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We present a simple way of constructing one-dimensional inhomogeneous 
models (random or quasiperiodic) which can be solved exactly. We treat the 
example of an Ising chain in a varying magnetic field, but our procedure can 
easily be extended to other one-dimensional inhomogeneous models. For all the 
models we can construct, the free energy and its derivatives with respect to tem- 
perature can be computed exactly at one particular temperature. 
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1. I N T R O D U C T I O N  

One-d imens iona l  models  in classical  s tat is t ical  mechanics  are k n o w n  to be 
exact ly  and easily solvable.  However ,  as soon as the one -d imens iona l  
mode l  becomes inhomogeneous ,  ~1~ i.e., the pa rame te r s  that  define the 
model  (magnet ic  field or  neares t  ne ighbor  in terac t ions  for Ising models ,  
po ten t ia l  in the Ander son  model ,  etc.) vary in space ( r a n d o m  models  or  
quas iper iod ic  models) ,  f inding the exact  so lu t ion  usual ly  becomes next to 
impossible  except  in a few special examples  ~21 or  in some l imit ing cases ~3'4) 

(zero tempera ture ,  weak disorder, . . .) .  
In the present  work,  we show how to cons t ruc t  a large class of 

i nhomogeneous  models  ( r a n d o m  or  quas iper iod ic )  for which the free 
energy (or  L i a p u n o v  exponen t )  can be c o m p u t e d  exactly. In o rde r  to 
i l lustrate our  me thod ,  we restr ict  our  d iscuss ion to an Ising chain  with a 
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varying external field. Our method can nevertheless be easily extended to 
Ising chains with nonconstant interactions in a varying field, to the 
problem of diffusion in inhomogeneous media, to the problem of a quan- 
tum particle in a varying potential, etc. 

Our approach is rather artificial because we start by giving the 
solution and then build the model knowing its solution. As a consequence, 
we compute the free energy and its derivatives at a specific temperature 
only. The calculation of the nth derivative with respect to temperature is 
possible. Yet the complexity increases rapidly with the order of derivation. 
The knowledge of the free energy at a single point is very reminiscent of 
some spin models for which the partition function can be computed exactly 
on some special lines in a phase diagram (the so-called disordered lines) (s) 
and also of the exact results known on the Nishimori line in spin glasses. (6) 

In Section 6 we compare our work to that of Percus, (71 who computes 
the site-dependent magnetic field that produces a given magnetization 
profile. 

2. SOLVING THE M O D E L  

Consider an Ising chain in a variable external field h i. Its Hamiltonian 
is 

N - - I  N 

i = 1  i = 1  

where as usual ai denotes the Ising spin ( r  +1) at site i and J is the 
coupling constant. For certain choices of the hi we shall see that we can 
compute the free energy exactly. 

Let 

ZN= ~ exp[- -  •(o-)]  
a ~ {  1,1} N 

be the partition function (notice we have normalized the temperature 
T =  1). The easiest way to calculate ZN is to use the transfer matrix techni- 
que, which consists in expressing Zn + 1 in terms of Z, .  To be more specific, 
define Zn(+  ) to be the partition function of the Ising chain starting at site 
1, ending at site n, with the extra condition an = +1. In the same fashion, 
we define Z , , ( - )  with an = -1 .  Hence, for e = _+, 

Zn(~)= ~ exp J ~ ~iei+ l + J ~ _  t + 2 hi~i + ~h~ 
a c { - - l , l }  n - I  i = 1  i = l  
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It is easy to see that 

Z .  + , (+ ) = e h"+'feJz.( + ) + e - J Z . ( -  )] 

Z~+l(--)=e-h"+~[e JZ.(+)+eJZ.(--)]  

Put 

r .  = Z . (  + ) l Z . ( - -  ) (1) 

The above recurrence yields 

r.+ 1 = e 2 h " + l  C2Jrn -t- 1 
r.  + e 2J (2) 

Usually one is asked to compute the r,,, given the h.. Indeed, the free 
energy ~ per spin is expressed in terms of the r. in the following way: 

- ~ =  lira llogZu 
/ Y  

= L m  l IogEZN( + ) + ZN( -- )] 

= lim log + ~ l o g [ Z T ( + )  + Z I ( - - ) ]  
~ -N,, 2 \z._,(+)+z._,(-) 

{ 1  '~21ogEe +NIl  r,+tjrN+l] = lim -t'~ , +eS)]  og---r-v-)  (3a) 
N ~ o o  /7 

We now make the assumption that as N increases to infinity, rN is 
bounded. This is of course the common case. Then, using (2), we have 

- ~ =  lira I ~ log[(e Jr. l + e J )  e -h"] 

1 2_.x 11 (ea+e Jrn-1)(e-J+eJrn 1) 
lira 5 og N~oc~ N n =  1 F. 

l'n_ 1 lim 1 l o g l + 2 r " - ~ c ~  i 
2 N ~ o o N  n= i Fn 

Notice that 

�9 1 N 1 o g l  1 N . ~ E  : lira 2 log 1 i 'm,,_ : r. , 
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Thence 

1 Nn=ll ~ ( + l + 2 c ~  (3b) - - ~ =  2imo~ log rn 

This calculation is valid provided the limits exist. 
In the usual approach, it is difficult to compute the free energy because 

the sequence r n is defined through the recurrence relation (2). If h n is not 
constant, rn can be too complicated to allow the calculation of the free 
energy using (3b). We propose here to solve the problem from the "other 
end." We are given the sequence r n. We then obtain both the external field 
h, from formula (2) 

c2hn ~ Fn -- 1 -~- C2J 

rn e2--'Jr-~--1 + 1 (4) 

and the free energy 0 from formula (3b). We illustrate this principle in the 
next Section, leaving the discussion of the derivatives of ~ to Section 5. 

3. A GENERIC EXAMPLE 

Let us first recall a useful result due to H. Weyl (see Ref. 8). 

L e m m a .  If (u.) is an equidistributed sequence (mod 1), then for all 
Riemann integrable functions ~ with period 1 

1 ~ q~(un)=f~qS(x)dx 

Examples of such sequences are un=nc~ (c~ irrational), un=nZe (c~ 
irrational), un=x/-s etc., As for Riemann integrable functions, any real 
periodic continuous functions with period 1 will suffice for our applications. 

Suppose we are given an equidistributed sequence (mod 1), say un, 
and a continuous function (p with period 1. We choose r,, = q~(u~). In order 
to give a physical meaning to rn, we must assume ~0 > 0 [-because r,, is the 
ratio of two positive numbers; Eq. (1)]. We shall actually demand slightly 
more, namely that there exists a constant C > 0 such that for all x e (0, 1), 
(p(x) > C. Apply Weyl's lemma to 

~(x)  = log I~0(x) 1 2J]  + ~ + 2 cosh 

Then the free energy is given by 

--~9--~ log q ~ ( x ) + - - ~ + 2 c o s h 2 J  dx (5) 
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4. Q U A S I P E R I O D I C  A N D  R A N D O M  E X A M P L E S  

One can choose for u. a quasiper iodic  sequence, say u. = (n + 1)~, 
where e is irrational.  Fo r  example,  take 

r . = 2 ~ +  2 (,~. - -  1 )  ' /~  = { o ( u . )  

where 

2.  = A + B cos 2~(n + 1 ) c~, 0 < B < A - 1, ~ i r rat ional  

The sequence r,, is quasiperiodic.  
The field h.  is then given by (4). More  specifically 

hn = �89 + B cos 27r(n + 1 ) c~ + { [A + B cos 2~(n + 1 ) c~] 2 - 1 } 1/2) 

+ log{e 2J + A + B cos 2~nc~ + [(A + B cos 2rrnc0 2 - 1 ] 2/2 } 

- log{ 1 + Ae 2J + Be zs cos 21rnc~ 

+ eZJ[(A + B cos 2rcn0Q 2 - 1 ] 1/2}] (6) 

The field h.  is seen to be also quasiperiodic.  A simple calculat ion using for- 
mula  (5) leads to 

- ~ , = l  log{A + cosh 2J + [(A + cosh 2 j ) 2 -  B2] 1/2} (7) 

We thus conclude that  for a quasiper iodic  field h.  given by (6), the free 
energy can be compu ted  exactly and the result is (7). 

In the previous example,  r,, and h, are determinist ic sequences. In the 
same fashion one can construct  r a n d o m  sequences. Fo r  example,  if we 
choose 

2., = A + B cos(2rcX.) 

where t l .  is a uniformly distr ibuted r a n d o m  variable on the interval (0, 1), 
then the field hn becomes r a n d o m  and is given by 

h. = �89 + B cos 2~zX n + ~(A + B cos 27cX.) 2 - 1 ] ,/2} 

+log{e2J+A+Bcos2~rX  n l + [ ( A + B c o s 2 ~ X ~ - x )  2 - 1 ]  1/2} 

- log{ 1 + Ae 2J + B e  ?J COS 27tX,, _ 1 

+e2J[ (A+Bcos2r tX .  ~)2 111/2}) (8) 

The sequence h.  is r andom,  but hn is correlated to h,,_~ and to h.+~ 
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because h~ and h. ~ both depend on X. 1. Observe, however, that if the 
J(~ are independent, there is no further correlation 

[ ( h , , + p h , , ) - ( h , , + p ) ( h , , ) = O  for p~>2 or p ~ < - 2 ]  

It is clear that for the random sequence (8), the free energy is again 
given by (7). 

5. D E R I V A T I V E S  OF T H E  FREE E N E R G Y  

We have seen in Sections 2 and 3 that, given the sequence G, the 
sequence h. is defined by 

1 rn(G - I q- e2Y)  
h~ = ~ log (9) 

e 2 Y r n -  1 + 1 

and the free energy ~ at fl = 1 is given by 

- t p = ~ J i m  log G r n + Z c o s h Z J  
= 

(lO) 

Suppose we want to compute the free energy of the chain where hn is 
defined by (9) at temperature T =  l / t iC 1. We then have to compute s. 
defined by the recurrence 

=eZfihn+i c~ -}- 1 (11) 
Sn + 1 e2flJ q_ Sn 

As before, the free energy ~ will be given by 

- r i O =  lim log ~ s . + 2 c o s h 2 f l J  
N ~ c o  n = l  

(12) 

Obviously for fl = 1, one has s,~ = G. Computing the derivatives of 0 with 
respect to fl at/~ = 1 involves computing the derivatives of s,, at fi = 1. Let 
us show how to calculate dO/dfl: 

d(//0) = l i r a  1 ~ [ d ( r . ) + c ( G )  s'~ ] (13) 
d/~ fl=l u~  o~ Nn= l Sn fl= l 

where 
1 r 2 - 1 

c ( r , , )  - 
2 r ] +  1 +2rn cosh 2J  

2Jrn sinh 2J 
d(G) = 2 + l + 2 r , , c o s h 2 J  F n 

(14) 
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The careful reader may well criticize the liberty with which we inverted 
the limit operator and the derivation. For each choice of the sequence G, 
one should actually justify this step. However, at this stage we wish only to 
present a method and we disregard this mathematical technicality. 

Formula (13) shows that the calculation of d~/d~ requires the 
calculation of s',/s,, at fl = 1 only. Formula (11 ) implies the following induc- 
tion formula, which relates s', + is,, +1 to s',/& : 

where 

i S t 

&+ l = a ( G )  ~ + b(G+ l, r,,) (15) 
Sn + 1 Sn 

( e 2J 1 ) 
a(G)=rn\e2-~G+ l eZJ +r~ '-  (16) 

f e2Jr e 2J 
b(r,,+l, rn)= 2hn+l + 2 J { ~  (17)  ,,7 2V 

Since the G are positive, it is easily checked that 

[a(r,,)l <~ jtanh JI < 1 (18) 

Therefore, one can solve (15) easily: 

Going back to (13), one finds 

d(fl~,) 
= x +  r +  (20) 

dfl fl=l p=l 

where 

X =  lim --! ~ d(G) 
N~oo N n = l  

Y= lira --1 ~ c(G)b(rn G) (21) 
N~o:? N +1, 

n ~ l  

VP= lim 1N~cc N n~ ~ 1 c ( r n ) I ~ - a ( r " - q ) ] b ( r " l  P ' r n P l )  

Remembering that the sequence r n is given, it is now left to compute J2, Y, 
and Vp either by Weyl's theorem if r,, is uniformly distributed modulo 1 or 
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by the strong law of large numbers if the r~ are random variables. More 
specifically, if rn --- (p(n~), ~ irrational, then 

d(~o(x) ) dx (22) 

c( ~o(x) ) b( ~o(x + o0, ~p(x) ) dx (23) 

c(9(x)) a(~o(x-q~)) b(q)(x-poO, ~o(x-po~-oO) dx (24) 

and if rn are independent random variables uniformly distributed on (0, 1), 
X is still given by (22), whereas 

Y= 

• I (26) 

Notice that in this last case, the series Y~p Vp is a geometric convergent 
series. 

Higher derivatives could be calculated in the same fashion. It goes 
without saying that their expression is more complex, because it involves 
higher derivatives of sn. This is of course unfortunate. Had we been able to 
compute the derivatives, Taylor's formula would have given us the 
expression of the free energy at all temperatures. 

The reason the construction of solvable inhomogeneous models is 
possible is rather obvious. It is clear that for these models, if one changes 
the temperature or any other physical parameter, the solution described 
above no longer holds. However, we believe that it is interesting to dispose 
of a class of models for which the free energy (or the Liapunov exponent) 
and its derivatives can be known exactly, though it is only known at a 
single temperature. 

It is also clear that by choosing a more complicated sequence r ,  one 
can obtain sequences hn that may look less bizarre than (6) or (8) (the 
sequence rn we used in Section 4 was chosen in order to make the 
calculation of ~b as simple as possible). 

It would be interesting to see whether the very simple argument used 
here could be generalized to construct inhomogeneous models which would 
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remain solvable at more than one temperature. A first step in that direction 
was discussed in the previous section. It would also be interesting to 
generalize the above argument to transfer matrices of size larger than 2 in 
order to treat the case of inhomogeneous models on strips. 

6. C O M P A R I S O N  W I T H  T H E  M E T H O D  OF P E R C U S  (7) 

The difference between our approach and that of Percus is that we are 
given the parameters r. = 7 ( + ) / 7 ( - )  whereas he is given the more physical 
quantities mn = (O/~h.) log Z,,, which represent the magnetization at site n 
(mean spin). We express the physical characteristics of the model in terms 
of rn and Percus in terms of m~. 

Now, even though the magnetization m.  has a more physical meaning 
than rn, there seems to be some gain in considering G. For  instance, on the 
one hand, Percus notices that the external field h~ is a function of the three 
variables m . _ i ,  m. ,  and m . + l  [see his equality, (7) p. 303, relating u(x), 
r  ax, r On the other hand, our Eq. (4) shows that hn is a 
function of two variables only, r~ t and G. We have reduced the dimen- 
sion. 

The two approaches are nevertheless consistent with one another. To 
see this, it suffices to prove that r .  is a function of m.  and m,,+~. Indeed, 
recall formulas (2) and (3a): 

e2Sr~ + 1 
r n +  1 ~-" e2hn+l  rn 2i_ C2j 

N 
1OgZN= ~ log[e h"(e-J G l + e J ) ] + l o g  r N + l  

n=2 rl + 1 

We now compute the magnetization, 

0 1 rn. = ~ og Z N 

If we consider the external field hn as given, then formula (2) shows that r,, 
is a function of h~, h 2 ..... h.. Hence, in the thermodynamic limit 

m n = --1 + 
1 

i=orn+iq-g 2J Ohn 

1 Dr. +, 
m . + l =  - 1 +  - - - -  

i=1 rn+i+e2d cqh.+l 
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Put 

Then 

and 
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S =  f 1 Or___y~+_i 
i = 1  rn+i'~-C2J ~rn+ 1 

Orn + 1 . 1 Orn 
m n =  --1 + S - - - ~ - I - r ~  + e2J ~3hn 

mn+l  = - 1  + S grn+~ 
~3h, + 1 

We now wish to eliminate S between m.  and m,  + l. First note that 

Orn/Oh,, = 2r~ 

and 

Hence 

e 4J 1 e 4J l 

Ohn (rn + e2J) 2 = r~+ l (r,, + e2J)(e2Jr,, + 1 ) 

m,,+l = - 1  + 2r,,+ IS 

m , , = - l + 2 r , ,  r~+l(r~+e2J)(e2o, r n + l ) S +  

We finally eliminate S: 

m n =  - 1 + 2r,  1 + m~ + l e 4 J -  1 
2 ( r , ,+eS-~(eZTr , ,+l )  

This rather clumsy expression relates rn to mn and rnn+l and establishes 
our claim. 

Notice, however, that the expression for rn in terms of m n and m,~+l 
involves a second-degree equation, which seems quite unwieldy. The 
relationship between our point of view and that of Percus, even though 
clear, appears to be too complicated to allow a mere translation from one 
system to another. 
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