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Abstract. We give a general expression for the free energy of the generalised random-energy 
model (GREM) in termsof the averagepartitionfunction(Z)and the averagesquaredpartition 
function ( Z 2 ) .  Then, using the notion of the partial partition function, we show how one can 
introduce a magnetic field in the GREM. The de Almeida-Thouless line and the magnetisation 
in the spin glass phase are computed. The moments (Zp) of the partition function are 
calculated and we show that a replica calculation with a full breaking of replica symmetry 
leads to the correct free energy. The function q ( x )  is then computed. 

1. Introduction 

At present, there are few spin glass models that can be solved exactly and show the whole 
structure (breaking of replica symmetry, ultrametricity, transition in a magnetic field) 
that resulted from the approach developed by Parisi (1980) in order to solve the problem 
posed by Sherrington and Kirkpatrick (1975, 1978). 

The random-energy model (Derrida 1980, 1981) and some extensions of it (Mot- 
tishaw 1986) are exactly soluble and do have this structure although the spin glass phase 
is particularly simple because the system is completely frozen at its ground-state energy. 

The generalised random-energy model (GREM) (Derrida 1985) remains an exactly 
soluble model but has much more structure (Derrida and Gardner 1986). In our previous 
work the general solution of the GREM was derived and we discussed how one could 
associate any spin glass model with a GREM that had the same pair correlations between 
energies. 

In the present work, we will present several recent results on the GREM. First, in § 2 
a simple expression for the free energy in terms of (Z)  and ( Z 2 )  is given. In 9 0  3 and 4 we 
show how one can introduce a magnetic field in the GREM and we compute its magnetic 
properties. In 9 5 the integer moments (ZP) are computed. Lastly in 9 6, we show that 
the replica approach with a full breaking of replica symmetry gives the correct free 
energy of the GREM and the function q ( x )  is computed. 

The reader who has read our previous work is encouraged to start after equation 
(12). 
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2. Simple expression for the free energy of the GREM 

The GREM, as we shall see, depends on a lot of parameters. In this section we shall show 
that the free energy of the GREM always has a very simple expression in terms of the 
average partition function (Z) and of the average squared partition function (Z2). 

Let us start by recalling the definition of the GREM of size N ( N  should be considered 
as the number of spins) (Derrida 1985, Derrida and Gardner 1986). 

One can represent the energies E ,  of the configurations v (1 d v d 2 9  as the 
end points of a tree of n levels (see figure 1). To each level i (1 C i C n) of the tree, 
one associates three quantities ai, ai and qi. qi must be an increasing function of i with 
q1 = 0 and qn+l = 1. 

At each level i, one branch divides into ay branches. Therefore at level i there are 
(a Ia2 .  . . branches. On each bond of the tree at level i, one chooses a random 
variable E!”) according to a distribution pi(€[’)) whose width is ai: 

pi  (E I”) = ( ~ n a  -112 exp[ - ( E [ Y )  ) 2 / W a i  1. (1) 
The energy E ,  of the configuration v is given by definition by 

n 

E ,  = 2 E!’) 
i = l  

where the E!”) in (2) are the n bonds that connect the configuration v to the top of the 
tree (see figure 1). 

Figure 1. The configurations v (1 s Y S 2 9  of the GREM are the end points of a tree of n 
levels. The space of configurations is ultrametric. 

By definition, two configurations p and v have an overlap q p ”  = qi if E ; ~ )  = E;”) for 
jsi- 1 and EY) # E:” for j 3 i .  So the overlap qi is given by the level on the tree where 
the branches coming from p and v join. 

If we choose the following normalisation: 
n 

2 a i = 1  
i =  1 
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n 

2 log a; = log 2 
i =  1 

then we can show that there are 2N energies E ,  distributed according to 

P,(E, )  = (NnJ2)-'12 exp[ -(E,)'/NJ2]. ( 4 )  

We can also compute the number eNu of configurations y that have an overlap q p L y  = qi 
with a given configuration v :  

n 

u = log a; 
j = i  

whereas the correlation between two configurations y and v that have an overlap 
q," = q; is given by 

where 
i -  1 

U = 2 a i .  
j =  1 

(7)  

In our previous work (Derrida and Gardner 1986), we derived the general solution of 
the GREM in the following two cases: case A where the sequence a,/log ai is a decreasing 
function of i; and case B where the sequence a,/log ai has a single maximum. If the 
temperatures Ti are defined by 

TI  = (J/2)(a,/log ai)'/* (8) 

then in case A, all temperatures Ti are transition temperatures and the free energy is 
given by 

(l/N)(log 2) = log 2 + J2/4T2 if T > TI 
n 

if TI+' < T <  TI  
1 J2 J I 

- (log Z )  = 2 log a] + a - + - (a, log a1)1'2 N ) = I t 1  ' 4 T 2  T I = ,  

i f T <  T,. 
1 J n  
- (log 2) = - N TI=]  ( U j  log a ; p  (9 )  

In case B, the solution is slightly more complicated. One has first to find the level io 
such that 

Then the highest critical temperature is given by 
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and the free energy is given by 

(l/N)(log 2) = log 2 + J2/4T2 i f T > 8  

1 
- (log 2) = i: /log a, + a, 
N i +  1 

1 ‘0 112 
- (log 2) = <[ ($ a,) 1’2 (7 1% a,) 
N T 

n 

+ 2 (a, log , ) ‘ I 2 ]  

(Z(T)) = 2 j P u ( E u )  exp( - +) dE, .  

if T ,  > T (Tn < 0).  
f o + 1  

We will show here that for any choice of the a, and log a,, the free energy always has a 
simple expression in terms of (Z(T)) and ( Z 2 ( T ) ) .  Let us compute these averages: 

(13) 
E 2 y  

U =  1 

Therefore 
n J2 J2 

(14) 
1 
- log(Z( T)) = log a, + a, - = log 2 + - N , = I  4T2 4T2’ 

Similarly ( Z 2 (  T)) is given by 

In the thermodynamic limit ( N - x ) ,  the sum (15) is dominated by a saddle point 
corresponding to  an optimal overlap q p ”  = qI between configurations p and U :  

n 1 J2 J2 
log a, + - a + 2 2 log a, + - a (16) T2 ’ , = I  2T2 I 

When one looks for the i that maximises (16), one finds that in case A 

(l/N) log(Z2(T)) = 2 log 2 + J 2 / 2 T 2  if T/2’J2 > T ,  

J2 
T2 I , = i + l  

n 

ogf f j  + - a . +  210gaj  
1 
- log(Z2(T)) = 1 
N j =  1 

if Ti  > T/2‘I2 > Ti+ J2 
2T2 

+ - ai 

(1/N) log(Z2(T)) = log 2 + J2/P if T, > T/2‘I2 
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and in case B 

5787 

(1/N) log(Z2( T)) = 2 log 2 + J 2 / 2 P  if T/2Il2 > 8 

J2 
j =  1 T2 I j = i o + l  

i o  1 
, l o g ( Z 2 ( T ) ) = x l 0 g a j  + - U , +  210ga, 

n 

if 8 > T/2’12 > Tio+l 
J 2  

+ - a .  
2T2 I 

I ~ l o g ( Z 2 ( T ) ) = ~ l o g n ; + - a  1 J2 + 210gmI n 

T2 ,=i+l ] = I  

if Ti  > T/2‘12 > Ti+l  and i > io 
J 2  

+-a 
2T2 I 

(l/N) log(Z2(T)) = log 2 + J2/T2 

In both cases, one can see by looking at (9), (12), (14), (17) and (18) that 

if T, > T/2 lr2. 

and from (19) one can deduce a formula valid in all cases: 

This formula gives the average free energy (log Z( T)) in terms of ( Z (  T)) and ( Z 2 (  T)) in 
closed form. It is interesting to notice that to compute the free energy at temperature T, 
one needs to know (Z(T)) and (Z2(T))  at other temperatures. 

Let us mention here that Capocaccia et a1 (1986) were recently able to write the 
general solution of the GREM in another very simple and compact form. 

It is not surprising that such a formula exists. In our previous work, we saw that to 
each spin glass model (finite- or infinite-dimensional) on a lattice 

’% = - J,o,u, (21) 

dJ,) - exp[-(J2,/2J2)z1 (22) 

01) 

with the interactions J, between nearest neighbours distributed according to 

( z  is the coordination number), one could associate a GREM that has the same pair 
correlations between energies and therefore has the same (Z( T)), (Z2(  T)) and 
(Z(  T ) Z (  T’)) for any temperatures Tand T’. We had shown (see equation (73) of Derrida 
and Gardner 1986) that the free energy could be expressed as a function of the specific 
heat of the ferromagnetic model on the same lattice. It is easy to see that for a spin glass 
model defined by (21) and (22) on an arbitrary lattice, one can relate (Z2(T)) to the 
partition function Zferro(t) of the ferromagnetic model on the same lattice 

So if one wants to know the solution of the GREM associated with a given spin glass 
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model, one needs to compute (Z(  T ) )  and (Z2(  T ) )  of this spin glass model and then the 
free energy of the GREM is given by (20). 

One should also notice that a GREM is always defined by the pair correlations betwen 
the energies. In principle a full knowledge of these pair correlations is equivalent to a 
full knowledge of the average ( Z ( T ) Z ( T ' ) )  for all T and T'. It is remarkable that it is 
only the information contained in ( Z 2 (  T ) )  that is relevant to the computation of the 
average free energy. This is due to the fact that for all the spin glass models defined by 
(21) and (22) one has 

J 2  1 TT'z  
Zferro - ( Z ( T ) Z ( T ' ) )  = 2" exp N -  - + - [ 4 ( T 2  Tf2)1  ( J 2  

and so all the information in (Z(  T ) Z ( T ' ) )  is already contained in ( Z 2 ( T ) ) .  
For a given spin glass model, the a,, a, and q, that define the GREM must be chosen in 

order to give the same pair correlations. For the p spin glass model (the Sherrington- 
Kirkpatrick (SK) model being that with p = 2), we had seen in our previous work 
(Derrida and Gardner 1986) that one must choose 

log a, = log[t/(l - t ) ]  d t  U ,  = 2p(2t - 1 ) P - l  d t  q ,  = 2t - 1 (25) 

for 1 S t s 1. That is 

ai  = a ( q )  d q  = pqp-'  dq.  

In the following, we shall replace log ai and ai by log a(q) d q  and a(q) d q  in order to 
have q as a continuous variable. To obtain the free energy in this case, one only needs 
to replace sums in (9), (lo), (11) and (12) by integrals. 

3. The partial partition function and magnetic properties of spin glass models 

In this section we shall show that there exists a very general relation between the partial 
partition function of a spin glass model in zero field and its magnetic properties. The 
content of this section is apriori true for any spin glass model. In 0 4 this relation will be 
used to discuss the magnetic properties of the GREM. 

Consider a spin glass model on a finite- or an infinite-dimensional lattice whose 
Hamiltonian is given by (21) and (22). If one chooses a spin configuration %o and an 
overlap q ,  one can define a partial partition function z( T ,  q ,  %o) by 

where E(%) is the energy of the spin configuration (e. So instead of summing over 
all spin configurations as usual for the partition function, one only sums over those 
configurations that have a given overlap q with a reference configuration 

As usual with disordered systems, one can try to compute the average (1,") 
(logz(T, q ,  %,,)). Clearly because the distribution p(J,,) chosen in (22) is symmetric, 
the result will be gauge-invariant and so will not depend on %o. Therefore one can 
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choose for %o the ferromagnetic configuration, i.e. the configuration for which all spins 
a, = +l. It is clear that z ( T ,  q, %o) is then the partition function restricted to all the 
configurations that have a given magnetisation m = q. Se we see that given the free 
energy of a spin glass in a field, one can deduce (l/N)(log z ( T ,  q ,  %,J) immediately. 

In the SK model, one knows that along the de Almeida and Thouless (1978) line, 
there is an instability. Let us call the magnetisation of the SK model along this line 
m,( T ) .  At a given temperature, if m > m,( T )  the system is in the paramagnetic phase 
and if m < m,(T) it is in its spin glass phase. Then because of the relation discussed 
above, one sees that at each temperature T < T,, there is a critical value q c ( T )  = 
m,(T) for the partial partition function (log z ( T ,  q ,  go)). For q > qv(T) ,  the system is 
in its high-temperature phase whereas for q < qc(T)  the system is a spin glass phase. 

In other words, if one chooses an arbitrary configuration %o, at short distances 
( q  > q c ( T ) )  the system looks like it does in its high-temperature phase, i.e. there is 
only one valley whereas at larger distances ( q  < qc( T ) ) ,  the system is in a spin glass 
phase, i.e. there are several valleys. 

In the next section, the relationship discussed here will be used to obtain the 
magnetic properties of the GREM. 

4. The GREM in a magnetic field 

In the GREM, it is easy to compute (log z ( T ,  q ,  Instead of considering the whole 
tree described in figure 1, one takes only the branch of all the configurations that have 
an overlap of at least q with a reference configuration %,,. Then we can use the results 
described in 9 2 since this branch is itself a GREM. (In the GREM one finds the same 
answer in the thermodynamic limit if one sums over all the configurations that have 
an overlap q with (eo or over all the configurations that have an overlap of at least q.)  

Let us first discuss the case A,  i.e. the case where a(q)/logcu(q) is a decreasing 
function of q.  Then one finds that 

(28) 
and 

where Q is given by 

T = (J/2)(a(Q)/log 4 Q ) )  ‘ I2 .  (30) 

Using the fact that (log z ( T ,  q ,  %,,)) is simply the free energy at fixed magnetisation, 
one can easily deduce the free energy (log Z (  T ,  h ) )  of the GREM in a magnetic field h: 
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This gives the equation of state 

h = Tlog a(m) + a(m)J2/4T 

h = J(a(n) log a(m)) 'I2 

for T > T,(h) (32) 

(33) for T < Tc(h) 

where the critical line T,(h) is given by 

Tc(h) = (J/2)(4m)/log 4 m ) )  1'2 

where m is given by 

h = J(a(m) log a(m)) U 2 .  

(34) 

(35) 

So we find a de Almeida-Thouless line whose equation is given by (34) and (35). 
One should notice that since a(q)/log a(q) is a decreasing function of q ,  the critical 
temperature, T,(h) decreases as the magnetisation (or the field) increases (see (34)). 
In the random-energy model (Derrida 198l), T,(h) was an increasing function of the 
fields. So we see that the effect of the correlations between energies that are taken 
into account in the GREM is to change this tendency and to give a Tc(h) that decreases 
with h. (In order to ensure that the magnetisation m is an increasing function of the 
field h ,  see (33), which is of course the only situation that is physically meaningful, 
we need to consider only a GREM for which a(q) log a(q) is an increasing function of 
q.  This condition is satisfied for the choice (26) which corresponds to the SK model, 
i.e. p = 2.) 

Another important result is that magnetisation is always independent of tem- 
perature in the whole spin glass phase (see (33)). A direct consequence is that the 
magnetic susceptibility is constant in the spin glass phase. One should notice that the 
assumption that magnetisation depends only on h and not on Tin  the spin glass phase 
was proposed a few years ago (Parisi and Toulouse 1980, Vannimenus et a1 1981) and 
gives a very good approximation for the SK model. Here we have shown that for any 
choice of the a(q) and a(q) ,  the magnetisation m is always a function of the field h 
only in the spin glass phase. 

To illustrate this first case, let us take the a(q)  and log a(q) that correspond to the 
pair correlations of the SK model 

4 s )  = 2q 1% 4 q )  = t log[(l + q)/(l - 4)l. 
The de Almeida-Thouless line (see Figure 2) is then given by 

h2 = J2mlog(-) l + m  T2 = J2m/log(-). l + m  
l - m  l - m  (37) 

From (32) and (33), one finds that in zero field there is a transition at To = J / 2 1 / 2  and 
that 

m = h/T(1 + T z / T ' )  - h3/3T3(1 + T2,/T2)4 + O(h5)  

m = h/2To - h3/48T; + O(h5)  

if T > To  (38) 

(39) if T < To. 

Thus one finds a cusp in the susceptibility (see figure 3) as well as in the non-linear 
susceptibility. One should notice that the de Almeida-Thouless line has the following 
shape for h small: 

( T m  - W))/TC(O) - h2/fJ2. (40) 
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/ 
/ 

T T 
Case A Case B 

Figuret. The shape of the de Almeida-Thouless line in the GREM. In case A, T,(h) decreases 
ash increases. In case B, T,(h) has a maximum. This maximum is a kind of tri-critical point. 
The function q ( x )  is continuous when one crosses the upper part of the line (full curve) and 
has a jump when one crosses the lower part of the line (broken curve). 

T c  T 

Figure 3. The zero-field magnetic susceptibility of the GREM (case A and case B) 

So we see that the de Almeida-Thouless line does not have the shape T,(O) - TJh)  - 
h2’3 and that the non-linear susceptibility does not diverge as expected in the SK 
model. The reason is that the SK model and the GREM defined by (36) have the 
same pair correlations between energies but are not identical models. 

Let us now discuss briefly the case B, i.e. the case where the ratio a(q)/log a(q) 
increases, has a single maximum for q = Q,,, and then decreases. A typical example of 
this case B is 

4 s )  = pqp-’ log 4 q )  = 1 log[(l + 4) / (1  - 411 forp  > 2 (41) 
If q < Q,,,, then let us call Qo(q) the solution of 

(If there is no solution of (42), then Qo(q) = q if the left-hand side is larger than the 
right-hand side and Qo(q) = 1 otherwise.) If q > Q,,,, Qo(q) is defined by 

Qo(q> = 4. (43) 
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Then one finds that there is a de Almeida-Thouless line given by 

Tc ( h )  = (J/2) [a( Qo (m))/log a( Q o (m>)l l”. (44) 

For m > Q,,,, the sequence a(q)/log a(q) is decreasing and since Qo(m) = m, for- 
mula (44) is equivalent to (34) and (35). For m < Q,,,, i.e. for small field, formula (44) 
is more complicated. So we see that there are two parts along the de Almeida-Thouless 
line: the part where m < Q,,, and the part where m > Q,,,. It is easy to see that Qo(m) 
is a continuous function of m which is always larger than Q,,, and such that Qo( Q,,,) = 
Q,,,. Therefore the minimal value of Qo(m) is Q,,, and is reached form = Q,,,. The 
result on the shape of the de Almeida-Thouless line in case B is the following. When h 
increases, Tc(h) increase and magnetisation increases. When m reaches Q,,,, Tc(h) has 
a maximum and then when h increases further, Tc(h) decreases. In 0 6 it will be seen that 
the maximum of T,(h) is like a tri-critical point: for m < Q,,,, the function q ( x )  has a 
jump, whereas for m > Q,,,, q ( x )  is continuous. 

In case B, the equation of state is given by 

log cu(m) + (J2/4T2)a(m) = h /T  if T > T c ( h )  

As in case A,  we find that magnetisation is independent of Tin the spin glass phase. A 
consequence, here again, is that the magnetic susceptibility is constant in the spin glass 
phase. 

5. The moments of the partition function 

We have seen in 0 2 that the only information about the correlations between energies 
that was necessary to obtain the average free energy of the GREM was the information 
contained in ( Z 2 (  T ) ) .  In this section we are going to show that all integer moments 
(ZP(T)) of the partition function can be expressed in terms of ( Z ( T ) )  and ( Z 2 ( T ) ) .  By 
definition (Zp( T ) )  is given by 

E,,, + .  . . + EvP ) dE,, ,  . . . d E V p .  
x expj -  T 

As in the calculation for ( Z 2 ( T ) )  in 0 2, this sum is dominated by a saddle point which 
corresponds to certain overlaps between the configurations. If we assume that for any 
integerp, there is no breaking of replica symmetry, i.e. all the overlaps are the same and 
equal to Q ,  then 
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1 J 2  
- log(ZP(T)) = max 
N Q d q  log a(q) + p Z a ( q )  5 

The value of Q that maximises this sum is given by the solution of 

a(Q)/log 4 Q )  = 4P/J2p .  (48) 
If (48) has no solution, then one should choose Q = 1 or Q = 0 depending on which 
maximises (47). If (48) has a solution, this solution is unique in case A because a(q)/  
log a(q) is monotonic. In case B, the function a(q)/log a(q) has a single maximum and 
it is always the solution of (48) which is larger than Q,,,, which should be considered 
because it is the local maximum. (The other solution, which is in the increasing part of 
a(q)/log Ly(q), is always a local minimum.) However, in case B one has to make sure 
that Q = 0 does not give a larger value to (47). In case B one expects a first-order 
transition for (ZP( T ) )  where Q jumps from 0 to a finite value larger than Q,,,. 

From (47) and (48), one can show that 

where Q is the solution of (48). One can easily see that the right-hand side of (49) is a 
function of P/p except for the factor p - 1. Therefore one has the following formula 
for the integer moments (ZP( T)): 

So once (Z2( T ) )  is known, all the other integer moments can be computed using (50). 
Let us remark that the result (50) relies on the assumption that the saddle point that 

gives (ZP( T ) )  is replica-symmetric. This is not apriori obvious. Let us just mention that 
at least in case A we can prove it. We will not give the proof here because it is rather 
complicated and requires new notation. 

We see that if one tries to make the continuationp + 0, there is no way that (50) can 
give (20). Therefore the replica calculation without breaking is unable to lead to the 
solution of the GREM. 

6. The replica calculation and the function q(x )  

For the random-energy model, it was shown that a calculation with a single breaking of 
replica symmetry can give the correct free energy (Derrida 1981, Gross and Mezard 
1984). In this section we shall show that a breaking of symmetry in the manner described 
by Parisi leads to the solution of the GREM with a non-trivial function q ( x ) .  

Let us start with the expression (46) of (ZP( T)). There arep configurations. Consider 
that thesep configurations belong to the same branch of the tree (of figure 1) for overlaps 
0 < q < Q,. At Q, they divide themselves intop, groups ofp/p,  configurations each up 
to the overlap Q2. At Q, each branch of p/pl configurations each bifurcates into p2/p1 
branches of p/p2 configurations. Therefore for Q, < q < Q3, there are altogether p 2  

C29-E 
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groups of p / p 2  configurations each. One can repeat this breaking K times. For such a 
breaking (ZP( T ) )  is given by 

Clearly one must have 

In the limit p +  0, according to the usual replica calculation (Parisi 1980a,b,c), one 
should choose the Q ,  . . . Q K  and p 1  . . . p K  that minimise (51) with the constraint (52) 
but where (53) is replaced by 

1 > p 2  a .  < p K  > p - * o .  (54) 
If one takes an infinite number of breakings, then for each value of Q, there is a number 
pi. In the continuum limit, let us define x ( q )  by 

P ,  = p / x ( Q r )  (55) 
then one finds from (51) that 

1 1 log(ZP) J2 -(log Z) = lim - - = rnin[,' 
N P-+0N Y d4 x ( q )  

log a(q) dq + 3 J^ x(q)a(q) dq).  (56) 
0 

Because of (52), (54) and ( 5 5 ) ,  q ( x )  must be an increasing function of x .  (In (56) it is 
x ( q )  that appears; this is obviously defined as the inverse function of q ( x ) . )  

The function q ( x )  or its inverse x ( q )  plays exactly the same role here as in the Parisi 
solution. One can see that by considering the following quantity: 

In the limit p -* 0, one finds 

(58)  
So the replica approach to the GREM reduces to expression (56) and to finding the best 
function q ( x )  or equivalently x ( q ) .  

In case A, the result is 

x ( q )  = (2T/J)(log a(q)/a(q)) 

x ( q )  = 1 for qmax < q < 1. (59) 

for 0 < 4 < q m a x  

Since a(q)/log a(q) is a decreasing function of q ,  thenx(q) given by (59) is an increasing 
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function of q. Sincex(q) has to fulfil the condition0 < x < 1, at each temperature T < T,, 
there is a maximal value qmax of q given by 

1 = (2T/J)(log a ( q m a x ) / a ( q m a x ) )  1'2* (60) 

When x(q)  is replaced by expression (59), one finds the free energy given by (9). 
Therefore the Parisi ansarz leads to the correct free energy in this case A .  

It is of course easy to include the presence of a magnetic field. As discussed in 00 3 
and 4,  the overlaps must then be larger than or equal to the magnetisation m. Therefore 
in (56) the integrals must go from m to 1. Therefore one finds a flat part of q(x)  at qmin = 
m ( figure 4). 

X X 

Figure 4. The function q ( x )  of the GREM in the spin glass phase in case A for ( a )  h = 0 and 
( b )  h f 0. One should notice that there is no plateau at qmar and also that qm," is equal to the 
magnetisation. 

In case B, one again has to find the function q(x )  that gives an extremum of (56). 
Since the ratio a(q)/log a(q) has a maximum, one finds 

x(q)  = (2T/J)(log a(q)/a(q)) ''? for Q < 4 < q m a x  (61) 

where qmax is again given by (60) and where Q is given by 

Again one can check that by replacing x ( q )  by expression (61), one finds the correct 
solution of the GREM given by (12) in case B. 

To obtain the expression for q(x)  in presence of a field one has only to replace the 
lower bound 0 in the integrals (56) by m(h). So if the field is small enough and therefore 
if m is small enough, the function a(q)/log a(q) fo rm < q < 1 still has a maximum and 
therefore the function q ( x )  has a jump: this situation corresponds to the part of the de 
Almeida-Thouless line where T,(h) is an increasing function of h (broken curve in figure 
2 ( b ) ) .  When h is strong enough, i.e. when T,(h) reaches its maximal value, the function 
a(q)/log a(q) form < q < 1 starts to be monotonic and the jump disappears (full curve 
in figure 2(b)) .  

Discontinuous functions q(x) have already been found for other spin glass models: 
the Potts glass (Gross er a1 1985) and thep  spin glass model (Gardner 1985). 

All the diagrams in figures 4 and 5 correspond to a(q) and log n(q) given by (26) with 
p = 2 in case A a n d p  > 2 in case B. To end this section, we will make a few remarks. 

Firstly, Parisi's ansatz gives the exact free energy of the GREM. This was not obvious 
a priori even if the GREM already had an ultrametric structure in itself because the 
breaking could have been more complicated. (In Parisi's scheme, at a given overlap, all 
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I l b l  I 

X X 

Figure 5. The function q ( x )  in case B ((0) is for h = 0). There is a jump in q ( x )  for ( b )  small 
field (broken curve in figure 2) but this jump disappears if the field is (c) strong enough (full 
curve in figure 2). 

the groups have the same size. One could imagine breakings for which not all these sizes 
would be equal.) 

Secondly, the function q(x) has roughly the shape expected in spin glass models. One 
big difference however from Parisi’s q(x) for the SK model is that for the GREM the 
plateau at qmax is missing. The length Y of the plateau at qmax has been interpreted as 

Y = C , P z ,  
(1 

(Mezard et a1 1984) where P ,  is the probability that the system is in the pure state a. In 
the SK model as well as in the GREM there are an infinite number of pure states in the 
spin glass phase. However, Y = 0 in the GREM, i.e. there is no pure state that has a finite 
weight; whereas in the SK model near T,, Y - 1, i.e. there is one pure state that carries 
almost all the whole weight. 

Thirdly, in expression (59), one can see that q(x) is a function of x/Tonly. This was 
also observed by Vannimenus et a1 (1981) when they made the approximation that 
magnetisation depends only on the field in the spin glass phase. 

Fourthly, we have introduced here the breaking of replica symmetry in an abstract 
way by analogy with Parisi’s ansatz (Parisi 1980a,b,c). It is interesting to notice that the 
function q(x) found here is the same as the one derived by De Dominicis and Hilhorst 
(1985, 1986) who computed the function q ( x )  using the physical interpretation (Parisi 
1983, Mezard er a f  1984a,b), i.e. computing the probability distribution of overlaps. 

Lastly, one can see that in the presence of the magnetic field, there is a plateau at the 
value qmin which is always equal to the magnetisation m. This is not surprising because 
one always has qmin m. This is due to the ultrametric structure of the GREM. If one 
takes two configurations having a magnetisation m, this means that they have an overlap 
m with the ferromagnetic configuration. Therefore they must have a mutual overlap that 
is at least m. 
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7. Conclusion 

In this paper, we have given a general expression (20) for the free energy of the GREM. 
We have seen how one could introduce a magnetic field and have computed the de 
Almeida-Thouless line Tc(h) .  In case A,  T,(h) decreases with h ,  whereas in case B, 
Tc(h )  has a maximum. Lastly we have described in figures 4 and 5 the shapes of the 
function q ( x )  and have shown that Parisi’s ansatz gives the correct free energy of the 

We have discussed the analogies with and the differences from the Parisi solution of 
GREM. 

the SK model: 
(i) the de Almeida-Thouless line; 
(ii) the flat susceptibility in the spin glass phase; 
(iii) the function q ( x ) ;  but 
(iv) no plateau in q ( x )  at qmax; 
(v) the de Almeida-Thouless does not have the same shape in the GREM and in the 

SK model. 
We have seen that the magnetisation depends only on the field in the spin glass phase 

and that the varying part of q ( x )  is only a function of x / T .  This is very reminiscent of the 
approximation proposed a few years ago to calculate the properties of the SK model 
(Parisi and Toulouse 1980, Vannimenus et al l981) .  

There remain several questions that we would like to mention at the end of this 
paper. 

The main problem, of course, would be to generalise the GREM in order to treat triple 
and higher correlations between energies. This means that one could try to generalise 
formula (20) to cases where the moments (ZP(T))  are not given by (50). It seems 
reasonable to think that (20) is only the special case (when (50) is valid) of a more 
complicated formula involving ( Z 3 ( T ) ) ,  (Z4(T)) etc. It would be very interesting to get 
such a formula because it would give a systematic expansion for studying spin glasses in 
any dimension and more generally disordered spin systems (dilute magnets, random 
field models etc). 

The GREM by itself gives a whole class of spin glass models that can be solved exactly. 
To our knowledge it is the first spin glass model for which one can show that Parisi’s 
ansatz gives the correct free energy. It would be interesting to study the replica treatment 
in more detail, and in particular to look at the stability of the replica solution and to see 
whether it is fully or only marginally (De Dominicis and Kondor 1983) stable. 

In our previous work (Derrida and Gardner 1986), we have seen that one could 
associate any spin glass model in finite or infinite dimension with a GREM that has the 
same correlations between energies. In infinite dimension, the correlations between the 
energies of two configurations depend on their overlap. However in finite dimension, 
these correlations do not depend on the overlap but on the number of bonds that are 
changed (see 0 6 of Derrida and Gardner 1986). Therefore our way of introducing the 
magnetic field in the GREM is only legitimate if it is a GREM associated with an infinite- 
ranged spin glass model. For a GREM associated with a finite-dimensional spin glass 
model, one can still talk of partial partition functions but this would correspond to 
considering a GREM associated with a spin glass model whose distribution p ( J , )  of bonds 
is gaussian but not symmetric 

P V , )  - exp[-(J, - J0)2/2J21z with], # 0. 
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Until now, we have always associated a given spin glass model with the GREM that 
has the same pair correlations between energies. This constraint was sufficient to fix the 
functions a(q)  and log a(q). At the end of the present work, one sees that one could 
associate a GREM in a different way. For example one could choose the functions a(q)  
and log a(q) such that the GREM has exactly the same de Almeida-Thouless line (see 
equations (32) and (33)) as a given spin glass model. In the case of the SK model, the 
properties of this GREM would be those described by Vannimenus et a1 (1981) since this 
GREM would have a magnetisation m depending only on the field in the spin glass phase. 

Lastly we have seen that the de Almeida-Thouless line T,(h) has a maximum at ho 
when h varies from 0 to for the GREM corresponding to thep spin glass model ( p  > 2). 
For h > ho,  the function q ( x )  has a discontinuity, whereas the function q ( x )  is continuous 
for h > ho. So the point ho, T,(h,) is a kind of tri-critical point. It would be interesting to 
know whether such a tri-critical point does exist along the de Almeida-Thouless line of 
the true p spin glass model. 
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