+ m ) ,  one can have avery large number 
n of levels in the hierarchy. One quantity of interest in the GREM is the function g ( y )  
defined by (Parisi 1983, Mezard er a1 1984) 

g ( y )  is the characteristic function of the distribution of overlaps P(q) .  (The bars in 
equation (13) denote the average over disorder) 

We are not yet able to calculate g ( y )  for the GREM. Therefore in this paper we shall just 
say what w e s e c t  for its shape or more precisely for the shape of q ( x )  which is related 
as usual to P ( q )  by 

1 

1 - x = jq(x, dq '  p(q'). (15) 

3. Solution of the generalised random energy model 

For n = 1, the GREM reduces to the random energy model which can be solved exactly. 
For n = 2, the GREM has been solved (Derrida 1985) and one finds that it exhibits 
two phase transitions if (alllog e l )  > (a2/log a2) and one phase transition if 

One can easily generalise that solution for arbitrary n ,  a, and a,. The solution is 
described in the appendix. Let us just give here the result in two cases which will be of 
interest later. 

(a,/@ all < (a*/log 4. 

First, if the sequence ai/log ai is decreasing 

an > . . . > -  >- a2 a ,  
l o g a ,  loga2 1% a n  

and if we define the temperatures T, by 
T =!(!"-I 1 2  

' 2 log a, 

then the free energy in the thermodynamic limit (N+ x )  is given by: 

i f T >  T ,  

1- 
- log Z = log 2 + J 2 / 4 T 2  
N 

if T I >  T >  T I + ,  
n I 

1- 
-log Z = (log a, + a , J 2 / 4 T 2 )  + J / T  x (a, log  CY,)^'^ 
N ] = l + l  ] = 1  
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if T, > T 
n 

1- 

N j = l  
- log 2 = ( J / T )  (a j  log a,)’/*. 

2257 

For Ti > T > Ti+ 1, the system is frozen in a few groups at level i + A -ut in each o :hese 
groups, it behaves as a system in its high temperature phase. In other words, in that 
range of temperature, the only configurations v which contribute to the partition function 
are those for which the E; (for j 6 i) are at a finite distance from their minimal possible 
value 

This means that one has a finite probability that q p ”  takes the value qj for j s i + 1. 
Therefore one expects that q ( x )  will have the shape indicated in figure l(a). When one 
decreases the temperature one expects that the discontinuities will move and that when 
Tcrosses T, + 1, the value qi+ will appear in q ( x ) .  We have not yet succeeded in calculating 
the location of the discontinuities of q ( x )  which have more physical meaning than the qi 
(in the way they are defined in the GREM). 

0 1 0 1 
X X 

Figure 1. ( a )  Shape of q ( x )  when the a, and log a; satisfy condition (16) for T, - )  < T <  T,. 
( b )  Shape of q(x )  when the sequence a,/log a; has a maximum for T,,, < T < T, with z > io. 
The value of io is given by formula (20). 

The second case that we shall describe here is when the sequence ai/log ai has a single 
maximum. So ai/log ai increases from 1 s i S il  and decreases for i l  S i 6 n. Let us call 
io the smallest value of i for which 

10 - 
Q,,+l 

2 a1 

log ff, 

I =  1 > 
1% E,@+ 1 . ‘0 

j = 1  

It is easy to check that io is always bigger than i l .  Let us define 8 and T, by 

J 
2 

T ,  = - (a,/log ai)”*. 
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Then the free energy is given in the thermodynamic limit by: 

i f T > 8  

1- 
-log Z = log 2 + J2 /4T2 N 

if 6 >  T >  Ti,,+, 

N 

i f T i >  T > T i + , ( w i t h i 3 i 0 + 1 )  

if T,, > T 
10 

- 1- log z = f [ (5 .]) lj2 (E log a]) 1’2 + i (a, log a 1 ) 1 / 2 ] .  (23) 
1=10+1  N , = I  I =  1 

For Ti > T > Ti+l,  the only configurations v which contribute to the partition function 
are those for which 2 ; ~  E; and the E; for i 3 j 2 io + 1 are at a finite distance from their 
minimal value. 

‘0 

and again the condition (19) for i 3 j 3 io + 1. 

of temperature are q io  and qi for io + 1 S j G i + 1. (See figure l (b)  .) 

sums in the previous formulas become integrals. 

Therefore the only possible values of qv’ which have a finite probability in this range 

There is of course no problem in making the a, and the log ai infinitesimal. All the 

4. A simple example 

In order to see how to calculate the free energy when y1 is large, we will take a simple 
example. Let us consider the GREM whose U and U (see equations (10) and (12)) depend 
on a continuous parameter t varying from 0 to 1 

U = (1 - t )  log 2 
U = 1 - (1 - t)(26+1) 

(25)  

(26) 
where 6 > 0 is arbitrary. In terms of the discrete version one can set i = nt and at the 
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end take the limit n - =. If d t  = l / n  and 

log ai = log 2 d t  

ai = (26 + 1)(1 - t)26 d t  

then the ratio a,/log CY, is a decreasing function of i. Since a,/log CY, is finite, there is a 
temperature To above which the system is in its high temperature phase 

To = ((26 + l)/log 2) 1/2 J/2 (29) 

and if T > To,  - 
N - ’  log 2 = log 2 + J2/4T2.  

Below To,  the temperatures Ti become dense. At a temperature T below To. one can 
see that 

J 26 + 1 ‘ I 2  T = -(-) (1 - t ) 6  = ~ ~ ( 1 -  t > 6  
2 log2 

At temperature T ,  formula (18) gives 

J 2  
N 4 T2 

(log 2 + - (26 + 1)(1 - t ’ ) 2 6 )  dt’ 

[(log2)(26 + 1)]’’’(1 - t ’ ) ’ d t ‘  

=10g2( j1  I [ I +  ( + ) 2 ( l - r f ) 2 6 ] d t f  

+ 2To T jot (1 - d t } .  

Using (31) one gets for T < To,  

[ 1 + 6 T (26 + T o +  
1- 
N 
-1ogZ=log2  -- 

The specific heat C can then be calculated and one finds: 

if T >  To 

C / N  = J2/2T2 

if T < To 

(32) 

(33) 

Thus we see that for this simple example, the specific heat is a continuous function of 
temperature with a cusp at To. This means that the sudden freezing of the REM is replaced 
by a gradual freezing in the GREM due to the correlations between the energies of 
configurations. 
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5. The Sherrington-Kirkpatrick model and the p spin-glass models 

The SK model is a system of N Ising spins whose Hamiltonian X is given by 

x = -E J,u,u,. (35) 
(1 .1)  

The sum in equation (35) includes all pairs of spins in the system and the itneractions J ,  
are randomly distributed according to a distribution p 

It is possible to generalise the SK model by replacing the random pair interactions in 
equation (35) by random p spin interactions. The Hamiltonian of the p spin-glass model 
is (Derrida 1980) 

(37) 

Here again the spin a, are king spins and there is an interaction A , ,  , p  for any group of 
p spins. The probability distribution of A , ,  , p  is 

The SK model is just the casep = 2. In the limit p + x ,  one gets the REM. Fo rp  = 1, the 
model reduces to N non-interacting spins in a random field. 

For all these p spin-glass models, the probability P,(E,) that a given spin con- 
figuration v has energy E,, is given (for N large or if one replaces NP-’  in equation (38) 
by ( N  - l ) ! / ( N  - p ) ! )  by 

P , , ( E , )  = ( ~ T N J ~ ) - ~ / ~  exp( - E t / N J 2 ) .  (39) 

This P,(E,) is the same as the one chosen for the GREM (see equation (8)). One can also 
calculate Pu., (Ep, E,,) the probability distribution that two given spin configurations ,u 
and v have energies E, and E,. One finds (Derrida 1981) that P J E , ,  E,) has the form 
(9) with U given by 

U = (2t - 1 ) P  (40) 
where Nt is the number of spins a, which are identical in configurations ,u and v ,  that is 
the overlap 9,’ between the two configurations is 

For a given configuration v ,  the number eNu of configurations ,u which have an overlap 
2t - 1 with v is 

N !  eNu = 
( N t ) ! ( N ( l  - t ) ) !  ’ 
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Therefore 

U = -t  log t - (1 - t )  log(1 - t ) .  (43) 
When t varies from 3 to 1, U varies from 0 to 1 and U from log 2 to 0. 

There is a small difficulty in defining a GREM which has the same U and L' as the p spin- 
glass model. In principle when t varies from 0 to 1, the u(t)  given by equation (43) has 
an extremum at f = 1, the u ( t )  given by equation (40) can either have a maximum if p is 
even or become negative ifp is odd. Also the overlap qui' given by equation (41) can be 
negative. For the GREM defined in § 2 ,  it is impossible to have a negative U or to have an 
extremum in U or in U as i increases. Formulae (10) and (12 )  show clearly that U and U 

are both positive and monotonic functions of i. However if we limit ourselves to the 
range 1 < t < 1, then u( t )  and u ( t )  become monotonic and positive. Then there is no 
difficulty in defining a GREM whose U and U are given by formulae (41) and (43) for 
1 < t < 1, We think that considering only the range 1 < t < 1 for a spin-glass model means 
that we identify a spin configuration with the configuration where all the spins have been 
reversed. (If for a given spin-glass model, one makes this identification, that is the 
partition function is the sum of 2"-' terms because one takes only one Boltzmann factor 
for a configuration and its opposite configuration, then the free energy remains the 
same.) One can probably modify the definition of the GREM in order to also treat the 
range 0 < t < 1. However for the moment we do not know how to do i t .  So we shall study 
a GREM whose U and U are given by formulae (40) and (43) only for 1 < t < 1. We 
shall say that this GREM has almost the same pair correlations between energies as the 
corresponding spin-glass model. 

We will now study the GREM which has the same U and U as a p spin-glass model (for 
1 < t < 1). Here again since U and U vary continuously. the number of levels in the 
hierarchy must be infinite and the a, and log aj must be infinitesimal. 

a ,  = 2p(2t  - l ) P - I  d t  

log ai = log[t/(l - t ) ]  dt. 
(44) 

(45) 
To discretise the problem one must choose i = n(2r - 1). So i goes from 1 to n when t 
varies from 1 to 1. 

Forp = 1 andp = 2 ,  the ratio a,/log aj is a decreasing function of i whereas forp > 2. 
this ratio has a single maximum. So in both cases, the results given in § 3 can be used. 

Forp = 1, one finds that T I  = x because the ratio a,/log a, + x as t + 4. So one finds 
only one phase and the free energy at temperature Tis given by 

where t is  related to the temperature T by 
I /  \ 1 '2  

L T =  :(, 
2 log(t/l - t )  (47) 

For p = 2 (the SK case), the ratio a,/log ai has a finite limit. 2 for i+ 1. Therefore 
there is a critical temperature given by 

J 
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For T > T,, the free energy is given by 

1- J 2  
- l o g Z = l o g 2 + -  
N 4 T2 

and for T < T, 

1- t‘ 4 J 2  
- log Z = l’ dt’ (log E + 5 (2t’ - 1) ) N 

+ jli2 dt’ $!4(2t‘ - 1) log 

(49) 

where t is related to T by ( 5 5 )  in the casep = 2. 

be given by conditions (20) and (21) 
Forp > 2, since the sequence aillog cq has a maximum, the critical temperature 8 will 

(2tO - 1)P 
log 2 + to  log t o  + (1 - to) log(1 - to) 

where to is given by 

U ( t 0 )  - - ai(to> 
log 2 - u(t0) log c u l ( t 0 )  

that is, to is related t o p  by 

P o  - 1) logPol(1 - toll 
log2 + t o  logto + (1 - to)log(l - to)’ 

2p = 

(53) 

(53) 

For T > 8, the free energy is still given by formula (49) whereas for T 

1- J 
N T 

8, it is given by 

- log 2 = - [(2t, - l)P(log 2 + to log to + (1 - t o )  log(1 - ?0)]1/2 

+ i‘ dt’[2p(2tf - 1)P-l log(t’/l - t’)]1/2 
‘0 

T 

+ 1’ dt’(log(&) + 2p(2tf - 1)P-l - 
4T2 

where t is  related to the temperature T by 

J 2p(2t- 1)P-l *=( 
2 log[t/(l - 91 

Forp  + m, one can expand the results and one finds that 

(54) 

(55)  

The higher orders should be 4-’p multiplied by powers of p. One can also calculate the 
ground state E,, using the fact that 

- 
log 2 

- lim - T- EGS 

J T+O N (57) 
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dx 2x2 e-'?. ( 5 8 )  
1 

1 - (2p + - 2 log 2 
EGS --- 

J 

For any spin-glass model, one can build a GREM which has (almost) the same correlations 
between pairs of energies. One can consider, for a given spin-glass model that the REM 
is a zeroth order approximation since it ignores all the correlations and that the GREM is 
a first-order approximation which takes into account all pair correlations but does not 
treat the triple correlations well. 

In table 1, we compare the properties (the ground-state energy and the critical 
temperature) of the REM and the GREM corresponding to the p spin-glass model. 

Table 1. The ground state energy Ecs and the critical temperature T, of the REM the GREM and the p spin- 
glass model for several values of p .  

P Quantity REM GREM p spin-glass model 

1 - E G s / J  (log 2)' = 0 833 0 7581 .fl = 0 5642 
1 No transition No transition 1 T,IJ - - - 0 601 

2(log 2)' ' 
2(SK) -EcS/J (log 2)' ' = 0 833 0 8246 =O 765 
2(SK) T c / J  - 2-' = 0 707 1 1 

= 0 601 
2(log 2)' 

p + z -EGs/'J (log 2)' ' = 0 833 Formula (58) 

1 P j X  T c / J  - = O  601 
2(log 2)' 

2(log 2) I 2(log 2)' 
(Gardner 1985) 

One sees the increase of the critical temperature and of the ground-state energy due 
to the correlations. However, the fact that the pair correlations are taken into account 
in the GREM does not change the values of T, and EGS much. So the GREM is a better 
approximation to real spin-glass models than the REM but the improvement is not 
spectacular. Even forp  large, the GREM does not seem to give the right correction to To 
and does not present the second phase transition at low temperature (Gardner 1985). 

6. Spin-glass models on finite-dimensional lattices 

One can easily generalise the calculations in § 5 to the case of a spin-glass model on a 
regular lattice in an arbitrary finite dimension. (The calculations done in this section are 
also valid for the infinite-ranged SK model.) 

runs over the nearest neighbours on the lattice. TheJ, are randomly distributed according 
to a gaussian distribution 



2264 B Derrida and E Gardner 

where z denotes the coordination number (2 = 2d for a hypercubic lattice in dimension 
d ,  z = N - 1 for the SK model since all the sites are neighbours). One can again calculate 
the probability distributions P,(E,) and PP,” (Ep ,  E,). One finds that 

P,(E,)  = exp - E:/NJ2 (61)  

as usual. (Since the normalisation in (60) has been chosen to insure this) 

where N y z / 2  is the number of bonds which remain the same in configurations p and v 
(the bond ij remains the same if a? U/ = of ay) and N( 1 - y ) z / 2  is the number of bonds 
ij such that of a; = -a: a,!’. One should notice that on a finite-dimensional lattice the 
correlations between the energies of configurations depend on the number of bonds 
which change their sign and not on the number of spins flipped. So the natural distance 
between two-spin configurations is 

rather than the usual 41” = l / N Z  @a;. In formula (63)  the sum extends over all the 
bonds of the lattice. Of course in the infinite-range models like the SK model, z = N - 1 
and the two distances yp” and q,” are equivalent because yp” is related to q p ”  by 2yp” 
- 1 = ( q ~ ” ) * .  This relationship between ypl” and q p ”  does not remain true on finite- 

dimensional lattices. 
For a given configuration V ,  the number eNu of configurations p to which formula 

(62)  applies can be expressed in terms of the properties of the pure ferromagnetic Ising 
model (i.e., all the 1, = 1) on the same lattice. If we denote by S( E )  the entropy per site 
of the ferromagnetic model when the energy per site is E ,  one can show that 

exp N u  = exp NS - (1 - 2y) . (64)  ir 1 
Formula (64)  is easy to understand. One wants to calculate the number of configurations 
,U which have ( N z / 2 ) y  bonds identical to those of configuration v .  Consider the pure 
ferromagnetic model and choose for v the spin configuration where all the spins are +(a 
; = + 1 for any i). Then the energy per spin of the configuration p is z (1 - 2y)/2.  Thus 
the number of configurations ,u is given by the entropy of the ferromagnetic model at 
energy z (1 - 2 j ) / 2 .  

As in the previous section, one can consider the GREM whose u and U are given by 

.(y) = 2y - 1. 

When y varies from 1 to t ,  u varies from 0 (the entropy of an Ising ferromagnet in its 
ground state) to log 2 (the entropy of an Ising ferromagnet at infinite temperature) and 
U varies from 1 to 0. As in 0 5 ,  and for the same reasons, we ignore the range 0 < y < 4 
because U becomes negative and u would not be monotonic. 

One can again discretise the model by choosing a GREM with n steps, i being related 
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i = n ( 2 y  - 1) (67) 
and since dy = 1/2n, we have 

log ai = zS'(z(1 - 2 y ) / 2 )  dy 

U ,  = 2 dy. ( 6 9 )  
One sees in formula ( 6 8 )  that log cu, is the derivative of the entropy S of the ferromagnetic 
model with respect toy which is related to the energy. Therefore this derivative is nothing 
but the inverse temperature of the ferromagnetic model. If we define the function t(~) 
by: t( E )  is the temperature of the pure ferromagnetic model when the energy per spin is 
E ,  then one has 

since in a pure ferromagnetic model, one expects a second-order phase transition, the 
temperature is a continuous and increasing function of energy. Therefore the ratio 
a,/lcg al is a continuous and decreasing function of y and i. So we are in the first case 
described in 9 3 and we can use formulas (17) and (18) to solve the GREM. Since when 
y +  4, t+ x ,  the temperature TI is infinite. When the GREM is at a given temperature 
T ,  one can calculate the value of y corresponding to this temperature by using equation 
(17) 

and once y is known from (71), one gets for the average free energy 

2 Lm= N ( d y f ~ t [ ( 2 / 2 ) ( 1  - 2 y ' ) ]  

This is the free energy of the GREM which has the same pair correlations between energies 
(for 1 < y < 1) as a given spin-glass model on any regular lattice. 

One can rewrite formula (72 )  in a simpler form. If we call C(t) the specific heat per 
spin of the ferromagnetic system on the same lattice, then formula ( 7 2 )  becomes 

where t is related to the temperature T of the GREM by 

7 = 2z(T!r)'. (74) 
We see that if we know the properties of a ferromagnetic model on a given lattice, we 
know the free energy of the GREM which has the same pair correlations as the spin glass 
model on this lattice. 

Formula (73) remains valid in the case of the SK model studied in 9 5. It is also valid 
for the p spin-glass models with the convention that when the ferromagnetic model has 
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a first-order phase transition ( forp > 2) ,  the latent heat is represented by a delta function 
in the specific heat C(t). 

From (74) ,  one sees that the GREM has a critical temperature T, given by 

T ,  = J( t C / 2 z )  1,'2 (75) 

where t, is the critical temperature of the ferromagnetic model. Using formula (73) ,  one 
can easily show that if the specific heat C( t) has a critical exponent a, then the specific 
heat of the GREM has a critical exponent a - 1, 

[C(t)Ismg = I t - - c / - a ~ [ C G R E M ( T ) l s i n g ' l T -  T c / l - a *  (76) 
We believe that the rule a+ a - 1 is a consequence of the approximation made by using 
the GREM instead of the true spin-glass model. One knows for example in dimension two 
that the ferromagnet has a phase transition whereas most of the studies done up to now 
indicate that there is no spin-glass phase at finite temperature in d = 2. However the rule 
a+ a - 1 indicates (at least as an approximation) that the specific heat of a spin glass 
cannot diverge (since a is always less than 1). 

7. The infinite-range Potts glass 

The infinite-range Potts glass has been a controversial subject in the recent past. There 
was a discussion over whether the Parisi approach could be used in the case of the Potts 
glass (Elderfield and Sherrington 1983, Elderfield 1984, Lage and Erzan 1983, Lage and 
Nunes da Silva 1984, Nishimori and Stephen 1983). At the moment, the difficulty seems 
to have been overcome by Gross et a1 (1985) who claim that there are two phase 
transitions when the number of states is large enough. 

For the infinite-range Potts model, one can again calculate the correlation between 
energy levels. The q state Potts glass can be defined by the following Hamiltonian 

where the sum extends over all pairs of spins (1 6 i < j s N) and pi denotes the value of 
the spin at site i (1 s p i  6 q) .  

The Gf and H f  are randomly distributed according to a given probability distribution 

Obviously in the case of the q state Potts model, the total number of configurations 

One can again, calculate the probability distributions P,(E,) and P p ,  , (Ep,  E,) 
is no longer 2N but becomes qN.  

P,(E, )  = exp -E$/NJ2 (79) 

where s is defined in the following way: N2s/2 is the number of bonds ij whose energy is 
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the same in configurations p and v ,  that is the number of bonds i, j such that p:")  - 
p,'") = p ! v )  - p,"') . If N K  = NxK is the number of sites for which P I " )  = p ! " )  + K (mod q )  
for 0 S K S q - 1, then one has 

One can also calculate the number e'"' of configurations ,U to which formula (80) applies 

where in formula (82) the N K  are constrained to satisfy formula (81). For a given value 
of s, the sum (82) is dominated by the region where one of the N K ,  say N o  = Nx with 
x > l / q ,  all the others being equal to N(1 - x ) / ( q  - 1). Therefore when 

s = x 2  + (1 - x)2/(q - 1) 

U = - x  log x - (1 - x )  log[(l - x ) / ( q  - l)]. 

(83) 

(84) 

one has 

By comparing formulae (80) and (9) one sees that one can build a GREM whose U and U 

are given by formulae (84) and (85) 

U = [ ( x q  - - UI2. ( 8 5 )  
When x varies from l /q  to 1, U goes from 0 to 1 and U from log q to 0. One finds that as 
for the p spin-glass model, the ratio ai/log cu, has a single maximum when q > 2. One can 
again use the results of 4 3. This GREM has a phase transition at a critical temperature T, 
given by 

For T > T,, one has 

1- J 2  
-log z = log q + - 
N 4 T2 

whereas for T < T, 

J 2  
4 T2 

+ - [ 1 - (x=J2] - x logx - (1 - x )  log 

where x is related to the temperature by 
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Again, the GREM does not seem to have any trace of the second transition predicted by 
Gross et a1 (1985) for the q state Potts glass. 

8. The correlations between three energy levels 

We have seen in 09 5 , 6  and 7 that one can build a GREM which has (almost) the same P ,  
(E,)  and P p ,  ,( E,, E ,) as a given spin-glass model. Looking at table 1 it can be clearly seen 
that a spin-glass model and the corresponding GREM do not have the same properties. It 
is therefore interesting to understand why their properties differ. 

We think that the origin of the difference is rather obvious. A spin-glass model and 
the corresponding GREM have no reason to have the same three energy correlations or 
higher correlations. To see that, let us calculate the probability Pk,,,,(€A, E,, E,) for 
the p spin-glass model and for the corresponding GREM. 

Let us first calculate PA,p. ,  in the case of the GREM. Consider that configurations A 
and p are in the same group for j  G i and in different ones for j  > i and that configurations 
A and U are in the same group for j S i’ and different groups for j  > i‘ and that i’ 2 i. This 
means that qA, = qi and qAu = qi. with qAp S q*”. Because of the ultrametric structure of 
the model, one has q p ”  = qi = qA”. So PA.,,u depends only on two parameters u1 and u 2 ,  

i -  1 

U1 = E a ,  
j =  1 

i’ - 1 

u 2  = 2 a,. 
j =  1 

One can of course write 

E A  = e A  + p + Q: 

E ,  = e ,  + ip 

E ,  = e ,  + p + Q: 

where 
1-1 I’  - 1 n 

ip = EjiJ p = x EjA’ e k  = Ej).) 
]=1  , = I  ] = I ’  

n n 

These five variables are gaussian and their widths can be expressed in terms of u 1  and 
u2. P A . , , J E ~ , ~  E,, E,) is given by 

(93) 

where 
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The integral in formula (93) is easy to do and one finds that 

1 
PL,.lsEA? E, ,  E , )  = exp - $g(EA,  E,, E , )  

2269 

(95) 

where g is given for the GREM by 

( ( E A  + 

2 
+ Et(1 + u 2 )  - 2E,(E* + E , ) u , ) .  (96) + 

1 + U 2  - 2u: 

We see that g depends only on two parameters u 1  and v 2  because of the ultrametric 
structure of the model. 

Let us now calculate PA,,,, for the p spin-glass model defined by the Hamiltonian 
(37).  Pi.,,, , is given by 

Pi,,, ,  = (d[EA - X ( O ~ ) ] ~ [ E ,  - X ( ~ f ) l d [ E ~  - X ( O ~ ) ] ) .  (97) 
By using the representation d(x) = (1/2rr)Je""dn and the fact that the averages are 
done on Gaussian variables, one can easily show that PA,,,, has form (95) with 

x [ E N  - 4%) + E:( l  - 4%) + Et(1 - 
+ 2EI,Eu(q3,qP,, - ~ 3 , )  + 2EAE,(q5pqL - 4 ; Y )  

+ 2EUEU(43,43, - 4P,y>I. (98) 

One sees that formula (98) depends on three parameters qA,, qRu and q P y  and so differs 
from (96).  However if one tries to make a comparison by choosing qPu = qi., as in the 
GREM and by defining (see equations (40)-(41)) 

01 = 4% = q P , u  and U 2  = 4%' (99) 
then one finds that formula (98) becomes identical to (96).  

So we see that in the p spin-glass model and in the corresponding GREM, the triple 
correlations are in general different because in the p spin-glass model, they depend on 
three parameters whereas in the GREM they depend only on two parameters. However 
when one chooses qhu = quY in the p spin-glass model the correlations become identical 
to those of the GREM. So we think that the GREM does not distort the triple correlations 
too much. 

9. Conclusion 

In this paper we have obtained the solution of the GREM. We have seen that for any spin- 
glass model, one can build a GREM which has the same pair correlations between energies 
(with the restriction discussed in § 4). 

Our main result is formula (73) which is valid for all the cases that we have considered. 
It gives, for each spin glass model on a given lattice, the free energy of the corresponding 
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GREM in terms of the specific heat of the pure ferromagnetic Ising model on the same 
lattice. 

These generalised random energy models provide a whole class of spin-glass models 
which can be solved exactly. We have seen that when the correlations between the 
energies are those of a spin-glass model, the specific heat exponent (Y of the GREM at the 
transition cannot be positive. This agrees with the fact that one expects that the specific 
heat of a spin glass does not diverge. There remain interesting questions to be answered 
for the GREM: is it possible to calculate the function q(x)  (De Dominicis and Hilhorst 
1985), to study non-self-averaging effects and to define dynamics for the GREM (De 
Dominicis et a1 1985, De Dominicis 1985). 

We have seen that the GREM can be viewed as an approximation to any spin-glass 
model. This approximation is better than the RE approximation but the improvement is 
not spectacular. For the p spin-glass models and for the Potts glass, the GREM does not 
show the second-phase transition predicted by the replica calculations. For the p spin- 
glass model, in the limit p + x ,  the GREM does not give the first correction which can be 
calculated using replicas. 

The GREM takes into account pair correlations between energies. It would be inter- 
esting to see whether a hierarchy of approximations to spin-glass models could be 
developed which would take into account two energy correlations, three energy cor- 
relations, etc. It would also be interesting to introduce a magnetic field in the GREM, to 
calculate the magnetic susceptibility and the de Almeida Thouless line (de Almeida and 
Thouless 1978). 

Lastly we think that it would be worthwhile to consider distributions of the inter- 
actions which are not Gaussian. For example if p(J,) is given by 

then formula (61) becomes 

P , ( E , )  = exp - N f ( E / N J )  

where 

f ( x )  = ; l0gjz) z + 2 x  + 4 z log j l  - g) 
and z is the coordination number. Formula (62) becomes 
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Appendix 

The free energy of the generalised random energy model for the two cases considered 



Solution of the generalised random energy model 2271 

in 0 3 (equations (18) and (23)) can be derived by a generalisation of the proot tor two 
stages (Derrida 1985) to  an arbitrary number of stages. 

Firstly the expectation of the number of largest groups with energies e l  between el  
and E, + de , ,  (4Vl(&l))del, is calculated. de, must be smaller than N" with a <  1 in 
order to have a well defined thermodynamic limit. (N1(el)) behaves as exp N g l ( e l ) .  If 
gl(el) < 0, then for almost all systems A",(el) = 0 and there is only a small probability 
which vanishes exponentially with N that S V ' l ( ~ l )  2 1. If gl(el) > 0, then since the ener- 
gies E, of the groups are independent randomvariables, Nl (  el) is equal to its expectation 
with a variance proportional to the expectation. Therefore if gl(el)  > 0, N1(el) = 
( J \ * ~ ( E , ) ) .  J Y ~ ( E , )  can then be used to calculate the number SU',(E,) of next largest groups 
with energies E ,  where E ,  = e l  + e2 by repeating the above argument. This process can 
be iterated to calculate J";(E) the number of smallest groups with energy E.  The 
logarithm of this number is the entropy and this will be used to derive the free energy. 
At the ith stage, let E,  = E, and the number of groups with energy E, be A",(E,). 

Let us definef,(E,) by 

d$"L(Ef) -- exp N f l ( E , )  (AI)  
where -Y,(E,) denotes the typical (or most probable) value of Nl(Et). We are going to 
calculatef,(E,) in different cases. We shall only consider the negative E, because f , (E,)  is 
symmetric and only negative energies play a role in the calculation of the free energy. 

A l .  First case 

Let us first consider the case where the sequence aj/log ai. is decreasing for 1 s j S i. 

(A21 
a ,  ai >->. . . >-. a1 

log a,  loga2 log ai 
Then we shall prove by induction that 

where j is defined by 

where 

1 

+ (a, log a,)*:* f o r l s j s i - 1  
,= 1 

= O  f o r j =  -1 

and 
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One can easily check that formulae (A3)-(A6) are true fori = 1 sincefl(El) = log a1 
- ( E~/N2J2a,) which is positive if and only if IE,I/NJ < (al log Let us assume 
that formulae (A3)-(A6) are true at the ith stage, then J Y ~ + ~ ( E ~ + ~ )  at the i + l th  stage 
is given by 

This integral can be done using the saddle point method (since N is large) 

The value of E, which will give the maximum of (A8) depends on E l + l .  If one chooses 
E,+ such that this maximum is in the following interval 

4 - , + 1  < IE,I/NJ < e;-, (A9) 
then E, is given by 

E ,  = z,+l NJ (A10) 
E l + l ' k = ] + l a K  - '!+1'L=1('K log (yK)1'2  

K = ] + l  

and if we substitute this expression in (A8), then 

The condition on El+1 which insures (A9) can easily be obtained from (A9) and (A10) 

e:+:+2 < IE,+1 1" < e::;+1 O s j s i - 1 .  

We have now to consider the case where lE,+ I/NJ > eb+I. In this case the maximum in 
(A8) is given by the end point (E,I/NJ = e; and again the maximum value of (A8) is 
given by ( A l l ) .  Formula (Al l )  is again valid only whenf,+l(E,+l) is positive that is, 
when IE,+,I/NJ< e;+'. When the maximum value of (A8) becomes negative, then 
J V , + ~ ( E , + ~ )  = 0 with probability 1 and thereforef,+l(E,+l) = --m for IE,+l/NJ > e\+'. 
This proves formulae (A3)-(A6) when the condition (A2) is satisfied. 

A2. Second case 

Let us now consider the case where the sequence aillog ai satsifies 

(A12) 
' i= l  

for 1 G j  s i. aj t1  > 
log a,+ 1 CL= 1 log a, 

This condition implies that a,/log a2 > a,/log a1 but does not mean that the sequence 
aillog ai is increasing. If condition (A12) is satisfied, we shall show that 
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for 

and 

Again it is easy to prove formulae (A13) and (A14) by induction. For i = 1,  it is correct. 
If one asumes that it is valid for the ith stage, one can prove that it remains valid for the 
i + l th  stage. One has again 

whenthismaximumvalueispositiveandf,+,(E,,,) = -=otherwise. If (A14) issatisfied, 
one finds that E, which makes (A16) maximum is given by 

Using the fact that now 

One finds that as long asf,+l(E,+l) is positive, E; satisfies (A14). Therefore, the only 
limitation on Ei+, is thath+,(Ei+,)  must be positive which can be expressed as 

A3. Third case 

We can consider the case where a,/log cy, has a maximum. So this sequence will satisfy 
(A12) for i S io - 1 and for i 2 io the sequence is decreasing. (If i i  is the value of i for 
which a,/log cy, is maximum, then io is always larger than i,.) For i s io - 1 ,  thenf,(E,) is 
given by (A13). Fori  = io (A12) is identical to (A3). And from i > i o ,  one can again give 
a proof by induction and find that (A3)-(A13) are valid provided that a,  and log cy, 
are replaced by 2::"= l a K  and by X:"=l log a, and that a,+, and log are replaced by 
a ,+ , ,  and 1% &,+,U * 

A4. The free energy 

Expressions (18) and (23) for the free energy can then be derived easily. The entropy 
S ( E )  of the model at energy E is equal to the logarithm of the number of configurations: 

S ( E )  = Nfn(E>. (A201 - 
In order to convert S ( E )  into the free energy log 2 one uses the fact that 
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where Tis the temperature and that 
- 
log 2 = - T-’E + s. (A211 

The values NJe, -, where the functionf,( E )  changes its shape give rise to the temperatures 
T,  * 
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