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Metastable states of a spin glass chain at 0 temperature
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Résumé. 2014 Nous étudions un verre de spin d’Ising à une dimension et à température nulle. Nous calculons les
moments du nombre total d’états métastables et le nombre typique d’états métastables à une aimantation donnée.
Nous obtenons que pour toutes les aimantations plus petites ou égales à mmax = 0,446042..., il y a un nombre

exponentiellement grand d’états métastables. Au-dessus de cette valeur mmax, il n’y a plus d’état métastable. L’aiman-
tation rémanente mrem d’une chaîne est 1/3 pour une dynamique où on retourne un spin à la fois quand on commence
à l’instant t = 0 avec tous les spins alignés. Notre calcul montre que mrem n’est pas donnée par l’aimantation maxi-
mum des états métastables. Nos résultats sont valables pour une distribution arbitraire des couplages, à condition
qu’elle soit symétrique et continue.

Abstract. 2014 We consider an Ising spin glass chain at 0 temperature. The moments of the total number of metastable
states and the typical number of metastable states at a given magnetization are calculated. We find that for all
magnetizations less than or equal to mmax = 0.446042... there is an exponentially large number of metastable states.
For magnetizations larger than mmax, there are no metastable states. The remanent magnetization mrem is known
to be 1/3 for single spin flip dynamics when one starts at time t = 0 with all the spins aligned. This shows that the
remanent magnetization is not given by the metastable states of maximum magnetization. Our results are valid for
a spin glass chain with an arbitrary symmetric and continuous distribution of nearest neighbour interactions.
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1. Introduction.

It has been known for a long time that dynamical
effects are very important in spin glasses [1]. It is
believed that the long time behaviour of spin glasses is
dominated by the presence of many metastable states.
However in most cases one does not know how to
describe these metastable states quantitatively. The
simplest questions one can ask about metastable
states are : how many are they ? [2] What is the size
of their basin of attraction ? If one lets a spin configu-
ration evolve in time, into what metastable state will
it fall ? [3] Such questions arise both in the theory of
spin glasses and in problems of pattern recognition
like the Hopfield model [4].
The purpose of the present paper is to show that all

these questions can be answered for the one dimen-
sional spin glass chain at 0 temperature. First, the
moments of the number of metastable states of a spin
glass chain will be calculated. We shall see that the
typical number of metastable states of a chain of L
spins is 2L/3 (a result already obtained by Li [5])

whereas the average number grows like (4/n)’. The
typical number of metastable states at a given magne-
tization will then be calculated. We shall see that there
exists a maximal magnetization mmax = 0,446042...
above which there is no metastable state. This maximal
value lnmax is significantly higher than the remanent
magnetization mrem = 1/3 (Femandez-Medina) [6]
obtained with single spin flip dynamics when one
starts at time t = 0 with magnetization 1.

2. Number of metastable states and their moments.

In this section the moments of the number of meta-
stable states of an Ising spin glass chain at 0 tempera-
ture will be computed. We will see in particular that
the typical number of metastable states is not equal
to its average. Our results are independent of the
details of the distribution p(J;,; + 1) of the interactions
J;,; + 1. The only condition for our results to hold is that
the distribution p is symmetric (p(Jij) = p(-. Jij))
and does not contain any delta function. So our results
will be valid for a Gaussian distribution of bonds
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(p(Jij) = (2n)-1/2J-1 exp(- Jå/2J2») or for a flat
distribution (P(Jij) = °G - I Jij J . 

Let us consider a chain of L spins with free boundary
conditions. This chain has L - 1 bonds. For a given
sample, i.e. for a given choice of the Ji,i+ 1 for 1 1 i 1
L - 1, the number of metastable states is always given
by 2w where m is the number of weak bonds (Ettelaie
and Moore) [5].
To understand this let us recall the idea used by

Ettelaie and Moore. There are three kinds of bonds

along the chain : strong bonds, medium bonds and
weak bonds. (In order to include the bonds J 1,2 and
JL-1,L in the discussion, we use the fact that we have
chosen free boundary conditions.)
We say that Jl,i+ 1 is a strong bond if [I J;,;+ i I &#x3E;

max (I Ji-1,i I, 1 Ji+ 1,i+2 01. So a bond is strong if
its two neighbouring bonds are weaker. Similarly a
bond Ji,i+ 1 is weak if [I Ji,i+ 1 1  min (I Ji-1,i I,
1 Ji+ l,i+2 !)]’ So a weak bond is by definition surround-
ed by two stronger bonds. Lastly a bond is a medium
bond if one of its neighbours is stronger and the other
neighbour is weaker. With free boundary conditions
it is clear that J1,2 and JL- 1,L are never weak.
By definition, a metastable configuration of the

spins ai is a configuration where each spin ai is aligned
in its local field. So

So in a metastable configuration each spin satisfies
the stronger of the two bonds Jt-l,i and Ji,i+l. There-
fore in a metastable configuration, only weak bonds
can be frustrated. If there are ro weak bonds on a chain
of length L, then each weak bond can be either frus-
trated or not. Therefore the number of metastable
states is just 2°° (we fix the spin (11 = + 1).

Let us compute the probability that a chain of L
spins has ro weak bonds. To do so, we shall use a
recursion relation between this probability for length
L and for length L + 1. Let us define PL(co, x) as the
probability that a chain of L spins has ro weak bonds,
with the conditions that I J L-l,L I = x and that

I JL-2,L-ll &#x3E; x. Similarly we define QL(ro, x) as the
probability that the chain has m weak bonds with the
conditions that I J L-l,L I = x and that I J L-2,L-ll  x.
One then sees that

These recursion relations are easy to understand.

In almost all situations, the number of weak bonds w
remains unchanged when one adds the bond JL,L+ 1.
The only case where (J) increases by one is 1 J L-l,L I 
 min (I JL- 2,L-1 I, 1 JL,L+l I) which corresponds to
the first term in equation (2b).

It is convenient to introduce the following functions

and to introduce w(x) defined by

because p(Jij) is symmetric. One has of course

00 w(x) dx = 1. The equations (2) become thenJo w(x) dx = 1. The equations (2) become then

We see that the AL+ 1 and BL+ 1 are related to the AL
and BL by a linear operator. In the limit L -&#x3E; oo, if we
call Jl(À.) the largest eigenvalue of this operator, one
expects that AL(À., x) and BL(À., x) have the following
behaviour

To find the eigènvalue jl(À), one has to solve the follow-
ing equations

If we differentiate once with respect to x, then

The equations (7) also imply the following boundary
conditions
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The w(x) dependence of the solution can be determined
easily. We look for a solution of (8) which has the
following form

where h(x) is defined by

The equations (8) become

and the boundary condition (9) is replaced by

From (12), one can eliminate G(A, z) and one gets

The solution of (14) which satisfies (13a) is

and the condition (13b) fixes the value of p

i.e.

So we see that for large L

where p(A) is given by (17).
Let us now come back to the number N ofmetastable

states of a chain of length L. We have already seen that
N = 200. Therefore we can compute all the moments
of N.

and one finds

Notice that p needs not be an integer. From this we
can compute for example log N &#x3E; in agreement with
the result of Li [5]

Similarly one can compute the average number N )
of metastable states

So we see that the typical number elogN&#x3E; of the meta-
stable configurations is not equal to the average num-
ber  N &#x3E; of metastable states. The same thing is

probably true for all spin glass models in finite dimen-
sion but for the S. K. model [2] Bray and Moore have
argued that log  N &#x3E; =  log N ).

3. Typical number of metastable states at magnetiza-
tion m.

As we discussed above, for each sample the number of
metastable states is equal to 2w where m is the number
of weak bonds. A metastable state always has all its
medium and strong bonds unfrustrated whereas the
weak bonds can be either frustrated or unfrustrated.
So the chain is broken into clusters of medium and

strong bonds, each cluster being’ delimited by two
consecutive weak bonds. Since the weak bonds
are either frustrated or unfrustrated, two clusters

separated by a weak bond are independent.
In this section, we will first give the expression of

the typical number LX, of clusters of I spins between
two consecutive weak bonds for a chain of length L.
From the knowledge of the Xi, we shall compute the
typical number of metastable states at a given magne-
tization m per spin.

In the appendix, we show that

Each cluster of I spins is independent of its neighbours
and all the I - 1 bonds in this cluster are satisfied.
So all the spins of a cluster are rigid. Because the distri-
bution of bonds is symmetric, the probability P"n that
a cluster of I spins has a magnetization whose. modulus
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is n is given by

These formulae should only be used for n - I even.
Therefore the typical number LYI,n of clusters of lspins
and of magnetization I n is given by

for

for n = 0, 1 even and larger than 2.
By summing over I, one can deduce that the typical

number LZn of clusters of magnetization n

From the knowledge of the Z., it is easy to compute the
maximal magnetization Lmmax of metastable states of
a chain of L sites. m.. is obtained by requiring that all
the clusters which have a magnetization n point in the
same direction. Therefore

Similarly one can compute the typical number of
metastable states at magnetization Lm. To do so, let us
consider that when the magnetization is Lm, there are

1 + a LZn clusters having a magnetization + n and
1 - cx ..1 - cx LZ,, clusters having a magnetization - n. The
an must satisfy

For each choice of the an, the number 0({ an}) of

possible arrangements is given by

The number N(m) of metastable configurations having
a magnetization Lm is then simply given by

with the constraint (28) on the an. One has of course

Using a Lagrange multiplier fl, one finds that the an
have the form

and

1  log N(m) &#x3E; can be drawn as a function of m. The
curve is parametrized by p, P going from - oo to + oo
and m is given by

The maximum number of metastable states are those
of 0 magnetization corresponding to p = 0.

which is again the result (21) obtained by Li [5]. When
m increases, log *N(m) &#x3E; decreases until P -&#x3E; oo

where m reaches the value 171max given by (27). For
magnetizations m &#x3E; mmax, there is no metastable
state with probability 1. It is interesting to notice that
( log N(max)&#x3E; 0. There are an exponentially large
number of metastable configurations at magnetiza-
tion nlmax

The reason is easy to understand. There are a macro-
scopic number LZo of clusters with zero magnetiza-
tion. These clusters can be flipped without changing
the total magnetization.
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Equations (32) and (33) can be used to determine
 log N(m) &#x3E; numerically. The results are plotted in
figure 1. One finds that

4. Remanent magnetization of a spin glass chain at 0
temperature and basin of attraction of metastable
states.

In this section we address the following question : if
at time t = 0, one starts with a completely polarized
configuration (all spins ai = + 1 at time t = 0),
what will be the remanent magnetization at time
t = oo. The answer to that question obviously depends
on the dynamics of the spins. The dynamics we want
to discuss is the most natural one. At each time step, a
spin ai is chosen at random. If this spin is aligned with
its local field, then it remains unchanged. Otherwise
it is flipped. This procedure is iterated until the system
falls into a metastable state

An interesting question is to know what will be the
remanent magnetization mrem of the metastable state
into which the system will fall. The answer to this

question is

and the answer is the same for any distribution of the
bonds which is symmetric and continuous.

Result (39) was first obtained by Fernandez and
Medina [6]. Let us explain briefly here where it comes
from. First the chain is composed of clusters delimited
by weak bonds. Each cluster of I sites has one strong
bond and 1- 2 medium bonds. The total number of
clusters is equal to the total number of weak bonds,
i.e. is equal to L/3. At time t = 0, if we start with m = 1,
half of the clusters have their strong boned unfrustrated
and half of the clusters have their strong bond frus-
trated.
For a cluster whose strong bond is not frustrated at

time t = 0, the two spins which are connected by this
strong bond will remain + for ever. The time evolu-
tion of the cluster will stop when all the medium
bonds become unfrustrated. Since the signs of the
bonds are random, when one averages over all such
clusters, one finds that the average remanent magne-
tization is 2 per cluster. It is just the contribution of
the two spins which are connected by the strong bond.
For similar reasons, one can understand that the

average remanent magnetization of a cluster whose
strong bond is frustrated at time t = 0 will be 0. One
of the two spins connected to the strong bond will flip
and then all the other spins of the cluster will adjust

Fig. 1. - The number of metastable states N(m) having
magnetization m per spin. This number is exponentially
large even when m = mmax.

themselves in order to satisfy all the medium bonds
of the cluster.
When one adds the average remanent magnetiza-

tions of the two kinds of clusters multiplied by their
numbers, one finds (39).

It is clear throughout this paper that the weak bonds
do not play any role in the dynamics. Therefore if one
starts at time t = 0 with an arbitrary configuration of
spins and one uses the single spin flip dynamics des-
cribed above, then at t = oo, each weak bond will be

frustrated with probabilit 1/2 and satisfied with pro-
bability This means that if one defines the size of the
basin of attraction of a metastable state as the number
of spin configurations which fall onto this metastable
state, then all the metastable states have basins of
attraction of the same size. (This property is probably
true only in one dimension.)

5. Discussion.

In this paper we have seen that many properties of
the metastable states of a spin glass chain can be
computed exactly.
Our main result is that there is a critical value of

the magnetization m... above which there is no
metastable state. The number of metastable states is

exponentially large at all magnetizations less than
or equal to this maximal magnetization 0.446042.
We have also seen that if the system evolves according
to a single spin flip dynamics and if one starts at t = 0
with all the spins ai = + 1, then the remanent magne-
tization at t = oo is 1/3. So the magnetization de-
creases from 1 to 1/3 with time. It is interesting to
notice that the system does not stop at the magnetiza-
tion mmax = 0.446042... So the remanent magnetiza-
tion is not given by the maximal magnetization of
metastable states. In other words, when one starts
with magnetization m = 1 at t = 0, the system does
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not fall into the closest metastable states whose

magnetization is mmax.
We believe that all the results discussed in this

conclusion should remain qualitatively the same

for spin glass and pattern recognition models in higher
dimensions.

Appendix.

In this appendix we derive formula (23) which gives
the number LXl of clusters of I sites delimited by two
weak bonds in a chain of L spins. To do so, we again
use a transfer matrix technique.
Assume that we have a chain of L spins. Let us call

cL(x, 0 the probability that the last weak bond was the
bond JL-l,L-l+1’ that I JL-1,L I = x and that

I JL - 2,L -I I &#x3E; x. Similarly dL(x, l) is the probability
that the last weak bond is J L-l,L-l+ l’ that JL -1,L ] = x
and that I JL-2,L-1 I  x. 
One can write recursion relations for these proba-

bilities

It is also easy to see from the definition that cL(x, 1) = 0
for l  2 and dL(x, I) = 0 for l  1.

In the limit L -+ oo, the L dependence disappears
and so cL(x, 1) -+ c(x, 1) and dL(x, 0 -+ d(x, 0. If we
again introduce

then one has to solve

As in section I of the paper, it is convenient to introduce

and to look for solutions which have the form

The equations for F and G become

for

for

The solutions of these equations are

Now we can compute the average number LXI of
clusters of I spins in a chain of L spins.
One has

This equation means that if the last weak bond was
JL-l,L-l+b if I JL-1,L I = x, if I JL-2,L-1 I &#x3E; xandlf
I JL,L+ 1 I = x’ &#x3E; x, then one has formed a cluster of
I - 1 spins by adding the bond JL,L+ 1. The cluster is
composed by the spins L - I + 1, L - I + 2, ...,
L - 1. (A. 16) can be transformed into

If we make the change of variable z = h(x), then
dz = #(x) dx and therefore

This proves formula (23).
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