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Interfacial wetting in the q-state Potts model 
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Abstract. We consider an interface between two ordered phases of a 9-state Potts model 
below its bulk first-order transition temperature. The mean-field equations are solved 
analytically for small 9 - 2 and the solution shows that the interface is wetted by the 
disordered phase as the transition is approached. The excess absorption and surface 
entropy diverge logarithmically. Numerical calculations indicate this wetting also occurs 
at larger 9. 

1. Introduction 

The behaviour of an interface between two phases as coexistence with a third phase 
is approached is the subject of current experimental and theoretical investigation 
(Sullivan and Telo Da Gama 1985). Attention centres on the question of whether a 
film of the third phase intervenes between the first two phases and, if so, whether its 
thickness is microscopic or macroscopic. In the latter case, the third phase is said to 
wet the interface. Examples include the wetting of the vapour/ A-rich liquid interface 
by B-rich liquid in binary-1iquid.mixtures (Sullivan and Telo Da Gama 1985, Tarazona 
et a2 1983), and the surface melting of a solid in coexistence with its vapour (Frenken 
and van der Veen 1985). The same question can be posed in systems in which there 
are more than three possible phases and has recently been studied in two-dimensional 
systems (Selke 1984, Yeomans and Derrida 1985). In particular, interfaces in the Potts 
model, the chiral Potts model and the Blume-Emery-Griffiths model were investigated. 
While the results of the last two were clear and understood (Selke 1984, Yeomans 
and Derrida 1985), those of the first in which the bulk transitions were first order were 
neither (Selke 1984). The interface between two ordered phases A and B in the Potts 
model might be thought to be simply due to the symmetry which exists between its 
ordered phases. In particular, this symmetry implies that the surface tension between 
any two ordered phases must be the same. An immediate consequence is that the A/B 
interface cannot be wetted by another ordered phase C, but only by the disordered 
phase, if at all. This is in contrast with the chiral Potts model in which the Potts 
symmetry is broken so that there is more than one surface tension between ordered 
phases (Huse et a1 1983). Further, as there is only one parameter in the model, the 
interaction strength J, the ordered and disordered phases can coexist only at a single 
temperature, the bulk transition temperature To. Thus, at this temperature, either the 
disordered phase wets the A/B interface or it does not. The parameter space is not 
large enough to permit a line of three-phase coexistence, as occurs in the Blume-Emery- 
Griffiths model or in binary-liquid mixtures, or the possibility of a wetting transition. 
It is the purpose of this paper to determine, within the context of mean-field theory, 
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which of these two behaviours actually occurs. As emphasised by Widom (1977), this 
can only be done by solving the full set of q - 1  coupled equations for the q - 1  
independent densities. In particular, one cannot appeal to effective one-density theories 
because such theories presume one behaviour or the other at the outset. As shown 
below, symmetry considerations reduce the q - 1 equations to two. Even so, it is not 
at all easy to solve these equations, even numerically (Dickinson 1984). 

Our approach is an analytic one which is valid for the q-state Potts model in the 
limit in which q - 2 is small. Our principal result is that there is, in fact, a wetting of 
the interface between ordered phases by the disordered phase as the temperature 
approaches the bulk transition temperature To. Given that such an interfacial wetting 
occurs, it is believed that effective one-density theories should yield the correct ther- 
modynamic singularities associated with the interfacial wetting transition (Lipowsky 
1984). These theories yield a width of the disordered region which diverges like 
In( To- T )  (Widom 1978) and an excess surface entropy with the same divergence. 
Our explicit solution of the coupled equations which depend on all densities explicitly 
confirms this behaviour. 

2. The equations for the profile 

We consider a q-state Potts model on a d-dimensional hypercubic lattice governed by 
the Hamiltonian 

H = - J  f C c:c; 
A = I  (ij) 

where A can take on q values and the second sum is over nearest-neighbour pairs. 
The variable c? on the ith site is equal to unity if the Potts spin on that site is in the 
state A and is zero otherwise. Let the ensemble average of c? be denoted by  n? which 
must satisfy the constraint 

C n ) = 1  V i. 
h 

Then, within mean-field theory, the n? minimise the free energy functional (Mittag 
and Stephen 1974) 

h i  

where p is the inverse temperature. In the situation of interest to us, a (d  - 
1)-dimensional planar interface between two ordered phases, the n? vary in one 
direction only so that ( 2 )  may be simplified to 

where i;p is the area of a hyperplane, k the index of such planes, and A the second 
difference operator: 

Of the q densities nhk on each plane k, only two are independent. They can be taken 
to be n t  and nfi. By symmetry, all the other n; are equal and can be obtained from 
the constraint (2) as 
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Instead of n$ and n: we use the two independent variables 

S k = f ( n t + n E )  

and 
A B  Dk = n k  - nk 

so that 

n;  = (1 - 2 s k ) / ( q - 2 )  A # A, B. 

In terms of t!iese variables, the free energy functional of ( 4 )  can be written as 

P F / d = C f ( { S k } ,  {Dk}) 
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(7) 

(9) 

Variation with respect to the s k  and Dk leads to the equations 

and 

These equations always admit the uniform disordered solution 

sk = l / q  V k  

Dk=o V k  

corresponding to n$ = l / q  for all k and A. Below the transition temperature given by 

there is another uniform solution (which minimises f) in which only one colour, A 
say, is different from the others so that nE is the same as n ;  for A unequal to A. From 
the definition of (7) and the value of n;  given in ( 8 )  we find that the uniform values 
of s k  and Dk, which for this solution we denote SR and DB, are related by 

Knowing this, one obtains the solution of ( 1  1 )  and (12 )  from the solution of 

z ( s B q - 1 )  =-log( 1 2sBq -2sB-  1 
q - 2  2dpJ 1 -2s* 

and 
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At the transition temperature, the explicit solution is 

S B  = ( q 2  - 2q-c2)/2q(q - 

DB = ( q  - 2)/ ( 4  - 

T =  To 

T=To  

corresponding to 

n ; t = ( q - l ) / q  

n̂ k = l / q ( q  - 1)  A # A. (22) 

Comparison with (13) and (14) shows the first-order nature of the transition at To. 

subject to the boundary conditions 
To determine the surface tension gAB( T ) ,  we need to solve equations ( 1  1 )  and (12) 

S k  sB k + + x  (23) 

D k  + f D B  k + *:Co. (24) 

We denote these solutions & and 8,. Then CAB is obtained from 

p u A B = x f ( { i k k ) ,  { B k } ) - f ( { S B } ,  {DB)) (25) 
k 

with f given by (10). A measure of the amount of the disordered phase absorbed at 
the interface is provided by 

w =  1 ( n i ( i k *  f i k ) - n ^ k ( S B ,  DB)) 
A#A,B k 

It is not an easy task to solve (11) and (12) with the boundary conditions (23) and 
(24), even numerically. There is almost certainly no unique solution to the equations 
with such boundary conditions but rather a set of solutions corresponding to a series 
of local minima (and maxima) of (25) and one global minimum. If several of the local 
minima are almost degenerate with the global one, the problem of determining the 
latter is considerable. We avoid this problem in the next section by solving the equations 
analytically in the neighbourhood of q equal to 2 and for temperatures T close to 
To (in particular for To - T - ( q  - 2)*). This will allow us to give a complete description 
of the profile of the interface. 

3. The profile for q close to 2 

For q close to 2, and T close to To, one can simplify equations (1 I )  and (12) which 
give the profile. To do so, let us define + by 

* = q - 2  (27) 

Thus E gives a measure of the difference To- T. If we define /L as 

P = E / * 2  (29) 
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then we shall consider p to be of order unity. One can expand 2d&J given by (15) 
in powers of + and one finds 

2 d p J = 2 d ~ , J + p 1 , h ~ = 2 + + - ~ + ~ + & ~ + p + ~ +  . . .  . (30) 

Let us assume that 

where 

u k  = o( IL2). (33) 

The idea of our solution is a self-consistent one. First we assume (31), (32) and 
(33), i.e. that Dk is of order + along the profile and that the k dependence of S k  is of 
order +2. Then we simplify equations (11) and (12) using this assumption and find a 
solution which is consistent with it. 

Using (27) and (29)-(33) one can expand the right-hand side of equations (11) 
and (12) up to the third order in +. It turns out that the zeroth, first and second orders 
vanish and just the third order remains. The result is 

p J (  Dk+l f (34) 

iqpJ(Uk+l+ ~ k - ~ - 2 ~ k ) = ~ + 3 - + ~ k - + D ~ + U ; ? k / + .  (35) 

- 2 0 k )  = (2$b2 - p+* - Uk)Dk +$D: 

We seek a solution such that u k  + uB and Dk + * DB when k + *cc where uB and DB 
are given by 

uB = $ [ 5  + ( 1  + 24p)’i2]+2 + higher-order terms 

DB = a[3 + (1 +24p)”*]+ + higher-order terms. 

(36) 

(37) 

For small 4, the right-hand sides of (34) and (35) are of order +3 whereas the left-hand 
side of (34) is a priori of order + and of (35) of order IL2. The only way of solving 
these equations is to look for a solution which varies slowly with k By inspection 
(34) and (35) have a solution of the form 

Dk = +G (o’/’ 1 +k) + higher-order terms 

uk = $t2 H (~ 1 +k) + higher-order terms 
( P J ) I i 2  (39) 

where the functions G( t )  and H( t )  satisfy the following two equations 

d2G/dt2=( ; -p  - H ) G + $ G 3  (40) 
d2H/d t2=$-  H - G 2 +  H2. (41) 

Here one should notice the fact which makes the problem soluble: the term which 
contains d2H/dt2  in (41) is a higher-order term (since it is multiplied by +) and 
therefore (41) can be replaced by 

(42) $ -  H - c2+ H~ = 0. 

H =;+~GI .  (43) 

Together with the boundary conditions (36) and (37), this yields 
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Using (43) and (40), one sees that the problem reduces to finding the solution of the 
differential equation for G 

(44) 

One can integrate this equation (44) and obtain the constant of integration from 

(45) 

d2G/dt2  = (f - p - IGl)G+fG3 

which tends to *$[3 + (1 + 2 4 ~ ) ” ~ ]  when t + *CO. 

the fact that dG/dt  vanishes as t + *CO. This leads to 
(dG/dt)2 =+G2( 1 - lGl)2 - pG2+&[-1 + 60p +72p2+ (1 + 2 4 ~ ) ~ / ~ ] .  

With the solution of (45), one knows the profile 

For arbitrary p, one can solve (45) numerically or try to express its solution in terms 
of tabulated functions. However, to study the critical behaviour ( (To  - T) << 1) one 
needs only to consider the limit p+O. For p small, the function G varies from 
- (1+3p)  to 1 + 3 p  when t goes from -CO to +CO. The critical behaviour will be 
dominated by the length L along which G remains close to 0. For (G(t)l small and 
p small, (45) can be simplified to 

( d G / d t ) 2 = $ G 2 + p  (48) 

G( t )  = ( 3 ~ ) ’ ~ ’  sinh( t / f i ) .  (49) 

L =  - f i  log p for p + 0. (50) 

which has the solution 

Therefore the length L over which IG(t)l is small diverges like 

We can now estimate W, the amount of disordered phase absorbed at the interface. 
From (26) and (47), one has for + small 

For p small the sum is dominated by the region where G is close to 0: 

where we have used dPoJ = 1 for q = 2. 
Thus in terms of the variables q and T, one finds that for q - 2 small and To - T << 

(q-2)2: 

a To- T 
(‘ -2) log (( q - 2)2T) W = - -  

2 a  (53) 

Thus, interfacial wetting does indeed take place as the temperature approaches To. 

simple: 
At the bulk critical temperature itself ( p  = 0), the solution of (45) is particularly 

1 G( t )  = * 
exp[*( t - t0) / f i ]+1’  (54) 
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to is an arbitrary constant of integration which reflects the fact that the location of the 
interface is arbitrary. The interface between phases A and B disassociates into two 
interfaces, between A and the disordered phase, and between the disordered phase 
and B, with profiles given by (54). 

Equation (44) can also be used to describe finite-size effects. If one wants to 
describe an interface A B  between two planes at distance 9, then the boundary condition 
dG/dt  -j 0 for t + *a has to be replaced by boundary conditions at t = * LZ(PJ)'/2/24t. 

4. The surface tension for q close to 2 

We have seen that the surface tension uAB is given by (25) and (10). If we expand 
(TAB up to the fourth order in I) (which is the leading order), and use the equations 
(27)-(35), we find 

P u A B (  T) = E  ( - ~ ( D ~ - ~ ~ ) + ~ I ) 2 ( u k - ~ B ) - ~ ( u ~ - u ~ ) + ~ I ) - 2 ( u ~ - u ~ ) )  ( 5 5 )  
k 

where uB and DB are the bulk values given by (36) and (37) and uk and Dk are the 
solutions of (34) and (35). At the bulk transition temperature 

(56) 
k=-cc  

a; =IL' ( p J ) ' / '  1 [163(t)l-64(t)]2 df 
12 -cc 

(57) 

where 6 is given by (54). 
The last factor of 2 comes from the fact that there are two interfaces between phases 

A and B which are an infinite distance apart. Clearly the surface tension (T between 
the ordered and disordered phases, which is defined only at To, is given by 

(T = ;(TAB( To). ( 5 8 )  

For q - 2 small, the result of the expression (57)  can be written: 

One can also calculate (TAB( T) for T <  T3. For small p one finds that the main 
contribution to the difference u A B ( T ) - u A B ( T 0 )  comes from the length L of the 
intervening disordered region 

Pr'AB( - = (fp4t4)(-fi log p)[(PJ)"'/$I. (60) 

In this equation, 4p+h4 is the difference in free energy between the ordered and 
disordered phases. It is linear in T -  To because the transition is first order. The 
remaining factor is the length L of equation (50) expressed in units of the lattice 
spacing. Expressing this result in terms of To- T and q - 2 and again using ( p J ) ' l 2  = 
d- ' l2  for q = 2 one obtains 
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Equations (53) and (61) are the main results of this work. They are valid for 
( q  - 2 )  << 1 and 0 < To - T << ( q  - 2)2. One can, of course, calculate W and (TAB( T )  for 
( q  - 2 )  small and (To-  T ) / ( q  -2)2 not small from the solution of (45). 

5. Discussion 

We have seen that, for q close to 2 and within mean-field theory, there is a wetting 
of the interface between two ordered phases of the q-state Potts model by the disordered 
phase as T approaches To, the temperature at which all three phases are in coexistence. 
The excess interfacial absorbtion W diverges, according to (53), like log( To - T ) .  In 
addition, equation (61) for the surface tension shows that the excess surface entropy, 
-auAB/d T, also diverges logarithmically. That these divergences are intimately related 
is easily seen. For temperatures near To, the thickness L of the disordered region, 
which intrudes between the two ordered phases, is large acd is directly proportional 
to W Further, the surface tension (TAB varies near To as L multiplied by the difference 
of the free energy per unit volume of the ordered and disordered phases at the same 
temperature. The latter quantity is, of course, well defined in mean-field theory but, 
even more generally, it can be defined as the continuation of the disordered free energy 
in the vicinity of To (we ignore the possibility of essential singularities at a first-order 
transition). When the bulk transition of the Potts model is first order, this free energy 
difference is linear in To- T from which follows the proportionality between the excess 
absorbtion and excess entropy. 

In addition to solving equations (1 1) and (12) analytically near q = 2 ,  we have also 
tried to solve them numerically for larger values ( q  = 3,10,20). This was difficult 
because the algorithm we used converged very slowly. Our numerical results indicated 
that there is an interfacial wetting for these larger values of q. We were not able to 
extract from our data the form of the divergence of W or the singular part of uAB as 
T approaches To. However, as we have seen, explicit solution of the many-density 
theory for q near 2 yields the same q-independent singularities as obtained from 
one-component theories which, by their construction, are independent of q and all 
symmetries (Widom 1977). It is reasonable to expect, therefore, that the results of 
one-component theories are applicable to the larger values of q as well. Further support 
for this view derives from the work of Kikuchi and Cahn (1980) which provides an 
example of an interfacial wetting in a system with more than one component which 
does not have Potts symmetry but which daes display the same singular behaviour as 
found above. 

Lastly we note that the existence of the interfacial wetting could have been antici- 
pated by the use of the sharp-kink approximation in which the smooth continuous 
variation of all densities through the interface is ignored and the minimum of the 
surface tension, (25), is sought within the following subspace: 

n t  = n: k s O  

= nDIS O < k s Z  (62) 
= nk Z < k  

where n:, nk and nDIS are the values of n̂ k appropriate in the A, B and disordered 
phases at To. In this approximation, (TAB at To depends only on the thickness of the 
disordered phase 2. Using this ansatz and the fact that all phases are in coexistence, 
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Thus, within this approximation, a layer of disordered phase of any non-zero thickness 
is favourable over no such layer but uAB is otherwise independent of 2. In the exact 
solution of the mean-field equations, the densities n; do not change abruptly, but 
exponentially (cf (54)). This causes a repulsion between the kinks which in turn causes 
a A B ( 2 )  to decrease exponentially with Z. Hence an infinite value of Z minimises (TAB 

which corresponds to a wetted interface. 
The value of the interfacial tension at To in the sharp-kink approximation is 

which is to be compared with the analytic result of (59) valid for ( q  - 2) small 

The latter is smaller than the former by a factor of a( q - 2) which has been 
assumed to be small. The approximation overestimates the surface tension precisely 
because the kinks are not sharp but vary on the length scale 1/[&f(q-2)] which is 
assumed to be large. However for large q the kinks do become sharp so that the 
approximate expression (65) should become increasingly accurate. 

Our results may have some experimental relevance. As we noted earlier, an A/B 
interface cannot be wetted by another ordered phase. Similarly, the interface between 
the disordered phase and one ordered phase cannot be wetted by another ordered 
phase. From this we surmise that in a binary-liquid mixture in which the two fluids 
are very similar, neither vapour-liquid interface will be wet by the other fluid. Rather, 
the vapour will wet the liquid/liquid interface. The first statement can be checked 
experimentally rather easily. The second cannot because gravity prevents the vapour 
from intervening between the liquids. It might be checked, however, in a three- 
dimensional realisation of the three-state Potts model (Mukamel et a1 1977, Barbara 
et al 1978). This consists of a Heisenberg ferromagnet in a crystal with a strong 
anisotropy which favours the six directions in the set S 100 5 . A magnetic field along 
the ( 1  1 1 )  direction favours the three directions ( l o o ) ,  (010) and (001) resulting in a 
three-state Potts symmetry. Quite generally, there will be domains of the different 
directions of magnetisation. On heating to To, the paramagnetic phase is predicted to 
wet the interfaces between these domains, an effect which should be readily observable. 
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